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Error Parsing:

An alternative method of implementing social judgment theory

Crystal C. Hall∗ Daniel M. Oppenheimer†

Abstract

We present a novel method of judgment analysis called Error Parsing, based upon an alternative method of implementing

Social Judgment Theory (SJT). SJT and Error Parsing both posit the same three components of error in human judgment: error

due to noise, error due to cue weighting, and error due to inconsistency. In that sense, the broad theory and framework are the

same. However, SJT and Error Parsing were developed to answer different questions, and thus use different methodological

approaches in the analysis of error. While SJT makes use of correlational methods, Error Parsing uses absolute differences.

We discuss the similarities and differences between the methodologies and provide empirical evidence for the utility of the

Error Parsing technique. Keywords: Social Judgment Theory, judgment, error.

1 Introduction

In the absence of perfectly predictive cues—a condition that

describes nearly every aspect of the world—error in judg-

ment is inevitable. The amount of error, however, depends

on any number of factors (e.g., time constraints, number and

quality of cues, etc.). Understanding these factors has been

a central goal for decision scholars in the interest of both

designi ng interventions to reduce error and discriminating

amongst different accounts of the cognitive processes un-

derlying human reasoning. However, error has primarily

been viewed as a uniform construct; aside from considering

the difference between overestimation and underestimation

(i.e., Type I and Type II errors), researchers have rarely at-

tempted to parse error into its component parts.

One significant exception to this trend stems from Social

Judgment Theory (SJT), an adaptation of Brunswik’s (1952)

Lens Model, which has emerged as a popular method of an-

alyzing decision making and providing feedback to judges

on how to improve their performance. (For a broad review

of Brunswik’s key works, see Hammond & Stewart, 2001.)

In this paper, we describe Error Parsing: a novel method of

implementing SJT, which we argue can, under the right cir-

cumstances, provide a more useful approach to describing

the sources of judgment error. The approach is particularly

useful when examining real world judgments, as opposed to

abstract concepts measured using an arbitrary scale. This

paper describes the similarities and differences between Er-

ror Parsing and SJT, and empirically illustrates the benefits

of using Error Parsing.
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1.1 Probabilistic functionalism and the Lens

Model

The approach of probabilistic functionalism (Brunswik,

1952) presents humans as “intuitive statisticians” and al-

though it was initially developed in relation to perception,

it has been extended from perception to the domain of

judgment analysis. Three major principles emerged from

Brunswik’s theory. First, Brunswik posited that both the en-

vironment in which an individual resides (the ecology) and

the individual itself ought to receive equal emphasis and

treatment in theory and research (Brunswik, 1955). Sec-

ond, Brunswik argued that the cues available in any situ-

ation would never be perfectly valid or reliable indicators

of a construct of interest. He allowed for the fact that cues

would often be correlated with one another and thus, pos-

sibly redundant, further complicating the decision environ-

ment. The third basic principle of probabilistic functional-

ism is that the available cues would display only a proba-

bilistic relationship to the responses produced by the indi-

vidual. Because of this, there is uncertainty not only within

the ecology but also in how the individual utilizes the cue in-

formation. Brunswik argued that these two distinct sources

of uncertainty should be described similarly, and used cor-

relational statistics to represent this uncertainty.

1.2 Social Judgment Theory (SJT)

The broad applicability of the Lens Model outside of visual

perception led researchers to extend it to the study of hu-

man social judgment (Hammond, 1955). The adapted Lens

Model (Figure 1) shows the major constructs of Social Judg-

ment Theory. (For an extensive review of the elements of the

Lens Model and SJT, see Hammond et al., 1975 and Cook-

sey, 1996.)
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Figure 1: Adaptation of Lens Model for the constructs of

SJT.
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In SJT, the performance of a judge is measured by the re-

lationships between the validity of the available cues, perfor-

mance, and consistency of the individual using these cues.

There are four key constructs to note in this model. First, on

the side describing the ecology, predictability (Re) describes

the relationship between the outcomes (Ye) and available

cues (Ŷe). As the cues become noisier and thus less pre-

dictive, Re will decrease. On the side describing the judge,

control (Rs) describes the relationship between the predic-

tions made (Ys) and the way the judge weights the cues (Ŷs).

