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1. Introduction. Let Pn be the class of normalised polynomials of the form
2 + ... + anz" (1.1)

of degree n which are univalent in U = {| z | < 1}. In this note we discuss the coefficients of
polynomials in Pn and in some of its subclasses.

Our principal tools will be

LEMMA 1.1. {Dieudonne criterion) [6]. The polynomial pn(z), ofthe form (1.1), is univalent
in U if and only if the associated equation ofpn(z),

fax, 0) = 1 + £ a*x*"' sin (fc- l)0/sin 0 = 0,
(c = 2

has no roots in\x\<l, for any 6 with 0 £j 9 _ i^.

LEMMA 1.2. (Cohn rule) [9], Suppose that

f(x) = ao + aix + ... + anx
n

is a polynomial of degree n, and

f*(x) = an+an-ix + ... + aox
n.

Then, if \a0 | ^ | an \, the polynomial

/ iW = So/(x)-SB/*(x)

has the same number of zeros in | x\ < 1 as hasf(x).
Finally we recall the definitions of two classes of univalent functions which will appear

later. The analytic function/(z) is said to be starlike in £/if/(0) = 0, and the segment [0,/(z0)]
lies in/(t/) for any z0 in U [7]; analytically this may be expressed by the condition

Re(z/ ' //)>0 (zinU).

Further, the analytic function g(z) is said to be close-to-convex in U if #(0) = 0, and

Re(z0'//)>O (zinU)

for some starlike function/(z) [8].
I would like to thank Professor J. Clunie for introducing me to the class Pn, and for his

help and encouragement over a long period in this work.
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2. A particular subclass of Pn. If the polynomial pn(z), of the form (1.1), is univalent in
U, p'n(z) cannot vanish in U; consequently | an | ^ \\n. In this section we consider polynomials
in Pn where an = \jn.

Suppose that

+ ... + an-1z"-l + znjn. (2.1)

It was shown in [3] that, if pn(z) belongs to Pn, then

In the opposite direction we have

THEOREM 2. \. Suppose that pn(z) is of the form (2.1). Then, if

(n-k)an_k = (k+l)ak+1 (lgk£n-2) (2.2)

and each ak+l is sufficiently small, pn(z) belongs to Pn.

Proof. The polynomial pn{z) belongs to Pn if the equation

f "~2 sin(fc + l)0 k sinn0 „_.1+Z ak+1 \ xk+——x" * = 0
t=i sin0 nsin0

has no roots in | x \ < 1 for 0 g 9 ^ $n. Applying the Cohn rule to this equation, since
| sin H0//J sin 91 ^ 1 for 0 ^ 9 ^ %n, we see that pn[z) belongs to Pn if

fsinn9\2 "~2 J sin(fe+l)0 _ sinn9sin(n-k)9\

{i^e) +hX V f c + 1 ~ l l a-k nsindsind )

/sin/i0\2 "~2
 k /sin(fc+l)0 (fc + l)sin«0sin(n-fc)0'

~ \ n s i n 0 / +
k=1

Xa"+l\ sin0 (« - k)n sin 0 sin 9

has no roots in | x | < 1 for 0 ^ 9 ^ \n. Now each coefficient of xf (0 ^ r ^ «—2) has a double
zero at 0 = 0, and the constant term is always positive otherwise. Hence, if all the coefficients
of y are chosen sufficiently small, this equation has no roots in | x | < 1, and pn(z) belongs to

n

In a much underestimated paper [1] Alexander showed that the polynomials £ zk\k and

n

£ z2*+1/(2fe + l) are univalent in U. We can put this result in a more general setting in

THEOREM 2.2. Suppose that

pn(z) = z+ V akz
k, and qn(z) = z+ V b2k+1 z2k+1 ,k=l

where kak and (2k+l)b2k+i decrease as k increases. Then pn(z) and qn{z) are close-to-convex
univalent functions in U.
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Proof. We have, for zeU,

n - 1

k-(k + l)ak+i)-nan

= 0.

Hence pn{z) is close-to-convex in U. Similarly for qn(z).
However, in contrast with Theorems 2.1 and 2.2, we have the following surprising result

for starlike polynomials

THEOREM 2.3. Suppose that pn{z), of the form (2.1), belongs to Pn. Then pn(z) is starlike
in U if and only ifak = Ofor 2 g k :£ w— 1.

Proof. If a2 = a3 = . . . = an_, = 0 , it is easy to show that pn(z) is starlike in £/. We
therefore assume that pn{z) is starlike in U, and then show that this implies that ak = 0 for
2 £ f c £ n - l . Then

(where A(z) = pn(z)/z) has positive real part in U. Since ^n(z) belongs to Pn, we have that
(k+ l)ak+l = («-^)5n_i for 1 g A: ^ n - 2 . Consequently, on | z | = 1, we may define

a(e) = p'n(z
2)lz"-1 (z = eie)

= 2[cos(« -1)0+21 a21 cos {(n-3)9-<f>2} + . . . ] ,

where 0 t = arga^. Furthermore, we may define P(0) and y(0) by

lh(z2)

h(z2) z""1 / z""1

where z = e(e. No difficulty arises from the denominator, since the univalency of pn(z) ensures
that

for 0 g 9 ̂  2TT. We now show that a(0) can have only simple zeros for 0 ^ 0 ^ 2n. Let
be a zero of oc(0). Now, with z = eifl, we have
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Now a(4>) = 0, so that p'n(z
2) = 0 when z = e'*. Hence, if <*'(</>) is also zero, we see that p'^(z2)

is zero at z = e1'* as well. But then p'J(z) is zero at z = e2i*. This, however, is impossible,
since the existence of a double zero of p'n(z) on | z | = 1 is ruled out by the univalency of pn(z)
in U.

