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Abstract

Streamflow predictions are vital for detecting flood and drought events. Such predictions are even more critical to
Sub-Saharan African regions that are vulnerable to the increasing frequency and intensity of such events. These
regions are sparsely gaged, with few available gaging stations that are often plagued with missing data due to various
causes, such as harsh environmental conditions and constrained operational resources. This work presents a novel
workflow for predicting streamflow in the presence of missing gage observations. We leverage bias correction of the
Group on Earth Observations Global Water and Sustainability Initiative ECMWF streamflow service (GESS)
forecasts for missing data imputation and predict future streamflow using the state-of-the-art temporal fusion
transformers (TFTs) at 10 river gaging stations in the Benin Republic. We show by simulating missingness in a
testing period that GESS forecasts have a significant bias that results in poor imputation performance over the
10 Beninese stations. Our findings suggest that overall bias correction by Elastic Net andGaussian Process regression
achieves superior performance relative to traditional imputation by established methods. We also show that the TFT
yields high predictive skill and further provides explanations for predictions through the weights of its attention
mechanism. The findings of this work provide a basis for integratingGlobal streamflow predictionmodel data and the
state-of-the-art machine learning models into operational early-warning decision-making systems in resource-
constrained countries vulnerable to drought and flooding due to extreme weather events.

Impact Statement

This paper presents a state-of-the-art streamflow prediction workflow in poorly gaged areas that are plagued by
missing data. We demonstrate the effectiveness of the workflow in forecasting daily streamflow at 10 gaging
stations in the Benin Republic. The proposed workflow enhances decision-making based on streamflow model-
based forecasts, reducing bias introduced by missing in-situ data and producing high-fidelity forecasts. This
work particularly relevant in areas where data collection is too costly, under-resourced, or not possible across
Sub-Saharan Africa.
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1. Introduction

In hydrology, streamflow refers to the volume of water that moves through a natural channel, such as a
river or a stream, during a specific duration. This quantity is generally quantified in cubic meters per
second or cubic feet per second and plays a crucial role in managing water resources, predicting floods,
and monitoring the environment (Rantz, 1982).

Streamflow predictions are critical for decision-making in many areas of climate change adapta-
tion, including flood and drought prevention, agricultural planning, and hydroelectric power system
operations (Kratzert et al., 2019). Predictions can be generated by physical and statistical models of the
hydrological process within the river catchment (Adounkpe et al., 2021). Regardless of the approach,
observational data are required to calibrate models for the localized dynamics within catchments
sufficiently. Model-based predictions are even more essential in vulnerable and underdeveloped
regions that are less resilient to extreme weather events such as drought and flooding. However,
localized observations for hydrological models are not always available due to physical sensor failure
events (Hamzah et al., 2020). Physical sensor systems often endure harsh environmental conditions,
destruction and power outages (Tencaliec et al., 2015). These phenomena result in prolonged periods
of missing or invalid observation readings. In developing regions such as the Benin Republic, the
effect of such missing data is further complemented by the already sparse distribution of stream gaging
stations (Harrigan et al., 2020). Fitting statistical models based on incomplete observational data
results in inaccurate models that do not capture the full dynamics of the underlying hydrological
processes (Hamzah et al., 2020). Imputation of missing data, therefore, leads to much-needed
improved flood and drought predictions in a climate change context where these events are expected
to increase in intensity and frequency (Kalantari et al., 2018). Thus, missing data imputation has
become a necessary first step in data preprocessing tasks (Pigott, 2001). Since the area of missing data
imputation commands a relatively vast amount of statistical literature, a wide variety of techniques
have been developed and applied with different data requirements and accuracy (Little and Rubin,
2019).

A simple approach to handling missing data is discarding records where any missingness arises.
Gill et al. (2007) show that while deletion of missing data is common practice in hydrology, it is not
necessarily optimal as significant amounts of predictive information can be lost. Single imputation
methods attempt to replace missing values one feature at a time with a pre-specified summary statistic
(e.g., mean or median) of the complete data (Baraldi and Enders, 2010). Regression-based methods,
such as imputation by random forest (RF), k-nearest neighbors (KNNs), and multilayer perceptron,
improve upon single imputation by exploiting correlations between variables in complete data
(Pantanowitz and Marwala, 2009; Gao, 2017). Both regression and single imputation can lead to
biases in the resultant analysis when the assumption that data are missing at random is violated Gao
(2017). Multiple imputation methods, such as multivariate imputation by chained equations, reduce
this bias by replacing missing data points with predictions from an ensemble of regressors obtained
from multiple subsets of the complete data (Van Buuren, 2018). Each of the imputation techniques
above is used extensively in hydrology (Adeloye and Rustum, 2012; Mwale et al., 2012; Hamzah
et al., 2021).

