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1. Introduction. A linear algebra is called a Jordan algebra if it satisfies the 
identities 
(1) ab — ba, (a2b) a = a2(ba). 

It is well known that a linear algebra S over a field of characteristic different 
from two is a Jordan algebra if there is an isomorphism a —> a' of the vector-
space underlying S into the vector-space of some associative algebra A such that 

(abY = W-b' + V-a'), 
where the dot denotes the multiplication in A. Such an algebra S is called a 
special Jordan algebra. As has been proved by Albert (1), there exist Jordan 
algebras which are not special and this raises the problem of characterizing the 
special Jordan algebras within the class of all Jordan algebras. In particular 
one may ask: Do the special Jordan algebras satisfy any identity which is not a 
consequence of (1)? This raises the further question whether the class of special 
Jordan algebras can be defined by identities alone. We are concerned in this 
note with finding an answer to this second question.1 

A class Ë of abstract algebras can be defined by identities if and only if 
it is closed under the operations of taking subalgebras, direct unions and 
homomorphic images (5). We call such a class a variety of algebras, following 
P. Hall. It follows from the definition that the Jordan algebras form a variety, 
3 say. Further, denote by © the class of special Jordan algebras. Then it is 
easily shown that © is closed under the operations of taking subalgebras and 
direct unions (6), but, as we shall prove in §6, © is not closed under the opera
tion of taking homomorphic images and is therefore not a variety. The class of 
all homomorphic images of special Jordan algebras is again a variety, X say; 
clearly X is the "smallest" variety including all the special Jordan algebras and 
we have the trivial relation 
(2) S C J C J 

We shall prove in §5 that every algebra in X on at most 2 generators is also 
in ©, and give a criterion for deciding when a 3-generator algebra in X is in ©. 
With this criterion it is easy to construct algebras which are in X but not in © ; 

Received December 4, 1952; in revised form July 29, 1953. 
^ h e relation between Jordan algebras and special Jordan algebras has been completely 

described by Albert (2) in the special case of finite-dimensional semisimple algebras over a 
field of characteristic zero. We attack the problem from the other end by looking for partial 
results for the whole class of special Jordan algebras. Therefore the present work does not 
overlap Albert's. 
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we give an example in §6. Thus we obtain a Jordan algebra which is a homo-
morphic image of a special Jordan algebra, but which is not itself special. 
In §7 the peculiar difficulties of extending the methods of this note to algebras 
on more than 3 generators are briefly discussed, and it is shown that they cannot 
be extended without serious modification. 

We note that the restriction on the field is essential, since over a field of 
characteristic two the Jordan product (in the form xy + yx) reduces to the 
Lie product: xy — yx, and it is well known that the Lie algebras derived in this 
way from associative algebras form a variety whatever the number of genera
tors, so that © = X in this case.2 

2. 3>algebras. In the whole of this note all algebras will be taken over a 
fixed but arbitrary field of characteristic 3^2, so that we shall not refer to it 
explicitly unless necessary. 

Let A be an associative algebra and define the Jordan product of two elements 
x, y 6 A by 

( x j ) = h{xy + yx). 

The set A may be regarded as an algebra with respect to addition and Jordan 
multiplication and it will then be denoted by (A). If U is any subspace of A, 
we denote by ( U) the subalgebra of (-4 ) generated by U. 

Now let Ao be the free associative algebra on the free generators x\(\ G A). 
We denote by <£> the subspace spanned by the x's and refer to A 0 as the free 
associative algebra on <ï>. It is clear that A0 is uniquely determined by <£, the x's 
being a basis of the space $. We denote by J0 the algebra (<£), so that Jo is a 
special Jordan algebra. The elements of Jo are just the Jordan polynomials in 
the x's (8) and may be called the Jordan elements of A0. 

It is easily proved that every special Jordan algebra is a homomorphic image 
of Jo, for a suitable A, and hence every homomorphic image of a special Jordan 
algebra is a homomorphic image of Jo- Let us call an algebra a X-algebra, if it 
is a homomorphic image of a special Jordan algebra, i.e., if it is in X. Further we 
shall say that a î-algebra is special if it is a special Jordan algebra. Then we 
can state the result as 

THEOREM 2.1.3 Every X-algebra is a homomorphic image of Jo, for a suitable A. 