As the judge becomes less consistent in how s/he uses the

cues, Rs will decrease. Linear knowledge (G) describes the

relationship between the model created using the cues (Ŷe)

and the model based on the weights applied by the judge

(Ŷs). As the judge pays less attention to predictive infor-

mation and more attention to unpredictive information, G

will decrease. However, G is also based on intercorrelations

between the cues, and this can have a larger impact than

the judge’s weights. Finally, achievement (ra) describes the

relationship between the actual values (Ye) and the predic-

tions made by the judge (Ys). To the extent that the judge is

less accurate in his/her overall predictions, ra will decrease.

Each of these relationships is measured by a correlation, al-

lowing them all to be compared and quantified in the same

terms, as prescribed by Brunswik’s original theory.

Hammond (1955) initially applied the Lens Model to

an examination of the prediction of intelligence quotient

(IQ) by clinical psychologists, based upon the results of

Rorschach tests. Since then SJT has been used as a tool

for judgment analysis in a variety of contexts. For exam-

ple, SJT has been used to analyze interpersonal conflicts

that arise due to cognitive differences (Brehmer, 1976), and

in the context of weather forecasting (Stewart, 1990). Re-

searchers have used the principles of SJT to help managers

and policymakers understand their own mental processes in

a specific choice environment and thus improve their judg-

ments and decisions. The use of SJT has also been proposed

as a method of analyzing educational policies and decision

making, at both a micro (teacher estimates of student po-

tential) and macro (promotion policies of promotion com-

mittee members) level (Cooksey & Freebody, 1986). In all

of these examples, the key contribution of SJT is the provi-

sion of a quantitative method of analyzing decisions made

by individuals or groups by providing insights into aspects

of their judgments. This analysis provides a potential tool

for intervening in judgment, training experts, and encourag-

ing learning in a dynamic choice environment.

1.3 Bootstrapping individual judgments

At the same time that Hammond and colleagues were pro-

moting the use of probabilistic functionalism to evaluate so-

cial judgment, a separate group of researchers were argu-

ing for the use of statistical prediction completely in lieu of

clinical prediction. Meehl (1954) originally argued that nor-

mative actuarial judgment (i.e., judgment as predicted by

statistical models) is far more accurate than expert predic-

tion. A large body of literature has confirmed that human

judgment is often less accurate than the output of even the

simplest actuarial models. (See Dawes et al., 1989, for a

review.) This is perhaps best illustrated by what is known

as bootstrapping—a method of improving judgments by re-

placing predictions made by a human judge with predictions

based upon a simplified actuarial model of those judgments.

A bootstrap model computes the regression weights of an

individual, based on the available cues, and applies those

weights consistently to a new set of judgments. In nearly

all cases, the bootstrap of an individual will outperform the

individual (Dawes & Corrigan, 1974).1

There are two primary reasons that actuarial models reli-

ably outperform human judges. The first is that people of-

ten improperly assign weights to the different cues. While a

regression model can take into account every past instance

(i.e., the temperature each day since statistics have been

recorded) in calculating the optimal weight (β) for each cue

(e.g., the barometric pressure or month of the year), humans

don’t have the cognitive capacity to engage in such calcula-

tions (Simon, 1955). Indeed, a large and varied literature on

heuristics has demonstrated that people tend to use cues and

strategies that diverge from optimal weighting (for a review,

see Shah & Oppenheimer, 2008). However, on its own, in-

1However, it should be noted that, even though bootstrapping can be an

effective way of improving judgments, a meta-analysis has shown that the

benefit of the method is diminished when judges have some prior experi-

ence in the domain of judgment (Karelaia & Hogarth, 2008).
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Figure 2: Graphical representation of the components of er-

ror in Error Parsing.
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appropriate weighting of cues does not entirely account for

the superiority of actuarial models, bootstrapped models in

particular (which use the same weights as the judges). Hu-

mans are also inconsistent in their use of information. The

same objective information presented multiple times is often

used differently each time. Since this variance is primarily

random error, the more inconsistent a person is when mak-

ing judgments, the more inaccurate those judgments will be

(Camerer, 1981; Dawes, 1971). Even experts are inconsis-

tent in cue selection and weighting, and are not able to equal

the accuracy of their bootstraps (e.g., Ashton, 2000). In-

consistency can be such a large source of error that linear

models in which all cues are equally weighted, or even ran-

domly weighted, frequently make more accurate predictions

than human judges (Dawes, 1979).

