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On Primitive Ideals in Graded Rings

Agata Smoktunowicz

Abstract. Let R =

L

∞

i=1 Ri be a graded nil ring. It is shown that primitive ideals in R are homoge-

neous. Let A =

L

∞

i=1 Ai be a graded non-PI just-infinite dimensional algebra and let I be a prime

ideal in A. It is shown that either I = {0} or I = A. Moreover, A is either primitive or Jacobson

radical.

Let R =

⊕

∞

i=1 Ri be a ring graded by the positive integers. Then R is graded nil if
all homogeneous elements in R are nil. It is well known that graded Jacobson radical

rings are graded nil, but need not be nil. For example, as shown by Bartholdi [1],
an affine “recurrent transitive” algebra without unit constructed from Grigorchuk’s
group of intermediate growth is graded nil and Jacobson radical but not nil, provided
that the base field is an algebraic extension of F2. Other examples of Jacobson radical

and graded nil, but not nil rings, are polynomial rings over certain nil rings [3,10]. In
this paper primitive ideals in graded rings are studied. All ideals are two-sided unless
specified. The main results of this paper are the following.

Theorem 1 Let R =

⊕

∞

i=1 Ri be a graded nil ring and let I be a primitive ideal in R.

Then I is homogeneous.

As a corollary the following theorem may be stated.

Theorem 2 Let R =

⊕

∞

i=1 Ri be a graded nil ring and let I be an ideal of R. Suppose

that Ī is the smallest homogeneous ideal of R containing I. Then R/I is Jacobson radical

if and only if R/Ī is Jacobson radical.

Let K be a field. An infinite dimensional K-algebra R is just-infinite dimensional

if R/I is finite dimensional for every nonzero two-sided ideal I of R. A result of Re-
ichstein, Rogalski and Zhang [7] states that just-infinite dimensional graded algebras

are affine. Farkas and Small investigated just-infinite dimensional algebras over un-
countable fields [4]. They showed that if K is an uncountable field and R is an affine,
semiprimitive, just-infinite dimensional algebra, then either R is primitive or R satis-
fies a polynomial identity. Similar results concerning graded algebras over arbitrary

fields can be derived.

Theorem 3 Let K be a field, and let R =

⊕

∞

i=1 Ri be a just-infinite dimensional

graded K-algebra with Gelfand–Kirillov dimension greater than 1. Then R is either

primitive or Jacobson radical. Moreover, if I is a prime ideal in R, then either I = 0 or

I = R.
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For elementary properties of Gelfand–Kirillov dimension we refer to [5]. The re-
sults of Small, Stafford and Warfield show that if R is a finitely generated semiprime

algebra of GK dimension 1, then the center of R is a Noetherian domain of GK di-
mension 1 [8]. It is worth noticing that the center of a graded algebra is graded.
Therefore a semiprime graded nil algebra of Gelfand–Kirillov dimension not exceed-
ing 1 is locally nilpotent.

Theorem 4 Let K be a field, and let R =

⊕

∞

i=1 Ri be a just-infinite dimensional

graded nil K-algebra. Then R is either primitive or Jacobson radical.

The definition of a primitive ring becomes more complicated than in the usual

case, because rings without unity are under consideration. The following definition
will be used. This definition can be found in [11] (see also [2, 6]).

Let R be a ring and let b ∈ R. We define a right ideal Q of R to be b-modular if
a − ba ∈ Q for all a ∈ R.

A right ideal Q of a ring R is modular if it is b-modular for some b ∈ R. If Q is a
modular maximal right ideal of R, then for every r /∈ Q we have rR + Q = R [11].

An ideal I of a ring R is right primitive in R if there exists a modular maximal right

ideal Q of R such that I is the largest ideal contained in Q.

For each element g ∈ R, the degree of g, denoted by deg(g), is the minimal number
d such that g ∈ R1 + R2 + · · · + Rd. Given a ∈ R, let 〈a〉 denote the ideal generated by
a in R. The Jacobson radical of R is denoted by J(R).

We write I⊳R if I is a two-sided ideal of a ring R. Given a graded ring R =

⊕

∞

i=1 Ri

and r ∈ R, we say that r is homogeneous if r ∈ Ri for some i. We say that an ideal I of
R is a homogeneous ideal if I is generated by homogeneous elements.

Lemma 5 Let R =

⊕

∞

i=1 Ri be a ring graded by the positive integers. Let Q be a

b-modular right ideal of R for some b ∈ R. Let f , r ∈ R be such that b − r f ∈ Q. If r is

homogeneous, then for every natural number i, there is an fi ∈ R such that b − r fi ∈ Q

and r fi ∈ Ri + Ri+1 + · · · + Ri+deg(r f )−1.