Global streamflow prediction systems also present a potential solution to missing data and the
sparse distribution of stream gage stations in developing countries. The Group on Earth Observations
Global Water and Sustainability Initiative (GEOGloWS) produce one such system in the Global
Flood Awareness System (GloFAS) with the GEOGloWS ECMWF streamflow service (GESS)
Ashby et al. (2021). The GESS extends GloFAS to local sites using an updated digital elevation
model that allows for increased resolutions in areas of the world with narrow watersheds (Ashby
et al., 2021). Like GloFAS, runoff predictions from the HTESSEL land surface model are further
downscaled and routed through a high-resolution stream network using the Muskingum algorithm of
the routing application for parallel-discharge computation (Gill, 1978). While GESS provides
much-needed streamflow data, localized calibration remains a significant challenge. A global
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calibration of these systems is biased primarily to developed regions with dense and complete
observations data Ashby et al. (2021). Thus, the utility of streamflow forecasts from these systems
can be significantly enhanced by bias and variance correction to minimize systemic biases between
model output and gaging station observations. Statistical Learningmethods are broadly popular when
learning transfer functions between global model forecasts and local observations (Piani et al., 2010;
Rischard et al., 2018; Wang et al., 2021). Some statistical learning methods that have been put
forward for bias correction tasks include penalized regression, quantile mapping (QM), artificial
neural networks, and Gaussian processes (GPs) (Pastén-Zapata et al., 2020; Xu and Liang, 2021;
Hunt et al., 2022).

A natural next step from the imputation of missing data is streamflow forecasting. This area has
recently been dominated by recurrent neural network (RNN) architectures given their successes
in sequence-to-sequence modeling tasks such as natural language processing (Vaswani et al., 2017;
Kratzert et al., 2019; Adounkpe et al., 2021; Castangia et al., 2023). This is mainly due to the ability
of architectures like the long short-term memory (LSTM) networks to capture dependencies at
longer time lags and the use of attention mechanisms that can focus on salient parts of the input
sequence that are relevant to predictions for a particular time point (Alizadeh et al., 2021; Lim et al.,
2021).

In this work, we address two gaps in streamflow prediction literature: (a) prior work on
statistical learning approaches to streamflow prediction isolates the problems of missing data and
forecasting and (b) most RNN approaches in this area are restricted to training and generating
forecasts for a single catchment at a time due to the inability to incorporate encodings of categorical
variables.

This paper closes these gaps by presenting and evaluating a novel workflow for streamflow
forecasting that (a) performs missing data imputation through the bias correction of GESS river
discharge estimates and (b) employs a state-of-the-art forecasting model, the temporal fusion
transformer (TFT) for day head streamflow prediction for 10 catchments in the Benin Republic
using a single interpretable model. The benefits of the proposed workflow are that it provides a
principled method for dealing with missing observations while also minimizing training time for the
forecasting module; competing architectures would require the training of 10 different models (one
for each catchment).

2. Study Area

For the purposes of this study, 10 hydrological stations located on the outlets of Benin’s major river
catchments were selected and depicted in Figure 1: Athiémè, Beterou, Bonou, Domè, Kaboua,
Kompongou, Koubéri, Lanta, Porga, and Yakin. Benin’s catchments are not limited to only Benin’s
administrative boundary but extend to its neighboring countries: Togo, Burkina Faso, and Nigeria.
The Kouffo, Mono, Okpara, Ouémé, and Zou rivers originate from central Benin and Togo and
generally flow into the Atlantic Ocean. The Alibori, Mékrou, and Sota rivers also originate from the
center of Benin but have their outlet up north in the Niger river. The Pendjari river (sometimes
referred to as the Oti river) originates from Northern Benin and flows into the Volta river in Togo and
Ghana.