The theorem can also be expressed by saying that Jo is the free algebra of the 
variety X* 

Let T be any ï-algebra. By Theorem 2.1, T = Jo/a, where a is an ideal of 
J0 ; therefore T is defined up to isomorphism by Jo and a. We require a criterion 
for deciding when T is special. Since Jo C A0, a is contained in Ao, but of course 
it is not in general an ideal of Ao. We denote by {a} the ideal of Ao generated by 
the set a. Then we have 

2This follows from the Birkhoff-Witt embedding theorem (4; 10). 
3Theorem 2.1 is practically a restatement, for the case of special Jordan algebras, of Theorem 

1 in (6). 
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THEOREM 2.2. Let a be an ideal of Jo. Then Jo/a is a special Jordan algebra 
if and only if {a} P\ Jo Q a. 

We note that since a Ç / f l and a C {a}, we have in any case a Q {a} f^ Jo, 
so that the theorem asserts in fact equality in case Jo/a is special. 

Proof. Suppose a is special. Then, by definition, JQ/a can be embedded in an 
associative algebra, A say. Denote the natural homomorphism of Jo onto Jo/a 
by u —-> û, then it is clear that the elements x\ generate Jo/<x. Now consider the 
mapping <j> :x\-^X\. Since AQ is free associative on the x\, we can extend </> 
to a homomorphism of Ao into A} which we again denote by <£. Let b be the 
kernel of the homomorphism #, then b is an ideal of A0- Clearly <£ induces a 
homomorphism of Jo onto the Jordan algebra generated by the x\, which is 
just Jo/a by definition, and since <j> maps x\ into x\, it follows that <j> coincides 
on Jo with the natural homomorphism onto JQ/CI. We shall prove 

(i) {a} ç b , (ii) b P i / o ^ a . 

From this it then follows that {a} P\ Jo £ a. 
To prove (i) let w G a, then w = 0 by definition, and since <£ coincides with the 

natural homomorphism on Jo, we have u* = 0, which means that u G b. Hence 
a £ b, and since b is an ideal of A0 it follows that {a} Ç 6 , 

To prove (ii) we take u in b P\ J0, then, since w Ç b, u* = 0, and because 
u £ Jo this means that w lies in the kernel of the natural homomorphism, i.e. 
u Ç a. This proves (ii), and hence {a} P\ Jo Q a. 

Conversely, suppose that {a} C\ Jo C a; then we have equality by the remark 
which precedes the proof. We consider the associative algebra A = ^40/{ct}. 
Denote by X\ the image of x\ under the natural homomorphism of Ao onto 
A o/ {a} and let / be the subalgebra of (A ) generated by the x\. Then / is the 
homomorphic image of Jo under the natural homomorphism Ao—^A0/{a} and 
therefore J = Jo/Jo O {a}, which equals Jo/a by hypothesis. Therefore Jo/a = J 
is a special Jordan algebra, and this completes the proof. 

The concept of an associative algebra and the special Jordan algebras embed
ded in it can be generalized to the case of an abstract algebra A and subsets of 
A which are closed under certain combinations of the operators of A (6). 
Both the theorems of this section can be extended without difficulty to this 
general case. 

3. The reversal operator. Let A0 again be the free associative algebra on 
the space with the basis x\ (X Ç A). We define the reversal operator j on A o as 
the linear mapping of A 0 into itself given by 

xj\ =* x\, X Ç A, 
(uv)j = vj. ujy u,v£Ao. 

These equations together with linearity define j completely. It is clear that j 
is an involution ; in fact j is essentially the fundamental involution on the uni-
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versai associative enveloping algebra of 70 (7). If u g A0l then uj will be called 
the reverse of u, and u is said to be reversible, if uj = w. The set of all reversible 
elements of Ao forms a subalgebra of {Ao), as is easily verified. 

We define a second linear mapping u —> u* in ^40 by the rule: 

(3) w* = %(u + uj). 