Proof We will proceed by induction on i. If i = 1, we put f1 = f . Suppose that
the result holds for some i ≥ 1 and that fi = ai + ai+1 + · · · + ai+deg(r f )−1, with
a j ∈ R j−deg(r) for each j. Observe that rai − brai ∈ Q. Since b − r f ∈ Q, we get
rai − r f rai ∈ Q. Then the result holds for

fi+1 = f rai +

i+deg(r f )−1
∑

j=i+1

a j .

Indeed, r f rai ∈ R1+i + · · ·+Rdeg(r f )+i , hence r fi+1 ∈ Ri+1 + · · ·+Ri+deg(r f ), as required.

Lemma 6 Let R =

⊕

∞

i=1 Ri be a ring graded by the positive integers. Let I ⊳ R and let

a1 + · · · + ak ∈ I, with ak /∈ I and ai ∈ Ri , for 1 ≤ i ≤ k. Set U = 〈ak〉. Suppose that

h ∈ U l for some l ≥ 1 and h ∈ Rm + Rm+1 + · · · + Rm+t , for some m, t and t ≥ k.

Then there exists g ∈ U l−1 such that h − g ∈ I and g ∈ Rm + Rm+1 + · · · + Rm+t−1.
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Proof Let h =

∑t
i=0 cm+i , with t ≥ k and cm+i ∈ Rm+i . Note that cm+t =

∑

i piakqi

for some homogeneous pi , qi ∈ R ∪ {1} and qi ∈ U l−1, since h ∈ U l. Set

g = h − cm+t −
∑

i

pi

(

k−1
∑

j=1

a j

)

qi .

Observe that h − g =

∑

i pi(
∑k

j=1 a j)qi ∈ I. Notice that,

deg(pia jqi) ≥ deg(piakqi) − (k − 1) ≥ deg(cm+t ) − (k − 1) = m + t − k + 1,

because deg(a j) ≥ deg(ak) − (k − 1). Now t ≥ k yields deg(pia jqi) ≥ m + 1.
On the other hand, deg(pia jqi) < deg(piakqi) = m + t for j < k. Hence, g ∈
Rm + Rm+1 + · · · + Rm+t−1, as required.

Lemma 7 Let R =

⊕

∞

i=1 Ri be a ring graded by the positive integers. Let I ⊳ R and let

a1 + · · · + ak ∈ I, with ak /∈ I and ai ∈ Ri , for 1 ≤ i ≤ k. Set U = 〈ak〉. Suppose that

Q is a b-modular maximal right ideal in R for some b ∈ R. Let r, f , g ∈ R be such that

r is homogeneous, g ∈ U deg(r f ), and b − r f ∈ Q and b − g ∈ Q.

If I ⊆ Q, then for every n > deg(g) there is gn ∈ R such that gn ∈ Rn + Rn+1 + · · · +
Rn+k and b − rgn ∈ Q.

Proof Let fi be as in Lemma 5 applied for this choice of f and r. Then b − r fi ∈ Q

and r fi ∈ Ri + Ri+1 + · · ·+ Ri+deg(r f )−1. Let g =

∑t
i=1 ci with ci ∈ Ri and ci ∈ U deg(r f ),

where t = deg(g). For a natural number n > deg(g) = t , set hn =

∑t
i=1 fn−ici .

Observe that hn ∈ U deg(r f ) and b− rhn ∈ Q. Notice that rhn ∈ Rn + · · ·+ Rn+deg(r f )−1,

because r fn−i ∈ Rn−i + · · · + Rn−i+deg(r f )−1. By applying Lemma 6 several times
for h = hn, we see that for each n > t there is gn ∈ R such that hn − gn ∈ I and
rgn ∈ Rn + Rn+1 + · · · + Rn+k, because rhn ∈ Rn + · · · + Rn+deg(r f )−1. Now, hn − gn ∈ I

implies that rhn − rgn ∈ Q, and so b − rgn ∈ Q, as required.

Let R be a ring, and let b ∈ R. Let Q be a b-modular right ideal in R. Let r be a
homogeneous element in R such that r /∈ Q. We say that v is an inverse span for r if

for all sufficiently large n, there are fn ∈ rR such that fn ∈ Rn + Rn+1 + · · · + Rn+v and
b − fn ∈ Q.

Lemma 8 Let R =

⊕

∞

i=1 Ri be a ring graded by the positive integers, and let Q be

a b-modular maximal right ideal in R for some b ∈ R. Let I ⊳ R be the largest ideal

contained in Q and let a1 + · · · + ak ∈ I, with ak /∈ I and ai ∈ Ri , for 1 ≤ i ≤ k.