In addition to the two sources of human error described

above, there is a third type of error that human judges and

actuarial models share: noise. That is, the inherent error

present in all judgments because no set of cues perfectly

predicts every outcome. For example, barometric pressure,

season, and previous day’s temperature cannot be combined

in such a way as to perfectly predict the next day’s weather.

While the amount of noise is dependent on the quality of

the cues, virtually no prediction is completely noise free.

Finally, it should be noted that error may also arise not only

from improper cue weights, inconsistency, or noise, but also

from the use of the incorrect cue function forms.2

2Cooksey (1996) describes how it is possible to statistically disconnect

individual cue weights from overall function forms. For example, the error

1.4 Error Parsing

Error Parsing brings together components of probabilistic

functionalism and bootstrapping to provide a novel method

of implementing SJT. Consider Figure 2, which plots a lin-

ear relationship between a hypothetical predictive cue and

the outcome to be predicted.

For simplicity, we assume a straightforward linear rela-

tionship between the available cues (we discuss other possi-

ble function forms later). We define the outcome on a given

trial to be O (gray diamonds), the prediction from the regres-

sion as R (solid gray line), the prediction from a bootstrap

as B (dashed black line), and the human prediction as P

(black squares). For the purpose of illustration, Figure 2 has

been simplified to represent only a single cue predicting the

outcome, however the technique described below works in

a multidimensional space (i.e., in the presence of multiple

predictive cues) as well.

Total human error (ET ): ET = |O − P | (1)

The total error of human judgment can be calculated as

the absolute difference between the values that an individual

predicted, and the actual outcomes (Equation 1). In Figure

2, this difference is represented by the distance between the

black squares and the gray diamonds. The better the indi-

vidual is at making predictions, the closer the actual values

will fall to the predicted values. This error is related to the

construct of achievement in SJT.3 It is critical to note that

this construct ignores the value of directionality in judgment

error.

Error due to noise (en): en = |O −R| (2)

This is the naturally occurring error that results from the

fact that predictor variables cannot perfectly predict out-

comes even when weighted optimally. As a simplifying

assumption, we will consider only linear regressions as

the definition of optimal prediction (although the procedure

could be applied to non-linear relationships as well). This

component can be calculated by taking the absolute differ-

ence between the predictions of the optimal model and the

actual values of the outcomes (Equation 2). On Figure 2,

this is represented by the distance between the gray dia-

monds and the solid gray line. The better the predictors are,

the closer the actual values will fall to their regression line.

in judgment from a model based on a linear relationship will differ from

a model based on a quadratic function. This is a separate type of error

that is not accounted for in the model we present, but we argue that future

implementation of our model could attempt to address this, especially if it

is known that the judge is attempting to apply a non-linear model with the

available cues.
3We call this component “human error”, as it reflects the total error

made by the judge. Simply put, this is how far off from the true value the

human’s prediction is. However, it does implicitly include the noise com-

ponent, which is a function of the predictability of the available cues. We

do not argue that the noise is a source of human error, but acknowledge that

noise would also be one factor determining the limit of the effectiveness of

any model (human or otherwise).
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The error due to noise is related to the construct of optimal

predictability in SJT.

Error due to cue weighting (eβ): eβ = |R−B| (3)

This error results from the fact that an individual may not

know the appropriate weight to place on the available cues,

or may lack the cognitive capacity to use all of the avail-

able cues (for a discussion of when people fail to make use

of all the informative cues, see Payne, Bettman & Johnson,

1993). Calculating eβ requires one to first construct a model

of the performance of the judge. A bootstrap for an indi-

vidual is constructed by the regression of the cues onto an

individual’s predictions. That is, just as a normal regres-

sion calculates the optimal weights for predicting outcomes,

a bootstrap determines the optimal weights for predicting a

human’s predictions. The use of this technique creates the

necessary model, or “paramorphic representation” of the in-

dividual’s judgment (as described by Hoffman, 1960).

Error due to cue weighting is then calculated as the abso-

lute difference between the prediction of the bootstrap and

the prediction of the optimal model (Equation 3), i.e., the

difference between the average weight the human places on

each cue and the optimal weight that ought to be placed on

each cue. On Figure 2, this is represented by the distance

between the solid gray line and the dashed black line. Er-

ror due to cue weighting would almost exclusively come

from errors in knowledge of the prediction domain: the bet-

ter an individual knows/applies the appropriate weights, the

closer these two lines will fall to each other. Error due to

cue weighting is related to linear knowledge in SJT.

