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Abstract

Let 〈X, d〉 be a metric space. We characterise the family of subsets of X on which each locally Lipschitz
function defined on X is bounded, as well as the family of subsets on which each member of two different
subfamilies consisting of uniformly locally Lipschitz functions is bounded. It suffices in each case to
consider real-valued functions.
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1. Introduction

Let 〈X, d〉 and 〈Y, ρ〉 be metric spaces with at least two points. A function f : X→ Y is
called α-Lipschitz for α ∈ (0,∞) if for all {x,w} ⊆ X, we have ρ( f (x), f (w)) ≤ αd(x,w).
Less specifically, f is called Lipschitz if it is α-Lipschitz for some positive α.
Whenever B is a d-bounded subset of X and f is α-Lipschitz, its image f (B) is a
ρ-bounded subset of Y , as diam( f (B)) ≤ α diam(B). Conversely, if B fails to be
d-bounded, we can find a real-valued 1-Lipschitz function f on X such that f (B) fails
to be a bounded subset of R. In fact, the same function works for all unbounded subsets
of X: x 7→ d(x, x0) where x0 is a fixed but arbitrary point of X.

In general, if f : X → Y , the family of subsets B f of X on which f is bounded
contains the singletons, is hereditary, and is stable under finite unions. A family
of subsets of X with these properties is called a bornology on X [3, 4, 6, 13, 16].
The smallest bornology on X consists of its finite subsets and the largest is its power
set P(X). Between the extremes are these bornologies: (1) the bornology of subsets
that have compact closure; (2) the bornology Bd(X) of d-bounded subsets; (3) the
bornology of d-totally bounded subsets.

Since the intersection of a nonempty family of bornologies is again a bornology,
given a family of functions C defined on X with values in one or more metric spaces,⋂

f∈C B f is again a bornology on X. This is the bornology of subsets on which
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each function in the family is bounded. It is of interest to identify this bornology
for standard classes of continuous functions on X. For example, if X is a complex
normed linear space, then {B ⊆ X : ∀ f ∈ X∗, f (B) is a bounded subset of C} consists by
the Uniform Boundedness Principle [15, Theorem 9.2] of the norm bounded subsets
of X. It is the purpose of this note to identify

⋂
f∈C B f for an arbitrary metric space

〈X, d〉 where C is one of three classes of locally Lipschitz functions.
Let Bd(x, δ) denote the open ball in X with centre x and radius δ > 0. Recall that

f : X → Y is called locally Lipschitz [8, 9, 14] provided for each x ∈ X, there exists
δx > 0 such that the restriction of f to Bd(x, δx) is Lipschitz. We call f uniformly
locally Lipschitz if δx can be chosen independent of x. For example, f : (0,∞)→ (0,∞)
defined by f (x) = 1/x is locally Lipschitz but not uniformly locally Lipschitz.

A stronger requirement is that the local Lipschitz constant can be chosen
independent of the point x as well as the size of the neighbourhood. Following Garrido
and Jaramillo [9], we call such a function Lipschitz in the small. Put differently,
f is Lipschitz in the small if there exist δ > 0 and α > 0 such that d(x, w) < δ
implies ρ( f (x), f (w)) ≤ αd(x,w). Clearly, f : R→ R defined by f (x) = x2 is uniformly
locally Lipschitz but not Lipschitz in the small. On the other hand, if we equip
X =

⋃∞
n=1[n − 1

4 ,n + 1
4 ] with the usual metric inherited fromR, then the locally constant

function defined by f (x) = n2 if n − 1
4 ≤ x ≤ n + 1

4 is Lipschitz in the small but fails
to be Lipschitz on X. Obviously, each Lipschitz in the small function is uniformly
continuous whereas a uniformly locally Lipschitz function need not be.

Each class of locally Lipschitz functions gives rise to a standard bornology. In
the case of the locally Lipschitz functions, we get the subsets of X with compact
closure. For the uniformly locally Lipschitz functions, we get the totally bounded
subsets of X. Finally, for the Lipschitz in the small functions, we get the subsets of X
that are Bourbaki bounded, also called finitely chainable relative to X [1].

2. Preliminaries

For x ∈ X and A a nonempty subset of 〈X, d〉, we put d(x, A) := inf{d(x, A) : a ∈ A}.
If A and B are nonempty subsets of X, we define the gap Dd(A, B) between them
[2, page 28] by the formula

Dd(A, B) := inf{d(a, b) : a ∈ A, b ∈ B} = inf{d(a, B) : a ∈ A}.