Then k is an inverse span for all homogeneous r /∈ Q.

Proof First observe that rR + Q = R for every homogeneous r /∈ Q, so there is f ∈ R

such that b − r f ∈ Q. Set U = 〈ak〉. The ideal I is prime, since it is primitive.
Consequently U deg(r f ) 6⊆ I, and so U deg(r f ) 6⊆ Q, since I is the largest two-sided ideal

in Q. Hence b − g ∈ Q for some g ∈ U deg(r f ). By Lemma 7, for every n > deg(g)
there is an element gn ∈ Rn + Rn+1 + · · · + Rn+k such that b − rgn ∈ Q. Consequently,
k is an inverse span all homogeneous r /∈ Q.
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Lemma 9 Let R =

⊕

∞

i=1 Ri be a ring graded by the positive integers. Let Q be a

b-modular maximal right ideal in R for some b ∈ R. Let r ∈ R be homogeneous with

r /∈ Q and let v be an inverse span for all homogeneous elements a ∈ rR such that a /∈ Q.

Suppose that there are homogeneous elements p, p ′ ∈ rR such that p, p ′ /∈ Q and such

that, for every natural number i, if c − d ∈ Q with c ∈ Ri ∩ pR and d ∈ Ri ∩ p ′R, then

c ∈ Q.

Then v − 1 is an inverse span for r.

Proof Since v is an inverse span for p and p ′, for sufficiently large n, there are gn ∈
pR and g ′

n ∈ p ′R with gn, gn ′ ∈ Rn + Rn+1 + · · · + Rn+v, and such that b − gn ∈ Q

and b − g ′

n ∈ Q. Let gn = pn,0 + pn,1 + · · · + pn,v, g ′

n = p ′

n,0 + p ′

n,1 + · · · + p ′

n,v,
where pn,i ∈ pR ∩ Rn+i and p ′

n,i ∈ p ′R ∩ Rn+i for all n, i. If for all sufficiently large n

either pn,v ∈ Q or p ′

n,v ∈ Q, then v − 1 is an inverse span for r, because p, p ′ ∈ rR.
Suppose that there is m such that pm,v /∈ Q and p ′

m,v /∈ Q. Now pm,v ∈ pR ∩ Rm+v

and p ′

m,v ∈ p ′R ∩ Rm+v yield pm,v − p ′

m,v /∈ Q since otherwise pm,v ∈ Q, by the
assumptions. For sufficiently large n there are hn ∈ cR such that b − hn ∈ Q, and
hn ∈ Rn + Rn+1 + · · · + Rn+v, since v is an inverse span for c = pm,v − p ′

m,v. Now
hn = ḡn + crn for some crn ∈ Rn+v and ḡn ∈ Rn + Rn+1 + · · · + Rn+v−1. Thus (for

sufficiently large n) b − kn ∈ Q, where

kn = hn + (g ′

m − gm)rn = ḡn +

v−1
∑

i=0

(p ′

m,i − pm,i)rn.

Note that kn ∈ rR, since p, p ′ ∈ rR, ḡ ∈ cR. Since crn ∈ Rn+v and c = pm,v − p ′

m,v ∈
Rm+v, we get rn ∈ Rn−m. Hence, for i ≤ v − 1, we have (pm,i − p ′

m,i)rn ∈ Rn+i . Thus,
kn ∈ Rn + Rn+1 + · · · + Rn+v−1. Hence, v − 1 is an inverse span for r.

Lemma 10 Let R =

⊕

∞

i=1 Ri be a ring graded by the positive integers. Let Q be a

b-modular maximal right ideal in R for some b ∈ R. Let r ∈ R be homogeneous with

r /∈ Q. Suppose that v is an inverse span for all homogeneous elements a ∈ rR such

that a /∈ Q, but v − 1 is not an inverse span for r. Let n be a natural number and let

e0, e1, . . . , en ∈ rR be homogeneous and such that e0, e1, . . . , en /∈ Q.

Then there is a natural number t and homogeneous elements d0, d1, . . . , dn ∈ R such

that e0d0 /∈ Q, e jd j − e0d0 ∈ Q for all j ≤ n, and e jd j ∈ Rt for all j ≤ n.