Error due to inconsistency (ei): ei = |P −B| (4)

This error results from the fact that humans are inconsis-

tent in their application of weights to cues. This component

can be calculated by taking the absolute difference between

the individual’s predicted values and the predictions of the

bootstrap model of that individual (Equation 4). That is, in-

consistency is captured by the difference between a person’s

average cue weighting and the person’s cue weighting on a

particular trial. In Figure 2, this is represented as the dis-

tance between the black squares and the dashed black line.

The more consistent an individual becomes in his/her pre-

dictions, the closer the human predictions will come to the

bootstrap line. This is related to the construct of cognitive

control in SJT.

1.5 Benefits of Error Parsing

Both Error Parsing and more traditional methods of imple-

menting analyses in SJT rely on the same major constructs.

However, while SJT analyses traditionally rely on correla-

tional methods, the use of absolute differences in Error Pars-

ing provides a novel way of examining and providing feed-

back on judgment. The primary benefit of the Error Parsing

technique is that it allows for an examination of the magni-

Figure 3: Hypothetical scenario of judges with identical cor-

relation, but different magnitude of error in judgment. SJT

would report that the judges have similar error due to this

correlation, but the Error Parsing analysis shows that Judge

1 has a greater magnitude of error.
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tude of error present in judgment. Using the standard cor-

relational approaches of SJT, this is not possible; different

amounts of errors can yield identical correlation coefficients

if there are differences in the y-intercept, and these differ-

ences would be intrinsic to the particular judge. (But see

Stewart & Lusk, 1994, for a correlational treatment of SJT

that accounts for differences in y-intercepts.) Statistically,

a high correlation could be the result of any magnitude of

error. Figure 3 provides a hypothetical example of this.

In this case, both judges have identical correlations with

the actual values. However, Judge 1 has a much greater

magnitude of total error. This difference cannot be ob-

served using standard SJT methods, but is immediately evi-

dent when using Error Parsing. The ability to determine the

magnitude of error makes it possible to compare the rela-

tive amounts of error generated by each component. Specif-

ically, we describe the errors present in the predictions of

one judge, based on the validity of the available cues (in

the simplified case—for demonstration purposes—of linear

relationships between the cues and the outcomes).

We are not the first to identify these problems with cor-

relational methods in SJT. Of particular note is the work

of Stewart and Lusk (1994), who went beyond traditional

assumptions that increasing the amount and quality of in-

formation is all that is needed to improve judgments and

predictions. Stewart and Lusk (1994) combine properties
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of three distinct systems to provide a coherent decomposi-

tion of forecasting performance into seven distinct compo-

nents. They build upon previous research to map this de-

composition onto the Lens Model equation to create an ex-

panded Lens Model that accounts for the seven components.

The components include: the environmental predictability

of available cues, the dependability of the information sys-

tem, the match between the judge and the environment, and

the reliability of both information acquisition and process-

ing. In addition, they describe two types of bias that measure

the calibration of forecasts (one based on the mean forecasts

and outcomes, the other based on standard deviations). Fi-

nally, they discuss examples from the literature that address

each component, along with describing implications for an-

alyzing and improving judgments. In other words, Stewart

and Lusk identify the biases brought about by correlational

methods (such as the y-intercept problems) and then mea-

sure and report the extent of those biases as additional com-

ponents of error.

The related literature on mean absolute error (MAPE) de-

scribes a common alternate technique that some researchers

prefer to use to describe error. (See Armstrong and Over-

ton, 1977; Armstrong, 1978; Armstrong, 2001.) This mea-

sure of prediction accuracy typically expresses a judge’s per-

formance as a percentage. However, this method is biased

towards methods with forecasts that are too low (Tofallis,

2014). There are alternate ways to implement MAPE, but

they do not give decomposition of error in the way that both

SJT and Error Parsing provide. Our research adds to the lit-

erature on SJT by further exploring the nuances of the way

that error in judgment can be decomposed.

While the aforementioned work is a major advance, it still

relies of correlations rather than absolute magnitude of error

(as used in Error Parsing). The advantage of being able to

identify magnitude of error becomes evident upon compar-

ing data analyzed using each technique, as demonstrated in

the experiment and analyses described below.