3. Data

In-situ hydrological data (daily river discharge record at 10 locations from 1980 to 2021) was acquired
from Benin’s hydrological service, Direction Générale de l’Eau (DG-Eau). The missing data percentage
of the selected hydrological stations is 27.9%, with the station of Athiémè having the least missing data
and the Kompongou station having the most missing data. Supplementary Figure 6 details the periods of
missing data for each station. On the other hand, the GESS forecasts present no missing data and provide
daily river discharge data ranging from 1979 to the present at targeted river sections (Ashby et al., 2021).
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Daily precipitation, maximum temperature, and minimum temperature were obtained from Benin’s
meteorological agency, Agence Nationale de la Météorologie du Bénin. The static datasets of elevation,
soil, land use, and geology were, respectively, obtained from the CGIAR Consortium for Spatial
Information (Reuter et al., 2007), Office de la Recherche Scientifique et Technique Outre-Mer (Fauck,
1977), Centre National de Télédétection, and Office Béninois des Mines. Further details on the data used
can be found in the Supplementary Material.

Figure 1. Benin’s catchments, rivers, and hydrological stations and missing data rate indicated in the map
legend.
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4. Proposed Workflow

We propose the workflow depicted in Figure 2 that allows for both imputations of missing in-situ
observations and multi-horizon streamflow forecasting. We now provide a detailed exposition of our
imputation and forecasting methods.

4.1. Imputation of missing observations

We investigate streamflow imputation by bias-correcting GESS forecasts. We propose an imputation
scheme where we replace a missing in-situ observation at time t with

~xt ¼ h x0t
� �

, (1)

where x0t is theGESS forecast of streamflow at time t. h is a regressor trained on periodswhere x0t and xt are
both available. We investigate settings where h takes various forms, including a simple lookup from
GESS, a QM, elastic net, and GP.

4.1.1. Elastic net
The elastic net is a penalized linear regression model that employs weighted l1 and l2 norm
regularization terms. The regularization terms serve as conservative priors (bias toward zero) on
the coefficients that prevent overfitting to training data. Similar to the GP, we utilized a multi-output
formulation of the Elastic Net that allows information sharing between stations. In our imputation
formulation,

~xt ¼ h x0t
� �¼X 0βþ ϵ, (2)

Figure 2. Our proposed workflow for missing data imputation and streamflow forecasting in poorly
gaged areas. Step (1) includes collecting historical in-situ observations and the Group on Earth
Observations Global Water and Sustainability Initiative ECMWF streamflow service (GESS) hindcasts
for overlapping periods. (2) An elastic net is trained to correct biases of the GESS hindcasts onto in-situ
observations to result in a completed dataset in (3). The completed in-situ observational dataset is then
augmented with temporal climate variables and static catchment characteristic data. A temporal fusion
transformer is trained in (4) to produce streamflow forecasts in (5).
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where β is a matrix of coefficients on the GESS predictions x0t and ϵ is an error term of independent
identically distributed Gaussian noise. The matrix of coefficients is obtained by optimizing the posterior:

∥X �X 0β∥2þ λ2∥β∥2þ λ1∥β∥1 (3)

with the hyperparameters λ1 and λ2 obtained by cross-validation with the constraint λ1þ λ2 ¼ 1. Given
limited in-situ data, the elastic net has the advantage of limiting overfitting the bias correction relative to a
regularized regression.

4.1.2. Gaussian processes
GPs are nonparametric probabilistic models that are well known for regression problems (Cohen et al.,
2020). A GP is a collection of random variables, where each of its finite subsets is jointly Gaussian
(Rasmussen and Williams, 2006). GPs are sufficiently defined by a mean function μ x0ð Þ and a kernel
function k x0i,x

0
j

� �
.

Given a training dataset x0t,xt
� �t

t¼1 with t noisy observations, xt ¼ h x0t
� �þ ϵ, where ϵ�N 0,σ2X

� �
. The

GP prior on h is such that h x0ð Þ �N μx0 ,Kx0 þσ2XI
� �

. The mean and variance of the Gaussian posterior
predictive distribution of the function h x0∗

� �
at a test point x0∗, are given by

E h∗ð Þ¼μx0∗ þkT∗ Kx0 þσ2X0I
� ��1

X �μx0ð Þ, (4)

var h∗ð Þ¼ k∗∗�kT∗ Kx0 þσ2X0I
� ��1

k∗, (5)

where k∗∗ ¼ k x0∗,x
0
∗

� �
and k∗ ¼ k x0,x0∗

� �
. The kernel hyperparameters θ and the noise parameter σX are

obtained by maximizing the log-marginal likelihood

log p X jX 0ð Þ ¼ logN μx0 ,Kx0x0 þσ2XI
� �

: (6)

In this work, we use amulti-output formulation of theGPwhere all 10 stations share a squared exponential
kernel, thus allowing for implicit inference of connectivity relationships between stations.