If w Ç i4o, then w* is reversible, and w* = « if and only if u is reversible. 

LEMMA 3.1. If u, v Ç A0y then 

(4) <«*, v>* = <«*, w*>. 

The lemma is proved by a straightforward calculation: 

<«*, v)* = *{<«*, »> + (u*, v*)} = i<«*, » + v>) = <«*, »*>. 

Since the right-hand side of (4) is symmetric in u and v, we also have 

(5) {u, z/*>* = <w*, v*). 

The formula (5) bears a remarkable resemblance to Baker's formula for 
commutators in AQ. If u —» w* denotes the operation of forming left-normed 
commutators in the free generators of A0 and [uy v] = uv — vu, then Baker's 
formula (3; 9) states 

(uv ) = [w , v ] for all u, v £A0. 

This operation + leaves a homogeneous element of A0 unchanged except for a 
scalar factor, if and only if it is a Lie element (i.e. a sum of commutators in the 
x's; see e.g. (9)). As we shall see in §4, the operation * defined by (3) leaves 
an element of AQ involving less than four generators unchanged if and only if 
it is a Jordan element. 

Consider again the free associative algebra Ao on the x's. Any given element 
w of Ao is obtained from the x's by the operations of A0 and we refer to w, 
considered as a function of the x's, as an associative polynomial in the x's. If w 
belongs to Jo it can be formed from the x's by the operations of JQ, and as. such 
it is called a Jordan polynomial (8). The usual definitions of degree and homo
geneity in the x's taken together or in any one of them can then be extended to 
associative and Jordan polynomials. If/($i, . . . , £n) is a (Jordan or associative) 
polynomial in n variables, we define the reverse of / to be the polynomial fj

t 

where 
PipCu . . . , Xn) = lf(Xi, . . . , Xn)]}. 

Since the x's are free generators, this defines fj as a polynomial. We say that / 
is reversible, if fj = f. 

As long as we restrict ourselves to polynomials with the free generators x\ 
as arguments there is no need for the new terminology, but we shall want to 
use it in the case where the arguments are not x's, but certain other elements in 
AQ. Thus, if Ui, u2l . . . , un are given elements of Acs and / is a reversible poly-
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nomial, then the element f(tii, . . . , un) of AQ is not necessarily reversible since 
the u's need not be so. To give an example, if u = xi x2, then the element 
Xix2x3 + X3X1X2 is not reversible, but by writing it as uxz + x$u we can express 
it as a reversible polynomial in u and X3. 

LEMMA 3.2. Let b be an ideal of Ao with a set of reversible elements ut (L G I) 
as generators. If w is a reversible element of b then w can be written as a reversible 
associative polynomial in the u's and x's which is linear homogeneous in the u's. 

Proof. Any element w of b can be written as / (^ , x), where/ is a polynomial 
in the u's and x's in which each term has degree at least one in the u's. If any 
term of / contains more than one factor u, we express the surplus factors in 
terms of the x's, and in this way obtain w as a polynomial g{u, x) which is 
linear homogeneous in the u}s. The reverse polynomial gj(u, x) is again homo
geneous linear in the u's and {g(u, x)}j = gj{uj,x) = gj{u,x), since the u's 
are reversible. Using the fact that w is reversible we have 

w = w* = |{gO, x) + gj{u,x)), 

and this is the required representation of w as a reversible associative polynomial 
which is linear homogeneous in the u's. 

To illustrate the point of the lemma, let u = x2, then w = ux is the value of 
the associative polynomial /(£, 17) = £77 for £ = u, rj = x, and / is not reversible, 
but w can also be written as \(ux + xu) and this expresses t o a s a reversible 
associative polynomial which is linear homogeneous in u. 

4. The connection between reversible and Jordan elements. Let R be the 
set of reversible elements of Ao. Then R is a subalgebra of (AQ), and since R 
contains the generators x\, it contains JQ. Thus every Jordan element of A0 

is reversible.4 

The question naturally arises under what circumstances J0 equals R. We shall 
prove now that this is the case when the number of free generators of A0 is 
less than four and only then. To obtain the best possible results it is convenient 
to suppose that the index-set A is totally ordered ; so in order to avoid unneces
sary detail we shall from now on take the free generators of A0 to be well-
ordered and write them as Xi, #2, . . . without specifying the index-set unless 
this is relevant. 