2 Experiment 1

In some situations, individuals make more accurate predic-

tions when fewer cues are available for consideration (e.g.,

Arkes, Dawes & Christensen, 1986; Hall, Ariss & Todorov,

2007). A meta-analysis provides further support for the idea

that more cues may reduce the quality of judgment (Kare-

laia & Hogarth, 2008). These effects are counterintuitive

because the presence of additional information is nearly al-

ways beneficial for statistical models. For this reason, this

phenomenon seemed an ideal testing ground for Error Pars-

ing. Although providing additional cues reduces error due

to noise, overall error can be greater. Application of Error

Parsing can provide insight into which of the other compo-

nents of error is increasing.

2.1 Participants

A total of 109 participants completed the task on Amazon

Mechanical Turk. All participants were United States resi-

dents, and there were no requirements for knowledge in the

prediction domain. Because of this, participants were pro-

vided with brief descriptions of each of the cues (described

in more detail below), and we did not measure relative lev-

els of expertise between the judges. Each individual was

compensated $1 for completing the task.

2.2 Materials

Two prediction sets were created for this experiment. To

ensure ecological validity of the prediction sets, data was

sampled from two real world domains (baseball scoring and

car blue-book value). In the baseball domain, 25 baseball

games were randomly sampled from the 2014 Major League

Baseball (MLB) season. The number of hits allowed, walks

issued, and strikeouts by a pitcher predicted the number of

runs allowed by a pitcher with cue validities of .80, .14 and

–.03, respectively. In the blue-book value domain, 25 used

cars for sale were randomly sampled from Craigslist. The

car’s initial value, the age of the car, and total mileage pre-

dicted a car’s current value with cue validities of .40, –.74,

and –.78 respectively. The cue validities were the correla-

tions between the cues and the outcomes values.4

2.3 Design and procedure

For each prediction set there were two blocks of trials. In

one block participants were given the two most valid cues

and asked to predict the outcome for each of the 25 items in

the prediction set. In the other block, the same participants

were given the same prediction set only with all three cues.

The order of the items within each prediction set was ran-

domized, and participants were led to believe that the sec-

ond set of judgments was being made on a different sample.

The order of both the prediction set and the order of the

blocks were randomized, and feedback was not provided at

any point during the task. Because of the combination of

randomized order of presentation of cues between the 2- and

3-cue conditions and the randomization of domain presenta-

tion, we did not include order as a factor for analysis. Partic-

ipants were given the definitions of each cue, and made 50

predictions in each of the two domains (25 with two cues,

25 with three cues) for a total of 100 predictions overall.5

To compute the error using Error Parsing, the optimal

weighting was calculated using the unstandardized regres-

sion coefficients, and these weights were then used to com-

4For complete task instructions, cue descriptions, and cue values, see

the online supplement.
5Some participants were removed from each prediction domain due to

failure to follow the instructions. The final sample size for analysis was N

= 100 in the baseball condition and N = 98 in the blue book condition.
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Table 1: Analysis of prediction using EP.

Error Type Symbol 2 cues baseball 3 cues baseball 2 cues blue book 3 cues blue book

Noise en (Re) 1.05 1.00 $1984 $1972

Improper weighting eβ (G) 1.48 2.72 $3638 $5149

Inconsistency ei (Rs) .66 2.61 $1530 $3217

Total Error ET (ra) 1.95 1.83 $3542 $3998

Intercept –.16 .43 $13986 $8876

Note. The components of absolute error do not sum to the total error, because total error is the sum of the

signed error, which may cancel. The labels in parentheses indicate the analogous constructs in SJT.

Table 2: Analysis of prediction using SJT.

Error Type Symbol 2 cues baseball 3 cues baseball 2 cues blue book 3 cues blue book

Noise en (Re) .35 .34 .19 .19

Improper weighting eβ (G) .11 .17 .10 .32

Inconsistency ei (Rs) .20 .27 .38 .28

Regression bias .23 .21 .32 .19

Base rate bias .83 .67 .23 .21

Total Error ET (ra) .54 .57 .35 .45

Note. The labels in parentheses indicate the analogous constructs in SJT. Errors in SJT are defined as (1−r2),

where r designates the correlation between the appropriate constructs.

pute the optimal individual predictions for each case using

the available cues. The same technique was completed to

find each judge’s individual weighting, and the subsequent

bootstrapped values. Then, the appropriate differences were

taken (absolute values) to find the total error, error due to

noise, error due to inappropriate cue weighting, and error

due to inconsistency. This process was completed for each

individual judge (although the optimal values are the same

across participants) and then the error was averaged across

judges to compute the results displayed in Table 1. For the

SJT analysis, the correlation was found between the analo-

gous terms for each component, and the error was reported

as 1− r2, as is standard for SJT analysis. These values were

averaged across participants to find the values reported in

Table 2.