Proof We will proceed by induction on n. If n = 1 the result is true by Lemma 9.
Suppose the result holds for some n ≥ 1. By Lemma 9, applied to p = en, p ′

= en+1,
there is a natural number m and homogeneous elements v, u, c, d in R such that c =

env ∈ Rm, d = en+1u ∈ Rm, c − d ∈ Q and c /∈ Q. By the inductive hypothesis

applied to the elements e ′0 = e0, e ′1 = e1, . . . , e ′n−1 = en−1 and e ′n = c, we get that
there are d ′

0, d ′

1, . . . , d ′

n and a natural number t , such that e ′0d ′

0 /∈ Q, e ′jd
′

j − e ′0d ′

0 ∈ Q

and e ′jd
′

j ∈ Rt , for all j ≤ n. Now set di = d ′

i for 0 ≤ i ≤ n − 1, dn = vd ′

n,
dn+1 = ud ′

n. Observe that eidi = e ′i d ′

i , and so eidi ∈ Rt , for all 0 ≤ i < n. Notice that

endn = envd ′

n = cd ′

n = e ′nd ′

n. Hence endn ∈ Rt and endn − e0d0 = e ′nd ′

n − e ′0d ′

0 ∈ Q.
Observe that en+1dn+1 = en+1ud ′

n = dd ′

n = (c + (d − c))d ′

n = e ′nd ′

n + (d − c)d ′

n. Now
c − d ∈ Q gives en+1dn+1 − e ′nd ′

n ∈ Q, and so en+1dn+1 − e0d0 ∈ Q . Since c and d are
homogeneous elements of the same degree and e ′nd ′

n ∈ Rt , we get that en+1dn+1 ∈ Rt .
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Therefore e0d0 /∈ Q and e jd j − e0d0 ∈ Q, e jd j ∈ Rt for all j ≤ n + 1. This is the
desired conclusion.

Lemma 11 Let R =

⊕

∞

i=1 Ri be a ring graded by the positive integers, and let Q be

a b-modular maximal right ideal in R for some b ∈ R. Let I ⊳ R be the largest possible

ideal contained in Q and let a1 + · · · + ak ∈ I, with ak /∈ I and ai ∈ Ri , for 1 ≤ i ≤ k.

Suppose that for every homogeneous p /∈ Q there is a homogeneous element p ′ /∈ Q and

p ′ ∈ pR such that pp ′ ∈ Q.

Then 0 is an inverse span for all homogeneous r ∈ R such that r /∈ Q.

Proof Let v be minimal such that v is an inverse span for all homogeneous a ∈ R

such that a /∈ Q. We know that such v exists by Lemma 4. Suppose to the contrary
that v > 0. Then there is a homogeneous element r /∈ Q such that v−1 ≥ 0 is not an

inverse span for r. For some α there are elements fα, fα+1, fα+2, . . . , fα+v ∈ rR such
that b − fα+ j ∈ Q and fα+ j ∈ Rα+ j + Rα+ j+1 + · · · + Rα+ j+v for 0 ≤ j ≤ v (since
v is an inverse span for r). Now each element fα+ j for 0 ≤ j ≤ v can be written as
fα+ j = g j + c j where c j ∈ Rα+ j+v, and g j ∈ Rα+ j + · · ·+ Rα+ j+v−1. Fix a homogeneous

element w ∈ rR such that w /∈ Q. If, for some 0 ≤ j ≤ v, we have c j /∈ Q, then by
the assumptions, there is homogeneous e j /∈ Q such that c je j ∈ Q. If c j ∈ Q, we put
e j = w. Observe that c je j ∈ Q, e j ∈ rR, and e j /∈ Q for all 0 ≤ j ≤ v. By Lemma10,
there is a natural number p and homogeneous elements d j ∈ R such that e0d0 /∈ Q

and e jd j ∈ Rp and e jd j − e0d0 ∈ Q for all 0 ≤ j ≤ v. Let s = e0d0 with deg(s) = p.
Since v is an inverse span for s, we see that for sufficiently large n there are f̄n ∈ sR,
f̄n ∈ Rn + · · ·+ Rn+v, such that b− f̄n ∈ Q. Let f̄n =

∑v
i=0 sbi , where sbi ∈ Rn+i for all

0 ≤ i ≤ v. Now b − fα+ j ∈ Q implies (b − fα+ j)e jd j ∈ Q for all 0 ≤ j ≤ v. Notice

that s − e jd j ∈ Q gives s − fα+ je jd j ∈ Q for all 0 ≤ j ≤ v. Thus f̄n − ḡn ∈ Q where
ḡn =

∑v
j=0 fα+v− jev− jdv− jb j . Notice that f̄n − ḡn ∈ Q implies b − ḡn ∈ Q. Observe

that there are tl ∈ rR with tl ∈ Rα+l+deg(el) + Rα+l+deg(el)+1 + · · · + Rα+l+deg(e(l))+v−1,
such that tl − fα+lel ∈ Q for 0 ≤ l ≤ v. Indeed, we can put tl = glel, because

fα+l = gl + cl and clel ∈ Q, by the definition of el. Set hn =

∑v
j=0 tv− jdv− jb j . Now

b− ḡn ∈ Q and tl − fα+lel ∈ Q; so b−hn ∈ Q for all 0 ≤ l ≤ v. Observe that hn ∈ rR,
since fα+l ∈ rR for all l, and so tl ∈ rR for all l. Note that for 0 ≤ j ≤ v, we have
tv− jdv− jb j ∈ Rc +· · ·+Rc+v−1 where c = (α+v− j +deg(ev− j))+deg(dv− j)+deg(b j).