We denote the ε-enlargement of a nonempty subset A of X by Bd(A, ε), that is,
Bd(A, ε) := {x ∈ X : d(x, A) < ε} =

⋃
a∈A Bd(a, ε). Taking successive enlargements is

not in general additive, that is, Bd(Bd(A, ε), δ) can be a proper subset of Bd(A, ε + δ);
equality is achieved in those metric spaces for which the metric d is almost convex
[2, page 108]. With this in mind, given x ∈ X, we define the sets Bn

d(x, ε) for
n = 0, 1, 2, . . . recursively by

B0
d(x, ε) = {x} and Bn+1

d (x, ε) = Bd(Bn
d(x, ε), ε).

Clearly, Bn
d(x, ε) ⊆ Bn+1

d (x, ε).
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A subset A of X is called totally bounded if for each ε > 0 there exists a finite
subset Fε of X such A ⊆ Bd(Fε, ε). Each subset of X with compact closure is totally
bounded while each totally bounded set is bounded, and the family of totally bounded
subsets forms a bornology. If A is totally bounded, then the sets Fε can be chosen
inside A, which means that total boundedness is an intrinsic property of A and does
not depend on the enveloping space X in which A is isometrically embedded. This is
not the case for example for the bornology of subsets with compact closure: (0, 1) fails
to have compact closure in (0,∞) while it has compact closure in R. As is well known,
A is totally bounded if and only if each sequence in A has a Cauchy subsequence
[11, page 155].

By an ε-chain of length n from x to y in 〈X, d〉 we mean a finite sequence of points
(not necessarily distinct) x0, x1, x2, x3, . . . , xn in X such that x = x0, y = xn and for each
j ∈ {1, 2, . . . , n}, d(x j−1, x j) < ε. Clearly, there is an ε-chain of length n from x to y if
and only if y ∈ Bn

d(x, ε).
Put x 'ε y on X if there is an ε-chain of some length from x to y. The relation 'ε

is an equivalence relation, and if x/'ε and y/'ε are distinct equivalence classes, we
have Dd(x 'ε, y 'ε) ≥ ε. We will need the formula x/'ε=

⋃∞
n=0 Bn

d(x, ε).
We call a subset A of X Bourbaki bounded if for each ε > 0 there is a finite subset

{x1, x2, . . . , xk} of X and n ∈ N such that A ⊆
⋃k

j=1 Bn
d(x j, ε) [5, 12, 16]. The Bourbaki

bounded subsets form a bornology lying between the d-totally bounded subsets and
Bd(X). The unit ball in each infinite dimensional normed linear space is Bourbaki
bounded but not totally bounded. In any infinite set X equipped with the 0–1 metric,
each infinite subset is bounded but not Bourbaki bounded. The bornology of Bourbaki
bounded sets fails to be an intrinsic bornology: in the Hilbert space `2 the standard
orthonormal base A = {en : n ∈ N} is Bourbaki bounded, whereas it fails to be Bourbaki
bounded within itself. Note that each bounded subset of a metric space 〈X, d〉 is
Bourbaki bounded in some larger metric space, as we can isometrically embed 〈X, d〉
in a Banach space [7, page 338]. Recently, Garrido and Meroño [10] characterised
Bourbaki boundedness of a subset A in terms of a type of subsequence that each
sequence in A must have.

3. Results

In what follows, we freely use the following fact: if fi : 〈X, d〉 → R is Lipchitz
restricted to A ⊆ X for i = 1, 2, . . . , n, then max{ f1, f2, . . . , fn} is Lipschitz restricted
to A.

Theorem 3.1. Let 〈X, d〉 be a metric space and let B be a nonempty subset. The
following conditions are equivalent:

(1) cl(B) is compact;
(2) whenever 〈Y, ρ〉 is a metric space and f : X → Y is continuous, then f (B) ∈

Bρ(Y);
(3) whenever 〈Y, ρ〉 is a metric space and f : X → Y is locally Lipschitz, then

f (B) ∈ Bρ(Y);
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(4) whenever f : X → R is locally Lipschitz, then f (B) is a bounded set of real
numbers.

Proof. The implication (1)⇒ (2) follows from the fact that f (cl(B)) must be compact
if f is continuous, while (2)⇒ (3) and (3)⇒ (4) are trivial.

For (4)⇒ (1), we prove the contrapositive. Suppose cl(B) fails to be compact; then
we can find a sequence 〈bn〉 in B with distinct terms that has no cluster point in X.
For each n ∈ N, put µn = d(bn, {b j : j , n}) > 0 and then put εn := min{1/n, µn/3}. The
family of open balls {Bd(bn, εn) : n ∈ N} is a pairwise disjoint family as, whenever
n , j, εn + ε j < max{µn, µ j}. For each n ∈ N, let gn : X → R be the Lipschitz function
defined by

gn(x) = n −
n
εn

d(x, bn).