4.1.3. Quantile mapping
QM is a well-known method for the bias correction of physical model output (Maraun, 2013; Ringard
et al., 2017). In QM, we seek to learn a mapping between the empirical cumulative distribution functions
(CDFs) of the in-situ and GESS prediction. In this case, the bias correction transfer function is

~xt ¼ h x0t
� �¼F�1

X FX0 x0t
� �

, (7)

where F�1
X is the inverse empirical CDF of the in-situ data and FX0 is the empirical CDF of the GESS data.

Both empirical CDFs are obtained during a specified training period.

4.2. Temporal fusion transformer

We compare imputation by bias correction using the abovementioned methods to traditional regression
imputation methods that rely only on complete in-situ data. We consider regression-based imputation by
RF (Pantanowitz and Marwala, 2009), QM (Maraun, 2013; Ringard et al., 2017), GP (Rasmussen and
Williams, 2006) regression, and KNNs (Hamzah et al., 2021) as our baselines. A description of these
methods can be found in the Supplementary Material.

4.3. Forecasting methods

We investigate the LSTM network and TFT RNN models as candidates for our forecasting module.
The LSTM (Hochreiter and Schmidhuber, 1997) is an RNN architecture that utilizes a memory cell state to

represent long-termdependencies in sequential data.TheLSTMmemory cell state at time t canbe formulated as
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ct,htf g¼ f LSTM xt,ct�1,ht�1,Wkð Þ, (8)

where x are the inputs, c are the cell states, and h are the hidden states indexed by time t.Wk are the model
weights. At the end of the input sequence, the cell and hidden states are connected to an output (yout) via a
dense neural network layer to make predictions:

yout ¼Φ ct,ht,WDð Þ: (9)

Φ is the dense layer, and WD is its weights.
The TFT (Lim et al., 2021) is a state-of-the-art multi-horizon forecasting model that takes a different

approach to learn long-term dependencies in sequential data. The TFT uses a transformer encoder to
create an abstract representation of the input sequence; this representation (encoding) is then trans-
formed into predictions by a decoder. In general, a vital element of the TFT and transformer architec-
tures is the self-attention mechanism which adds sparsity to the encoding. The sparsity added by the
self-attention allows the decoder to focus on parts of the input sequence that are influential for
prediction. Attention can be considered a differentiable dictionary lookup that matches a query to a
key linked to a value in the encoding (a representation of past inputs). The TFT augments the
transformer architecture with variable selection networks and static covariate encoders, increasing
its utility for multivariate time series forecasting with heterogeneous inputs. The static covariate
encoders are particularly important in streamflow forecasting. This allows us to use the catchment
name as a feature and train one model for all catchments rather than multiple models (one for each
catchment) in the case of traditional RNN models like the LSTM. A detailed depiction of the TFT is
provided in Supplementary Figure 7. We consider two TFT models a TFT-Lite, which considers only
the temporal inputs, that is, historical streamflow and climate variables and a larger TFT-full model that
adds static catchment characteristics to the inputs. This allows us to test for the additional value of the
static input encoder in the TFT.

Wemeasure the quality of the imputation using the Kling–Gupta efficiency (KGE) (Gupta et al., 2009)
and the Nash–Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970). These are discussed in more detail in
the Supplementary Material.

5. Results and Discussion

We start by presenting the results of the missing data imputation and then proceed to discuss the results of
forecasting elements.

5.1. Missing data imputation

We partition the data such that 60% of the period (January 1980 to November 2004) is for training and 40%
(November 2004 to June 2021) is for testing. We evaluate the performance of the imputation methods by
randomly simulating missingness on the complete testing data at the rates of 5, 10, 20, 30, and 50%.

Figure 3 shows themean KGE andNSE of the imputation methods across gaging stations and levels of
missingness. It can be seen that a simple lookup of the GESS predictions yields the worst imputation
performance.

The hypothesis around significant bias in the GESS predictions is reinforced by the outperformance
of the GP and elastic net bias correction imputation. Importantly the imputation by bias correction
yields better performance than simply employing RF, KNN, and MLP regressors on the complete
in-situ data. This can be reasonably expected as there are limited periods where the data are jointly
complete for training the multiple imputation regressors. Thus, the GESS data provide the necessary
signals regarding discharge seasonality and hydrologic connectivity to enhance imputation quality
significantly.