2.4 Results

2.4.1 Effect of adding cues

Replicating the results of previous studies showing that

more information can be detrimental to judgment (e.g.,

Arkes, Dawes & Christenson, 1986; Hall, Ariss & Todorov,

2007), both Error Parsing and SJT indicated that judgments

were more accurate in the blue book domain when partici-

pants had fewer cues at their disposal. Total error increased

from $3,542 in the 2-cue condition to $3,998 in the 3-cue

conditions (paired sample t(97) = 1.89, p = .06). SJT also

suggests that participants were more accurate in the 2-cue

condition (paired sample t(97) = 3.95, p < .01). However,

Error Parsing and SJT diverge in the analysis of the base-

ball condition. Error Parsing suggest that participants were

more accurate in the condition with 3 cues (mean total error

1.83 runs) than in the 2-cue condition (mean total error 1.95

runs, paired sample t(99) = 1.92, p = .06). Using the SJT

technique, participants appear to be more accurate in the 2-

cue condition (paired sample t(97) = 2.10, p = .04). That is,

while estimates were more highly correlated with the correct

values when participants were shown two cues, the absolute

amount of error was smaller when they were shown three

cues.

2.4.2 Breaking down the error within condition

There were four experimental conditions in this study: 2-

cue-baseball, 3-cue-baseball, 2-cue-bluebook, and 3-cue-

bluebook. One way of analyzing the data is to examine how

error was distributed within these conditions. While there

are certainly instances in which Error Parsing and SJT agree

as to the relative magnitude of error, in the discussion below
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we will highlight the cases where Error Parsing and SJT re-

veal different stories about the nature of the error. (But see

Tables 1 and 2 for a full summary.)

In the 2-cue-baseball condition an Error Parsing analysis

suggests that error due to weighting was the largest source of

error (mean = 1.48 runs), and contributed more than twice as

much error as error due to inconsistency (mean = .66 runs)

(paired sample t(99) = 6.67, p < .01). However, an SJT

analysis suggests exactly the opposite—with error due to in-

consistency (mean = .20) nearly twice as large as error due

to weighting (mean = .11), a significant difference (paired

sample t(97) = 4.22, p < .01).

In the 3-cue-baseball condition Error Parsing analysis

suggests that error due to noise is the smallest source of er-

ror (mean = 1.0) while the other two sources of error are

more than twice as large (means = 2.72 and 2.61). Both of

these are significantly larger than the error due to noise (one-

sample t(99) = 6.60, p < .01 and one sample t(99) = 5.37, p

< .01; respectively). Meanwhile, SJT analysis suggest that

noise is the largest source of error (mean = .34) and nearly

twice as large as error due to weighting (mean = .18), one

sample t(97) = 6.85, p <.01.

In the 2-cue-bluebook condition, Error Parsing suggests

that error due to improper weighting (mean = $3638) is more

than twice as large as error due to inconsistency (mean =

$1530), a significant difference (paired sample t(97) = 9.88,

p < .01). However, SJT suggests the exact opposite—that

error due to inconsistency (mean = .38) is massively larger

than error due to improper weighting (mean = .10), and this

difference is also significant (paired sample t(97) = 14.24, p

< .01).

Error Parsing and SJT yield very similar results for the

3-cue-bluebook condition. As the purpose of this study is

to highlight differences between the methods, we will go no

deeper into this condition except to note that this serves as

evidence that the methods do not necessarily diverge. That

is, they are different, but not opposing.

2.5 Breaking down error between conditions

Adding an extra cue can change the amount of error (as dis-

cussed above) but also the nature of that error. In the base-

ball domain, SJT and Error Parsing suggest similar stories

for what happens to the different types of errors with the ad-

dition of a third cue (noise goes down, and weighting and in-

consistency go up). While the magnitudes of these changes

vary somewhat depending on the method of analysis used,

the two methods are largely in agreement.