Notice that gn(x) > 0 if and only if d(x, bn) < εn.
We are now ready to describe our globally defined badly behaved locally Lipschitz

function f :

f (x) =

gn(x) if x ∈ Bd(bn, εn),
0 otherwise.

Since f (bn) = n, f (B) is unbounded. To see that f is locally Lipschitz, let x0 ∈ X
be arbitrary. Since εn ≤ 1/n for each n and x0 is not a cluster point of 〈bn〉, there
exists δ > 0 such that Bd(x0, δ) either fails to hit any Bd(bn, εn) or it hits Bd(bn, εn) for
at most finitely many n, say n1, n2, . . . , nk. In the first case, f restricted to Bd(x0, δ)
is the zero function, while in the second, whenever d(x, x0) < δ, we have f (x) =

max{0, gn1 (x), gn2 (x), . . . , gnk (x)}. Either way, f restricted to Bd(x0, δ) is Lipschitz. �

The equivalence of conditions (1) and (2) is of course well known, and (2)⇒ (1)
is most easily proved using the Tietze extension theorem. We next turn to uniformly
locally Lipschitz functions.

Theorem 3.2. Let 〈X, d〉 be a metric space and let B be a nonempty subset. The
following conditions are equivalent:

(1) B is totally bounded;
(2) whenever 〈Y, ρ〉 is a metric space and f : X → Y maps Cauchy sequences to

Cauchy sequences, then f (B) ∈ Bρ(Y);
(3) whenever 〈Y, ρ〉 is a metric space and f : X → Y is uniformly locally Lipschitz,

then f (B) ∈ Bρ(Y);
(4) whenever f : X→ R is uniformly locally Lipschitz, then f (B) is a bounded set of

real numbers.

Proof. (1)⇒ (2). Suppose f maps Cauchy sequences to Cauchy sequences. Using the
sequential characterisation of total boundedness, it is easy to see that f (B) is actually
totally bounded, else one could find a sequence 〈bn〉 in B such that inf{ρ( f (b j), f (bn)) :
j , n} > 0 while 〈bn〉 has a Cauchy subsequence.

(2)⇒ (3) and (3)⇒ (4). These are trivial.
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(4)⇒ (1). Suppose B fails to be totally bounded. Then for some ε > 0, the set B
fails to be contained in the ε-enlargement of any finite subset of X. Inductively we
can construct a sequence 〈bn〉 in B such that, for each n, bn+1 < Bd({b1, b2, . . . , bn}, ε).
The family of balls {Bd(bn,

1
4ε) : n ∈ N} is uniformly discrete: for all x ∈ X, Bd(x, 1

4ε)
intersects at most one of the balls Bd(bn,

1
4ε). As a result, f : X → R defined by

f (x) =

n −
4n
ε

d(x, bn) if x ∈ Bd

(
bn,

1
4
ε
)
,

0 otherwise,

is a uniformly locally Lipschitz function that is unbounded on B. �

In the proof of our final theorem, we modify a construction of Atsuji [1, pages
14–15] used to show that if each uniformly continuous real-valued function on 〈X, d〉
is bounded, then X is a Bourbaki bounded subset of itself.

Theorem 3.3. Let 〈X, d〉 be a metric space and let B be a nonempty subset. The
following conditions are equivalent:

(1) B is Bourbaki bounded;
(2) whenever 〈Y, ρ〉 is a metric space and f : X → Y is uniformly continuous, then

f (B) ∈ Bρ(Y);
(3) whenever 〈Y, ρ〉 is a metric space and f : X → Y is Lipschitz in the small, then

f (B) ∈ Bρ(Y);
(4) whenever f : X → R is Lipschitz in the small, then f (B) is a bounded set of real

numbers.

Proof. For the string (1)⇒ (2)⇒ (3)⇒ (4)⇒ (1), only (1)⇒ (2) and (4)⇒ (1)
require proof. For (1)⇒ (2), choose δ > 0 such that

∀x ∈ X ∀w ∈ X, d(x,w) < δ⇒ ρ( f (x), f (w)) < 1.

By Bourbaki boundedness, choose {x1, x2, . . . , xk} ⊆ X and n ∈ N such that
B ⊆

⋃k
i=1 Bn

d(xi, δ); then f (B) ⊆ Bρ({ f (x1), f (x2), . . . , f (xk)}, n) and so f (B) ∈ Bρ(Y).
(4)⇒ (1). Suppose B fails to be Bourbaki bounded. Choose ε > 0 such that

whenever F is a finite subset of X and n ∈ N we have B *
⋃

x∈F Bn
d(x, ε). We consider

two mutually exclusive and exhaustive cases for the structure of B:

(a) for some b ∈ B, for all n ∈ N there exists j ∈ N such that B ∩ Bn
d(b, ε) is a proper

subset of B ∩ Bn+ j
d (b, ε);

(b) for all b ∈ B, there exists n ∈ N such that, for all j ∈ N, B ∩ Bn
d(b, ε) =

B ∩ Bn+ j
d (b, ε), that is, B ∩ Bn

d(b, ε) = B ∩ b/'ε.