Now deg(ev− j) + deg(dv− j) = deg(s) for all 0 ≤ j ≤ v, and so

c = α + v − j + deg(s) + deg(b j) = α + v − j + n + j,

since sb j ∈ Rn+ j . Therefore c = α + v + n. Consequently,

hn ∈ Rα+v+n + · · · + Rα+v+n+v−1.

Note that b − hn ∈ Q, and we can find such hn for all sufficiently large n. Set f ′

n =

hn−α−v. Observe that f ′

n ∈ rR, b − f ′

n ∈ Q and f ′

n ∈ Rn + · · · + Rn+v−1 for all
sufficiently large n. It follows that v − 1 is an inverse span for r.

Proof of Theorem 1 Suppose to the contrary, that there are elements

a1 ∈ R1, . . . , ak ∈ Rk

https://doi.org/10.4153/CMB-2008-046-1 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2008-046-1


On Primitive Ideals in Graded Rings 465

with ak /∈ I such that a1 + · · · + ak ∈ I. From the definition of a primitive ideal there
is b ∈ R and a b-modular maximal right ideal Q in R such that I is the largest ideal

contained in Q. Let r /∈ Q be homogeneous. Let n be maximal such that rn /∈ Q.
Since R is graded nil such an n exists. Set r ′ = rn. Then r ′ /∈ Q and rr ′ ∈ Q,
hence the assumptions of Lemma 11 hold. Therefore 0 is an inverse span for every
homogeneous a /∈ Q. In particular b − r f ∈ Q for some homogeneous f ∈ R. Some

power of r f is zero, since R is graded nil, and so b ∈ Q. Therefore, R ⊆ Q since Q is
b-modular, a contradiction.

Proof of Theorem 2 Suppose to the contrary, that R/Ī is Jacobson radical and R/I

is not Jacobson radical. The Jacobson radical of R is the intersection of all primitive
ideals in R [2, 11]. Hence, there is a primitive ideal P of R/I such that P 6= R/I. Let

C 6= R be the ideal such that I ⊂ C and P = C/I. Observe that R/C is isomorphic to
(R/I)/(C/I) = (R/I)/P. Hence, R/C is primitive. Therefore, C is a primitive ideal in
R and C 6= R. Thus C is homogeneous by Theorem 1. Observe that Ī ⊆ C , since Ī is
the minimal homogeneous ideal containing I. By assumption R/Ī is Jacobson radical;

so R/C is Jacobson radical, since Ī ⊆ C . However, R/C is primitive, a contradiction.
The other implication is clear.

Proof of Theorem 3 The Jacobson radical of a ring R is the intersection of all prim-
itive ideals in R. Suppose that R is not Jacobson radical, so R has a primitive ideal
I such that I 6= R. Then I is a prime ideal in R, and so R/I is prime. Assume
that I 6= {0}. There is a natural number n such that R/I is n-dimensional vector

space over K, since R is just-infinite dimensional. There is an integer i such that
dim(Ri) > n, since the Gelfand–Kirillov dimension of R is greater than 1. Thus
I ∩ Ri 6= 0, and so I contains a homogeneous element of degree i, say v. Let T be
the ideal generated by v in R. Then R/T is finite dimensional and graded and hence

nilpotent. It follows that R/I is nilpotent, since T ⊆ I, and this is impossible since
R/I is prime. Therefore I = {0}, so R is primitive.

If R is a Jacobson radical ring and I 6= 0 is a prime ideal in R, then R/I is Jacobson
radical and finite-dimensional vector space over K. Consequently, R/I is nilpotent.
It follows that I = R, since R/I is prime.

Proof of Theorem 4 By Theorem 3, it suffices to consider the case when R has
Gelfand–Kirillov dimension not exceeding 1. Then, as noted just before the state-

ment of Theorem 4, R is locally nilpotent, and hence Jacobson radical. This finishes
the proof.

Remark. The author was recently informed that Theorem 3 was earlier discovered by
Lance Small.
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