THEOREM 4.1. Every reversible element of Ao can be expressed as a Jordan 
polynomial in the generators xi, X2, . . . and the elements 

* 
(6) (ocixxuxuxu) ii < i2 < iz < n\ i = 1, 2, . . . . 

The expression (6) will be called a tetrad, more precisely the tetrad defined 
by 

il y -Ma» ^iai «M** 

4Since A0 is the universal associative enveloping algebra of Jo, this is a special case of a 
result by Jacobson and Rickart (8). 
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We shall refer to (6) as a tetrad even if the indices are not ascending, but we 
insist on their being distinct. 

We prove Theorem 4.1 by induction on the degree of the element, considered 
as an associative polynomial in the x's. If the reversible element w has degree n, 
the terms of highest degree will be of the form 

(7) X l aU • • • in (XU ' ' >%in) « 

Let us denote the subalgebra of (A0) generated by the x's and by the elements 
(6) by S for the moment; it will be enough to prove (under the induction 
hypothesis) that 

* 
[Xi1 . . . Xin) c o . 

For brevity we shall write this as a congruence 

(8) (xu . . . *«„)* = 0, 

where the modulus S is always understood. If n = 1, (8) holds by definition of 
S. Now let n > 1. By the induction hypothesis, 

(xu . . . xin) = 0. 

Because 5 is a subalgebra of (Ao), it follows that 

(xix, (XU • • -%in) ) = 0 , 

and so by applying Lemma 3.1, we get 

2 I \xii XU • • • XU) I (Xi* • • • XU xix) \ 

= \Xix, Xi% . . . Xfn) = \Xiiy (Xi, . . .Xin) ) = 0 . 

Thus 
* * 

(9) (xu . . . xin) = — (xu . . . xin xu) . 
The congruence (9) states that the left-hand side of (8) changes sign (mod S) 
under a cyclic permutation of the suffixes. If n is odd then by repeating this 
operation n times we get 

\Xi1 . . . Xin) = — \xii. • • • xin) » 

and hence (8). If n is even we apply Lemma 3.1 with 

11 = Xix Xi2l V = Xfa . . . Xiu 

and obtain similarly 
* . * 

0 = ((xuxu) , xu . . .xin) 
* $ * 

— ï î (# f i #*t #*• • • • Xin) "T ( # * , # i i #* a • • • xi%) r (#*» • • • ^ i » #ïx # i . ) 

+ (xt-3 . . . x i n Xi, Xij J. 

By (9) we can apply two cyclic interchanges to each of the third and fourth 
terms without affecting their values (mod S). This will change them into the 
first and second term respectively, so that 
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£{ (xu . . . xin) + (xu xu xu . . . xin) } s 0. 

Multiplying by two and transposing, we obtain 

(10) (xu xia xit... xin) s - (xu xu xu . . . xin) . 

By (9) and (10) the left-hand side of (8) changes sign (mod S) if we apply 
the permutations ( 1 2 . . . » ) or (12) to the indices. These two permutations 
are odd (since n is even) and they generate the symmetric group on n letters, 
so it follows that if we apply any permutation to the indices on the left-hand 
side of (8), this has the effect of multiplying it by ± 1 (mod S) according to 
whether the permutation is even or odd. In particular if two indices are equal, 
the expression is = 0 and (8) follows. 

To complete the proof we distinguish three cases: 
(i) n = 2. Then 

(xtl xu) = (xtl, xu) = 0. 

(ii) n = 4. We need only consider the case where the indices are distinct. 
By at most changing the sign we can arrange the indices in any given tetrad in 
ascending order and then it is = 0 by the definition of S. 
(iii) n > 6. We apply Lemma 3.1 with 

This gives 

\{{xu ...xu xu . . . xin) + (xu ...xtlxu... xin) 

+ (xu . • • xin xix . . . xu) + (xu . . . xi% xu . . . xtl) } = 0. 