However, in the bluebook domain, Error Parsing leads to

starkly different conclusions than SJT. Error Parsing reveals

that the error due to inconsistency more than doubles when

a third cue is added (2-cues = $1,530, 3-cues = $3,217; al-

though this difference is not significant (paired sample t(97)

= 1.37, p =.17). SJT, on the other hand, suggests that the

error due to inconsistency actually decreases (2-cues = .38,

3-cues = .28; (paired sample t(97) = 4.36, p < .01). Once

again, SJT and Error Parsing yield very different interpreta-

tions of the data.

3 Discussion

3.1 Applications of Error Parsing

Error Parsing provides a significant extension to the judg-

ment analysis literature. First, as demonstrated by the ex-

perimental data, in certain cases Error Parsing allows for a

clearer analysis of the magnitude of error present in judg-

ment. When analyzing judgments using correlations, the

difference in magnitude of the error components can be ob-

scured. As shown in Figure 3, predictions of different judges

might show similar correlations with outcomes in a predic-

tion domain, despite vastly different amounts of total error.

Figure 3 provides an extreme example of this, but more sub-

tle applications of this logic can explain why SJT and Error

Parsing can appear to produce contradictory results. For ex-

ample, one can imagine a scenario where two judges pro-

duce a set of predictions that fall around the proper opti-

mal pattern of judgments. However, one judge could predict

a greater distance from these optimal values, on average,

causing each judge to have the same correlation with the ac-

tual outcomes, but different magnitudes of error. Consider

that {1,1 ,1, -1, –1, –1} correlates perfectly with both {1, 1,

1, –1, –1, –1} and {2, 2, 2, –2, –2, –2}. Even though they

both have a y-intercept of 0, the absolute average difference

is 0 for the first and 1 for the second. Error Parsing would

pick up on this subtlety, while SJT would not.

We acknowledge that we are not the first to discuss these

problems. As previously discussed, a notable alternative

formulation—the Extended Lens Model (Stewart & Lusk,

1994)—proposes a solution that decomposes the perfor-

mance score of individuals even further, to produce nuanced

terms that reflect other sources of bias. This is a very clever

solution that, like Error Parsing, both solves the problem of

the y-intercept, and accounts for magnitude biases. How-

ever, this model still produces analysis of judgment based

on correlations, which can obscure the absolute magnitude

of the difference, and potentially makes feedback more dif-

ficult to interpret and utilize.

What this means is that SJT and Error Parsing are differ-

entially effective depending on the type of question that is

being asked. Correlation (and thus SJT) is more appropri-

ate when trying to reduce deviation from ordinal rankings of

options, while Error Parsing is better suited to reducing ab-

solute differences. For example, in baseball, SJT is more ap-

propriate if you are trying to determine which pitcher to put

into your starting rotation (where you care about the rank

order of who will allow the most runs) while Error Pars-

ing would be better for betting on the total number of runs
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scored in the game (where you care about the absolute error

in the number of runs scored).

Even when the two methods yield results in the same di-

rection, Error Parsing allows for clearer inferences about rel-

ative contributions of the different components of error. The

SJT methodology is harder to interpret; because the error

values can be so similar, differences in magnitude can be

harder to interpret. Error Parsing allows for the components

of error to be compared in a meaningful way, and it makes

the magnitude of error observable.

Especially for people who lack expertise in statistics, pro-

viding feedback in the form of correlation coefficients may

be difficult for judges to interpret and incorporate into sub-

sequent predictions. Feedback in correlations is likely to

be more confusing than feedback in the unit of judgment.

Feedback in the form of dollars or runs scored is both un-

derstandable to laypeople and easily integrated into future

judgments. This kind of feedback could help an individual

decide upon a more effective prediction strategy. For exam-

ple, if the judge learned that most error came from inappro-

priate cue weighting, an intervention might involve training

the judge on the relative values of the cues. Meanwhile, if

the error primarily came from inconsistency, an interven-

tion might focus on reducing the idiosyncrasies in judgment

from trial to trial. Ultimately, to design interventions that

address the actual source of error, it is first necessary to be

able to accurately break down error into its component parts

and understand those component parts.