Table 1 shows the KGE values at each of the stations at a level of 20%missingness. It can be seen that
GESS yields the best performance at Yankin and Kompongou stations. Yankin and Kompongou had the

Environmental Data Science e23-7

https://doi.org/10.1017/eds.2023.11 Published online by Cambridge University Press

https://doi.org/10.1017/eds.2023.11


highest prevalence of missing data at 47.67 and 59.48%, respectively. A possible reason for this result is
that, given the elevated levels of missingness at these stations, the complete data could not sufficiently
calibrate the bias correction. GP and Elastic Net imputation methods provide the best performance in 8 of
the 10 stations with the highest KGE values obtained at stations with highly complete data in the Athiémè
and Bonou stations. QM as bias correction yields KGEs superior tomultiple imputations byKNN and RF,
suggesting that bias correction would remain the most efficient approach even when constrained by
computational resources.

Figure 4a depicts the embedded bias in the GESS forecasts at the Koubéri station. The positive bias in
the GESS manifests in that GESS lookups lead to new discharge extremes that are six times the extremes
recorded in the in-situ observations. In operational settings, such significant positive biases can lead to
false flood alerts and suboptimal use of already limited resources. The remedy to this extreme bias is seen
in Figure 4b, where bias correction removes the significant positive bias while retaining the seasonal
periodicity in discharge.

5.2. Day ahead streamflow forecasting

In testing the performance of the forecasting models, we trained all models with 30 years of data
(January 1983 to April 2013) and tested the models on data fromMay 2013 to December 2019. The date
range for training and testing of the forecasting models was adjusted due to the lack of in-situ
observations of climate variables in periods prior to 1983. Table 2 summarizes the testing performance
of forecasting models across each of the 10 gaging stations. It can be seen that the TFT models
outperform the LSTM significantly across all gaging stations. The TFT-full model outperforms the
much smaller TFT-lite model in 6 of the 10 stations. This suggests that the additional static inputs on
specific catchment characteristics add predictive skill in forecasting streamflow. An essential consid-
eration in explaining the relative performance of TFT lite is that an encoding of the catchment name is
added as an input to the model. Thus, some catchment characteristics are implicitly represented in the
input. It can also be seen that the models underperform on the Lanta catchment—this result is most
likely explained by the size of the catchment being tiny relative to the others. Our results significantly
improve on previous studies at overlapping catchments in the study area, mainly based on physical
hydrological models. These include Biao (2017), which employs the hydrological model based on the
least action principle at Beterou and Bonou, and Badou (2016) uses Soil and Water Assessment Tool,
Hydrologiska Byråns Vattenavdelning (HBV light), and Universal Hydrological Program—

Figure 3. Plot of mean Kling–Gupta efficiency (KGE), and Nash–Sutcliffe efficiency (NSE) measures
from each imputation method at varying levels of missingness across the 10 stations. The dashed blue line
represents the zero NSE line. It can clearly be seen that the Group on Earth Observations Global Water
and Sustainability Initiative ECMWF streamflow service imputation (in red) produces the lowest KGE
and NSE values compared with all competing methods.
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Table 1. KGE of each imputation method at 20% missingness at each respective gaging station.

Stations

Method Yankin Lanta Kompongou Athiémè Kaboua Beterou Bonou Porga Koubéri Domè

KNN 0.786 0.728 0.725 0.864 0.772 0.847 0.846 0.851 0.784 0.797
RF 0.821 0.784 0.780 0.859 0.841 0.807 0.832 0.839 0.626 0.822
Gaussian process 0.863 0.857 0.829 0.919 0.833 0.831 0.877 0.913 0.914 0.894
GESS 0.896 0.651 0.905 0.643 0.870 0.865 0.608 0.853 0.443 0.448
Elastic net 0.848 0.872 0.809 0.930 0.881 0.881 0.908 0.894 0.901 0.905
Quantile mapping 0.831 0.871 0.823 0.936 0.841 0.838 0.906 0.872 0.865 0.912

Note. The highest KGE for each station is in bold.
Abbreviations: GEOGloWS, Group on Earth Observations Global Water and Sustainability Initiative; GESS, GEOGloWS ECMWF streamflow service; KGE, Kling–Gupta efficiency.
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Hydrological Response Unit at Kouberi, Yakin, and Kompongou. Details on other overlapping studies
are contained in the Supplementary Material.