Each of the second, third, and fourth terms differs from the first by an even 
permutation and hence we obtain 

(xu xu... xu) = 0, 

i.e. (8). Hence the expression (7) is in 5 and by subtracting it from w we can 
reduce the degree to n — 1. By induction it then follows that w Ç S and this 
completes the proof. 

Since any tetrad of the form (6) must contain four distinct x's, there can be 
no such tetrads when the number of free generators is less than four. Hence we 
deduce 

THEOREM 4.2. If the number of free generators is less than four then every 
reversible element is in Jo. 

The following scholium, noted already in (7), without proof, shows that 
Theorem 4.1 is best possible. 

SCHOLIUM 4.3. If the number of free generators of A 0 is > 4 and if i\ < i2 < 
iz < i^ then 

(Xjj Xin X{z Xit) H. Jo-
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In the proof we can clearly confine ourselves to the case where the number of 
free generators of A0 is just 4. Thus we have to prove that (x 1X2X3X4)* $ ^0, 
and this will follow if we can prove it in any homomorphic image of Ao. Let A 
be the associative algebra on xi, X2, #3, x4 with the relations5 

xtXj + XjXi = 0 i,j = 1, 2, 3, 4. 

Then A has a basis consisting of the elements 

xu . . . xir, ii < . . . < ir, r = 1, 2, 3, 4. 

The Jordan algebra generated by the x's, / say, is spanned by Xi , X2, X3, X4. But 
(X1X2X3X4)* = X iX 2X 3X 4 & J and the scholium follows. 

5. The embedding of 2- and 3-generator algebras. The theorems of §4 
enable us to find necessary and sufficient conditions for ï-algebras on at most 
3 generators to be special, and to prove that every 2-generator ï-algebra is 
special. Of course the case of a 1-generator ï-algebra is trivial, since any Jordan 
product of degree n in a single generator x is just xn. This follows by induction 
from the formula 

(x\xj) = xi+j. 

THEOREM 5.1. Let Ao be the free associative algebra on the free generators x, y, z, 
and Jo the special Jordan-algebra onx,y,zas before. If Ui, u2, . . . are any elements 
of Jo and a is the ideal of Jo generated by them, then JO/CL is special if and only if 

(11) (u#y*)*€ « i = 1,2, . . . . 

Proof. By Theorem 2.2, JQ/a is special if and only if {a} C\ JG C a. Since 
the number of free generators is 3, J0 consists just of the reversible elements of 
Ao (Theorem 4.2), and so Jo/ft is special if and only if every reversible element of 
{a} is in a. It is clear that {uixyz)* is reversible and belongs to {a}, hence con
dition (11) is-necessary. Conversely, suppose that (11) is satisfied and let w 
be any reversible element in {a}. By Lemma 3.2, w can be written as a reversible 
associative polynomial / in the u's and x, y, z which is linear homogeneous in 
the us. We now regard x, y, z, #1, u2y . . . as independent. Because/ is reversible, 
it can by Theorem 4.1 be expressed as a Jordan polynomial <t> in x, y, z, u\, u2, . . . 
and tetrads involving these variables. Since / is linear in the u's, so is <t> and 
therefore no tetrad can involve more than one u, but it must involve at least one, 
since the four arguments of a tetrad are distinct. By a permutation of the 
arguments any such tetrad can be reduced to the form (ut xyz)* plus a Jordan 
polynomial in uux,y,z. By hypothesis (utxyz)* Ç a, hence every term of <t> 
has been reduced to a Jordan product with at least one factor in a, and it follows 
that (j> itself is in a. Since </> = / = w, and w is any reversible element of {a}, 
this shows that {a} C\ Jo £ a if (11) holds and this completes the proof. 

5Thus A is the Grassmann algebra on the x's. I am indebted to one of the referees for the idea 
of this proof. 
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In the next section we shall construct an ideal which fails to satisfy this 
criterion and therefore defines a non-special ï-algebra. First we deduce what 
happens in the case of two generators. 

THEOREM 5.2. Any %-algebra on two generators is special. 