Now, the condition Re (zp'Jpn) ^ 0 in U may be written in the form

a(0)/?(0)^O for 0^0^2n;

since the zeros of a(0) are simple, this in turn shows that, whenever <x(0) = 0, necessarily
P(6) = 0. Now all of its 2(n-1) zeros lie in 0 ^ 0 ̂  2rc (corresponding to the n— 1 zeros of
p'n(z) all on | z | = 1) in the case of <x(0), and hence the same must be true of /?(0) since it is also
a trigonometric polynomial of degree n—1. Since a polynomial which has its maximum
number of zeros is determined by these zeros to within a constant factor, it follows that, for
some constant C, we have

or
ptfW = CReO^/z-1} on \z\ = 1.

Expanding both sides of this equation, and equating the highest terms, with z = eie, we find
that C — 2nj{n+\). Substituting this value of C, and equating the other terms of the ex-
pansion in turn, we find that ak = 0 for 2 ̂  k £ n— 1. This completes the proof.

Note. In the case n = 3, this result also appears in [4].

3. Some coefficient bounds for Pn. First we give bounds for the central coefficient of
particular trinomials in P2n+i-

THEOREM 3.1. The polynomial

belongs to P2n+1 if and only if a is real and

+ [sin (2n
|sin(n + l)0/sin0|

Note. By (2.2), a must be real, and so we may assume that a ̂  0.

for large n.

Proof. Applying the Cohn rule to the associated Dieudonne equation for/?2n+1(z), and
using the fact that | sin(2n+ 1)0/(2/J+ l)sin01 < 1 for 0 < 0 ̂  $n, the first inequality follows.
Since (2ln)x ^ sinx ^ x for 0 ̂  x ^ $JT, we can show that the above minimum occurs in
0 ^ 0 5£ 47t/(2«+ 1); by elementary differentiation, it must occur at 7i/(2n + l){l + o(l)} for
large n. This gives the last inequality.

COROLLARY. The polynomials z+az2+$z3 and z+bz3+$z5 are univalent in U if and
only if a and b are real, and | a \ ̂  8/9 and \b\^ 3/5.

We now turn to the estimation of the ( n - l)th coefficients of polynomials in Pn.
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THEOREM 3.2. Suppose that pn(z), of the form (1.1), belongs to Pn. Then

(n — 1) |<ara_!| ^ 1 +2« |a2an | — n2 \an\
2 < 4; (3.1)

in particular,

Proof. By the DieudonnS criterion, since pn(z) belongs to Pn, the equation

has no roots in | x \ < 1 for 0 ^ 9 ^ ±n, and | an \ ^ I In. Applying the Cohn rule, we deduce
that the equation

1 - -«»a»-nun-k sin 6 sin 9

has no roots in | x \ < 1 for 0 ^ 9 ^ $n. Consequently

1 n| \sm9j ~ ^-foo—a"'ar

sin ( n -

sinnflsin20

sin 9 sin 0

sin 0 2 sin 8 sin 6

substituting 9 = 0, we obtain

This gives the first inequality. The next three follow at once by considering the behaviour of
the expression 1 + (n | an |)(21 a21)-(« | an |)2 where | a21 ^ 2 and | an | ^ l/«.

iVo/e 1. Suffridge [10] has shown that the polynomial

" n-k+1 sin(fc;r//i +1) k

t = ! n sin (n/n +1)

belongs to Pn. Consequently the constant 4 in (3.1) cannot be improved independently of n.

Note 2. Recent work has determined the coefficient regions for P3 [3, 5], for starlike
polynomials in P3 [4], and for the subclass of Pn with real Maclaurin coefficients [10]. However,
much work remains to be done on the general coefficient problem for Pn (n > 3).
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Note 3. Results similar to Theorems 2.1, 2.3, 3.1, and 3.2 were obtained in [2] for the
class of " pseudo-polynomials "

analytic and univalent in 0 < | z \ < 1.

Note 4. Using the fact that the class of linearly-accessible functions of Biernacki is
exactly the class of close-to-convex functions of Kaplan, we may observe that Alexander [1]
showed that the polynomial

z )= \\l-eie't)...(\-ew"-'t)dt,
Jo

where 0 ^ 0 , < 02 < . . . < 6n^1 < In ^ 0n = 0X + 2n, is close-to-convex in U if and only if

0J+, - 6j ^ 2nl(n +1) (1 ^ j ^ n—\).
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