The attention mechanism of the TFT further allows us to endow our forecasts with some explain-
ability of predictions. Figure 5 depicts the average temporal attention over the testing period of each
TFT model. From Figure 5a, it can be seen that the TFT-lite model focuses more on inputs at lags of
around 80–90 days with very sparse attention at earlier lags. On the other hand, in Figure 5b, the TFT
full spreads attention of a similar scale to the TFT-lite model with a minor kink around 40 days with a
similar pick around 80–90 days. This suggests that the TFT model has the potential to capture seasonal
influences that typically have the delays of up to 90 days. The variable importance plots in the static
variables in Supplementary Figure 9 show an agreement between the TFT models that the catchment
encoding is an essential feature. This further supports the hypothesis around the advantages of using
TFTwith a static encoder for this task. Other variables that have high importance necessarily include the
previous day’s streamflow, runoff rations, and mean elevation.

6. Conclusion

We evaluated the state-of-the-art imputation methods for streamflow prediction, demonstrating the need
and importance of bias-correcting GESS streamflow forecast information. Our findings show that the bias
introduced by GESS forecasts can be significant and result in possible false flooding alerts. We minimize
such bias using Elastic Net regressions trained in periods where in-situ observations are available. The
resultant imputation under simulated missingness shows that GESS bias correction outperforms train
KNN and RF imputation trained on available data alone. We also implement a TFT architecture in
streamflow prediction for the first time in literature and show that it significantly outperforms the LSTM
and previous work on catchments in the Benin Republic.

Our findings enhance decision-making based on streamflow model-based forecasts. This enhance-
ment is critical, particularly in areas where data collection is too costly, under-resourced, or not possible
across Sub-Saharan Africa. Continued work aims to enhance and expand on the operational imple-
mentation of our bias-correction-based methodology. Specifically, we aim to interpolate and extrapo-
late the best-performing bias-correction model to ungaged areas. This is anticipated to vastly increase
the utility of GESS to large areas across Sub-Saharan Africa and Central America that are currently
ungaged.

(a) Imputation by GESS Lookup (b) Imputation by Elastic Net

Figure 4. The infilled streamflow time series at the Koubéri station using the Group on Earth
Observations Global Water and Sustainability Initiative ECMWF streamflow service (GESS) Lookup
Bias Correction (a) and Elastic Net Bias Correction (b). The difference in scale of the y-axis between
the two figures illustrates a bias in the GESS forecasts of a factor of about six times that of the
in-situ data.
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Table 2. A summary of the performance of each forecasting model during the testing period at each respective gaging station.

Stations

Model Metric Yankin Lanta Kompongou Athiémè Kaboua Beterou Bonou Porga Koubéri Domè

Area (km2) 8.163 1.702 5.711 21.063 9.464 10.08 39.121 22.987 13.22 8.263
LSTM R2 0.409 0.306 0.188 0.315 0.183 0.794 0.678 0.620 0.746 0.619

NSE 0.369 0.302 0.125 0.270 �0.087 0.792 0.629 0.049 0.744 0.525
KGE 0.5792 0.409 0.0102 0.401 0.391 0.823 0.574 0.392 0.809 0.423

TFT lite R2 0.896 0.328 0.937 0.930 0.925 0.914 0.986 0.873 0.897 0.844
NSE 0.892 0.302 0.892 0.930 0.923 0.906 0.981 0.851 0.856 0.808
KGE 0.867 0.252 0.696 0.956 0.950 0.920 0.922 0.891 0.842 0.681

TFT full R2 0.877 0.371 0.935 0.925 0.915 0.923 0.989 0.894 0.926 0.885
NSE 0.864 0.365 0.827 0.924 0.912 0.923 0.987 0.893 0.924 0.880
KGE 0.890 0.495 0.572 0.943 0.889 0.938 0.950 0.932 0.907 0.855

Badou (2016) R2 0.59 0.41 0.64
NSE 0.57 0.37 0.53

Biao (2017) R2 0.87 0.69

Note. Best-performing models for each Station (and metric) are highlighted in bold.
Abbreviations: KGE, Kling–Gupta efficiency; LSTM, long short-term memory; NSE, Nash–Sutcliffe efficiency; TFT, temporal fusion transformer.
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