Proof. We have to show that if A 0 is free associative on x, y and J0 the special 
Jordan algebra on x, y, then every homomorphic image of J0 is special. Let a 
be any ideal of J0 and uu u2} . . . a set of generators of a. Following the proof 
of Theorem 5.1 we can express any reversible element w of {a} as a Jordan 
polynomial in x, y, uh «2, • • • and the tetrads in these variables., Moreover, 
this polynomial may be taken to be linear homogeneous in the w's, therefore 
no tetrads can occur, since now any tetrad must involve at least two distinct 
w's. Thus w can be written as a Jordan polynomial in x, y, Ui, u2, . . . which is 
linear homogeneous in the u's and it follows that w 6 a. Hence {a} C\ JQ C a; 
this shows that Jo/a is special and the proof is complete. 

6. Example of a non-special î-algebra. In this section we construct an 
ideal of Jo which does not satisfy the conditions of Theorem 5.1 and therefore 
defines a quotient algebra of Jo which is not special. 

We take the free generators of Ao to be x,y,z and consider the element 

u = (x, x) — (y, y) ( = x2 — y2). 

Let a be the ideal of J 0 generated by u. We shall show that (uxyz)* (£ a. Then 
Jo/a will be non-special by Theorem 5.1. 

Suppose that w = (uxyz)* Ç a. Then w can be written as a Jordan polynomial 
<j>(u, x, y, z) and by an argument similar to that used in proving Lemma 3.2 
we may suppose 0 to be linear homogeneous in u. Let <t>n(u, x, y, z) be the sum 
of the terms of <£ which are homogeneous of degree n in the last three arguments. 
Then 

(uxyz) = X) <l>n(u,x,y,z)-
n 

Since Ao is free, we may equate the homogeneous terms of degree n in x, y, z and 
this gives (because </> is linear homogeneous in w, and u is homogeneous in x, y, z) 

(12) (uxyz)* = fo(u, x, y, z), 
<j>n(u, x, y} z) = 0 for n ^ 3. 

Now we decompose <t> into parts which are homogeneous in each of its arguments: 
Let 

0(w, x, y, z) = X) *<#(«, *> y, *)> 
where <j>ijk is homogeneous of degree i,j, k respectively in the second, third and 
fourth argument. This process of picking out the homogeneous terms of a Jordan 
polynomial <j> gives again a Jordan polynomial <t>ijk because a homogeneous 
Jordan polynomial, when considered as an associative polynomial, is still 
homogeneous. 
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We consider the homogeneous terms of degree 3, 1, 1 respectively in x, y, z 
in (12). Equating such terms, we get 

(13) (xzyz)* = 0iii (x2, x, y, z). 

Similarly, by equating the terms of degree 1, 3, 1 in x, y, z we get 

(14) (y2xyz)* = 4>ni (y2, x, y, z), 

while <pijk with (i,j,k) 9^ (1, 1, 1) does not contribute to the result. Let us 
write 

f(u, x, y, z) = (uxyz)* - 0 m (u, x, y, z), 

where we regard u, x, y, z as independent. The associative polynomial / is linear 
homogeneous in each of its four arguments. Since </>m is a Jordan polynomial, / 
is reversible; and it vanishes for u — y2 — x2, but does not vanish identically, 
because mod 70 it is congruent to (uxyz)*. From the vanishing of/ for u = x2—y2 

we get 
(15) /(x2 , x, y, z) = f(y2, x, y, z) = 0, 

which is just another way of expressing the equations (13) and (14). If we treat 
u again as a fourth free variable, then/(w, x, y, z), as a reversible linear homo
geneous polynomial in u, x, y, z, must be a linear combination of the elements 

Vi = (uxyz)*, v2 = (uxzy)*, vz = (uyxz)*, v^ = (uyzx)*, 
v$ = (uzxy)*, VQ = (uzyx)*, vi = (xuyz)*, v$ = (xuzy)*, 
v? = (yuxz)*, vw = (ywzx)*, ^n = (swx^)*, v12 = (zuyx)*. 