To the extent that Error Parsing does provide more ef-

fective feedback, it could lead the field to reinterpret previ-

ous findings. For example, previous research has shown that

providing information about cue relationships can improve

judgments, but that information about the judge’s percep-

tions does not (for a review, see Balzer et al., 1989). Be-

cause this literature utilizes the methods of social judgment

theory, such conclusions may be due to the limitations of

the feedback that correlation-based methods provide. Future

research could investigate whether Error Parsing provides

more effective feedback to judges, and whether it yields dif-

ferent results.

Of course, the relative effectiveness of providing feed-

back using Error Parsing versus the Extended Lens Model

is inherently an empirical question. Further research should

directly compare how the provision of feedback to judges

through either Error Parsing of the Extended Lens Model

might improve judgment.

Despite these scenarios where Error Parsing offers a po-

tential advantage, we note that methods stemming from the

Lens Model may be linked to an early tendency to study

judgment using abstract scales (e.g., Likert scales). When

analyzing judgments that use these types of scales for judg-

ment and feedback, Error Parsing is not the ideal method;

when using abstract scales, the notion of absolute differ-

ences is often meaningless. However, when attempting to

find practical applications of these techniques, the scales be-

ing used will have meaning, and so the use of differences

may add value, as discussed here, beyond using correlations

only.

There are other cases where SJT’s correlational approach

would be a more appropriate measure of decision perfor-

mance as well. For example, when comparing individuals

between different judgment domains, absolute differences

would not be meaningful—one cannot easily compare $100

dollars to .2 runs. In this case, correlations would allow for

a standard unit of comparisons between judges. However,

even in these cases, Error Parsing outputs could be provided

in ways that allow for such comparisons (such as transform-

ing the absolute error into “percent of average value”). An-

other approach would be to examine Z-scores for predic-

tions across different domains, which would also provide a

meaningful mode of comparison.

3.2 Extensions and future directions

To date, we have considered only simple linear regres-

sions as the definition of optimal prediction. We recog-

nize that this assumption ignores the possibility of interac-

tions among cues, and of curvilinear relationships between

cues and outcomes. Previous work has shown that informa-

tion gathered from linear models sometimes obscures sub-

tle strategies in judgment (such as shifting attention between

cues). More nuanced knowledge about judge behavior could

help determine which model is better, and could also address

more complex judgment patterns such as complete omission

of cues or interactions among individual cues.

There have been previous efforts made to address the is-

sue of non-linear relationships between cues, from an SJT

approach (see Brannick & Brannick, 1989). It will be worth-

while, in future studies, to explore how Error Parsing can

be useful at providing feedback on the magnitude of error

using different functions of how cues relate to each other.

For example, a non-linear bootstrap of a judge could be cre-

ated within the Error Parsing methodology, creating a better

model of the judge without losing the advantages that this

approach offers.

In addition, judges may alter their judgment policies over

time. If predicting an exceptionally large number of cases,

judges may become fatigued and subtly change the way they

utilize the set of available cues. Because Error Parsing av-

erages over a large set of judgments, this change would not

be captured in the analysis. However, we note that this shift

in prediction patterns would not be observed using standard

SJT analysis either.

It is also possible that the problem of cue redundancy may

need to be addressed in some scenarios (see Shah & Oppen-

heimer, 2011). Error Parsing could be adjusted and studied

further to explore how it ought to deal with issues relating

to multicollinearity and non-linear relationships among cues
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and outcomes, but that is beyond the scope of this paper.

This could be accomplished through both analysis and sim-

ulation, to better explore and describe when Error Parsing

would provide results distinct from those of SJT.

3.3 Conclusion

Error Parsing provides an extension to previous research ex-

ploring techniques for the investigation of error in judgment

and prediction. Parsing the sources of error in prediction

and judgment can help develop interventions that improve

accuracy and facilitate learning. This possibility has impli-

cations for judgments such as medical diagnosis and treat-

ment, courtroom punishment and sentencing, and stock mar-

ket evaluations. Judgment and prediction are ubiquitous and

often very important, and tools with the potential to increase

accuracy have broad implications. Error Parsing takes the

insights derived from the technique of bootstrapping and

combines it with the insights of SJT to provide an alter-

nate method to analyze judgment. Future research should

continue to compare and contrast alternative techniques to

allow for a clearer description of the circumstances under

which each provides the most utility.
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