In the first case, for x 'ε b, let n(x) be the smallest n such that x ∈ B ∩ Bn
d(b, ε). We

define our real-valued function f by

f (x) =

(n(x) − 1)ε + d(x, Bn(x)−1
d (b, ε)) if x , b and x 'ε b,

0 otherwise.
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By assumption (a), f is unbounded on B. We intend to show that if x , w and
d(x,w) < ε then | f (x) − f (w)| ≤ 2d(x,w). Now if either x or w is not related to b, then
the same is true for the other because d(x,w) < ε. Thus | f (x) − f (w)| = 0 < 2d(x,w).
We now pass to the situation where both x 'ε b and w 'ε b.

Without loss of generality we may assume n(x) ≥ n(w). If n(w) = 0, that is, w = b,
then 0 < d(x,w) < ε implies n(x) = 1 and

| f (x) − f (w)| = f (x) = (1 − 1)ε + d(x, B0
d(b, ε)) = d(x, b) = d(x,w).

Otherwise, n(w) ≥ 1 and either n(x) = n(w) or n(x) = n(w) + 1. When n(x) = n(w)
we easily compute

| f (x) − f (w)| = |d(x, Bn(x)−1
d (b, ε)) − d(w, Bn(x)−1

d (b, ε))| ≤ d(x,w).

We are left with the possibility that n(x) = n(w) + 1. This gives f (x) > f (w), because

(n(x) − 1)ε − (n(w) − 1)ε = ε

and
d(x, Bn(x)−1

d (b, ε)) − d(w, Bn(w)−1
d (b, ε)) > 0 − ε.

We now claim that d(w, Bn(w)−1
d (b, ε)) ≥ ε − d(x,w); if this fails, then

d(x, Bn(w)−1
d (b, ε)) ≤ d(x,w) + d(w, Bn(w)−1

d (b, ε)) < d(x,w) + ε − d(x,w),

making n(x) ≤ n(w) − 1 + 1, which is impossible. The claim having been established,

| f (x) − f (w)| = f (x) − f (w) = ε + d(x, Bn(x)−1
d (b, ε)) − d(w, Bn(w)−1

d (b, ε))
≤ ε + d(x,w) − (ε − d(x,w)) ≤ 2d(x,w).

Case (b) is easier. Let b1 ∈ B be arbitrary. Choose n1 such that B ∩ Bn1
d (b1, ε) =

B ∩ b1/'ε. Since B is not Bourbaki bounded, there exists b2 ∈ B with b2 < Bn1
d (b1, ε).

By the choice of n1, b1/'ε , b2/'ε. Choose n2 > n1 such that B ∩ Bn2
d (b2, ε) =

B ∩ b2/'ε. Since B *
⋃2

j=1 Bn2
d (b j, ε), we can find b3 ∈ B\(b1/'ε ∪ b2/'ε). Thus,

we can find a sequence 〈b j〉 with distinct terms in B such that whenever j , k, we have
b j/'ε , bk/'ε. We now define f : X → R by

f (x) =

 j if x 'ε b j for some j,
0 otherwise.

Since f (b j) = j, f is unbounded on B; further, for each x ∈ X, f is constant on Bd(x, ε)
and so f is Lipschitz in the small. �

There is a third family of uniformly locally Lipschitz functions that one might
consider: the family C of locally Lipschitz functions f where the local Lipschitz
constant but not the size of the neighbourhood can be chosen independent of the point.
We have no idea what

⋂
f∈C B f comprises and leave this as an open problem to the

interested reader.
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There is another approach to obtaining Theorems 3.1 and 3.3: one can use the
known uniform density of the locally Lipschitz functions in the continuous real-valued
functions on 〈X, d〉 [8, Corollary 2.8] and the uniform density of the Lipschitz in the
small functions within the uniformly continuous real-valued functions [9, Theorem 1].
We feel that it is valuable to give simple direct constructions rather than appeal to these
deeper results.

Results such as we have given can be used to show that an unbounded function with
a particular continuity property defined on some subset of 〈X, d〉 cannot be extended
to a globally defined function with the same continuity property. For example, by our
last result, there is no globally defined uniformly continuous function on `2 mapping
each en to n because {en : n ∈ N} is a Bourbaki bounded subset of the Hilbert space.
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