For these twelve expressions form a basis for all the reversible elements which 
are linear homogeneous in u, x, y, z. Let f(u, x, y, z) = ^a{ou where the a's 
are in the underlying field. Then the equation f(x2, x, y, z) = 0 implies that 

#1 + «7 = #2 + #8 = «9 + #11 = 0; #3 = a± = #5 = «6 = #10 = #12 = 0; 

and /(;y2, x, ;y, z) = 0 implies that 

#3 + #9 = #4 + #10 = #7 + #12 = 0; #1 = #2 = #5 = #6 = #8 = #11 = 0. 

These equations together show that all the coefficients at vanish and hence 
f(u, x, y y z) must vanish identically, which is a contradiction. Therefore (uxyz)* 
$ a and so Jo/a is not special. Expressing this result in terms of 2>algebras we 
have 

SCHOLIUM 6.1. If J is the X-algebra6 on three generators x, y, z with the single 
defining relation x2 = y2, then J is non-special, i.e., J cannot be embedded in an 
associative algebra. 

It is of interest to note that although the number of generators must be at 
least three (by Theorem 5.2), the defining relation involves only two of them. 
This means that the non-special ï-algebra J of Scholium 6.1 is actually the 

6The multiplication in / is here denoted by juxtaposition. 
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free product of two special Jordan algebras, namely the 2>algebra on x and y 
with the single defining relation x2 = y2 and the free ï-algebra on z. 

The î-algebra J described in Scholium 6.1 also provides an example of a 
3-generator 2>algebra which cannot be embedded in a 2-generator ï-algebra, 
for by Theorem 5.2 any such ï-algebra can be embedded in an associative 
algebra A and this would provide an embedding of J in A. 

7. ^-algebras on more than four generators. The conditions of Theorem 
5.1 can in principle be applied to any 3-generator ï-algebra with a finite set of 
defining relations, but this may be a non-trivial problem for some ï-algebras, 
and it is to be expected that any set of conditions for ï-algebras on four or more 
generators will be equally if not more difficult to apply, and therefore less useful. 
Such conditions, if they exist, must be essentially different from the one given 
in Theorem 5.1. We shall briefly indicate the reason for this fact. 

The criterion of Theorem 5.1 depends on the fact that for less than four 
generators the Jordan elements can be characterized by means of the reversal 
operator j and the crucial point is the application of Lemma 3.2 which states 
roughly that a reversible element of A 0 which is expressible as a polynomial of 
given degree in certain reversible elements of AQ can also be expressed as a 
reversible polynomial of the same degree in these elements. More precisely, 
we can say that * is an idempotent operator permuting the places, such that, 
if /(£i> £2, • • • ; Vu *?2, • • •)(=/(£> v) f° r short) is any associative polynomial 
linear homogeneous in the rç's, and f* the polynomial defined by 

then 
(16) / (* ,«)* =f*(x,u), 

where the x's are free generators and the u's are reversible elements in the x's. 
If there were a criterion similar to that of Theorem 5.1 for 4-generator 

ï-algebras, with * replaced by a different idempotent operator permuting the 
places, or even by a series of such idempotent place-permutation operators, 
one for each set of homogeneous Jordan elements of a given degree,7 then these 
operators would satisfy an analogue of Lemma 3.2 with Uu u2l . . . all homogen
eous of the same degree in the free generators, and this would require (16) to 
hold for the new operators (with / homogeneous of the appropriate degree). 
From this it would follow that, for any Jordan element u homogeneous in x, y, z, 
the element 

(uxyz)*( = \{uxyz + zyxu)) 

satisfies the criterion, because qua polynomial in x, y, z it is a Jordan element by 
Theorem 4.2. Hence it could then be expressed as a Jordan polynomial in 

7Such idempotent place-permutation operators exist in the case of Lie elements for homo
geneous elements of any degree (cf. the remark after Lemma 3.1), but they do not give a 
characterization of Lie algebras which are embeddable in associative algebras because these 
operators do not satisfy the analogue of (16). We note however that Lie-algebras are embed
dable in associative algebras in any case (cf. footnote 2). 
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u, x, y, z. But this contradicts the example constructed in §6, where u = x2 — y2. 
Therefore such idempotent place-permutation operators cannot exist. 
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