
Unscented Kalman Filtering for
Relative Spacecraft Attitude
and Position Estimation

Lijun Zhang1, Tong Li1, Huabo Yang1, Shifeng Zhang1, Hong Cai1

and Shan Qian2

1 (College of Aerospace Science and Engineering, National University of Defense
Technology, Changsha, China, 410073)

2 (The State Key Laboratory of Astronautic Dynamics, China Xi’an Satellite
Control Center, Xi’an, China, 710043)

(E-mail: alijun_007@163.com)

A novel relative spacecraft attitude and position estimation approach based on an Unscented
Kalman Filter (UKF) is derived. The integrated sensor suite comprises the gyro sensors
on each spacecraft and a vision-based navigation system on the slave spacecraft. In the
traditional algorithm, an assumption that the master’s body frame coincides with its Local
Vertical Local Horizontal (LVLH) frame is made to construct the line-of-sight observations
for convenience. To solve this problem, two relative quaternions that map the master’s LVLH
frame to the slave and master body frames are involved. The general relative equations of
motion for eccentric orbits are used to describe the positional dynamics. The implementation
equations for the UKF are derived. A modified version of the UKF is presented based on the
averaging-quaternion algorithm. Simulation results indicate that the proposed filters pro-
vide more accurate estimates of relative attitude and position than the Extended Kalman
Filter (EKF).
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1. INTRODUCTION. Precise relative attitude and position estimation
between two spacecraft are crucial to many space missions today, such as spacecraft
formation flying and rendezvous and docking. Presently, Vision-based Navigation
(VISNAV) systems, consisting of an optical sensor combined with specific light
sources (beacons), are usually used to determine the relative attitude and position
within the range of a few hundred metres (Alonso et al., 2000; Kim et al., 2007; Xing
et al., 2010; Tang et al., 2010). In order to determine the coupled attitude and position
from the Line-Of-Sight (LOS) measurements, a Gaussian Least Squares Differential
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Correction (GLSDC) algorithm is usually used to provide a deterministic solution. To
overcome the shortcoming of the iterative computation, Crassidis et al. (2000)
presented an optimal attitude and position determination approach derived from a
generalised predictive filter for nonlinear systems. However, these unitary vision-based
estimation methods, which only utilise the static geometrical relations to determine the
relative attitude and position are liable to be affected by the error factors, such as
measurement errors, quantization errors, and extraction errors of the beacon lo-
cations, etc. Therefore, it is necessary to adopt the state estimation method to design a
navigation filter. At present, two types of navigation filters include the absolute
navigation filter (Wodffinden and Geller, 2007; Schmidt et al., 2010; Hablani, 2009)
and the relative navigation filter (Alonso et al., 2000; Kim et al., 2007; Xing et al.,
2010; Junkins et al., 1999; Hablani et al., 2002). The absolute navigation system
formulates the dynamics models of the two spacecraft in the inertial frame and
acquires the relative motion parameters by computing the differences between two
spacecraft. The relative navigation system estimates the relative position and velocity
based on the relative equations of motion established in a rotating Local Vertical
Local Horizontal (LVLH) frame. For close-range relative motion, the relative navi-
gation system is usually adopted due to its sufficient accuracy and better com-
putational efficiency.
The VISNAV system consists of an optical sensor combined with specific light

sources (beacons) to achieve a selective vision. In general, the known beacon locations
are defined in the master’s body frame, whereas the relative position vector between
the master and slave spacecraft is expressed in its LVLH frame. In Alonso et al. (2000),
Kim et al. (2007) and Xing et al. (2010), a simplified assumption that the master body
frame coincides with its LVLH frame is made to construct the LOS observations for
convenience. Unfortunately, this assumption is not valid under all situations, or in
some rigorous senses, it is only a special case. One approach to solve this problem is to
formulate the relative equations of motion in the master body frame (Tang et al.,
2010), and thus the beacon location vectors and relative position vector are described
in the same coordinates. The main disadvantages of this approach are that the angular
velocity of the master body frame generally varies rapidly and its measured value is
contaminated by the gyro measurement error. They may cause large computation
errors in the relative equations of motion. Another approach is to additionally
estimate the attitudes of both spacecraft relative to the LVLH frame (Zhang et al.,
2014), and the assumption that both the master’s body and LVLH frames are the same
can be removed.
The Extended Kalman Filter (EKF) is the most widely used for nonlinear filtering

problems so far. The EKF operates by approximating the state distribution
and relevant noise densities as Gaussian random variables (GRVs) and then pro-
pagating them through a first-order linearization of the nonlinear system (Wan and
van der Merwe, 2001). Unfortunately, this can result in large errors in the true
posterior means and covariances of the transformed GRVs, which may lead to sub-
optimal performance and sometimes divergence of the filter. To overcome this
problem, the Unscented Kalman Filter (UKF) (Julier and Uhlmann, 1997; Julier
et al., 2000) uses a deterministic sampling approach to approximate the state dis-
tribution as a GRV, which can capture the posterior mean and covariance accurately
to at least second order for any nonlinearity. The UKF has proven to be far superior
to the EKF, especially when accurate initial condition states are not well known.
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In addition, the UKF avoids the derivation of Jacobian matrices and has the same
computational complexity as the EKF. The motivation of this paper is to derive a
novel relative spacecraft attitude and position estimation approach based on an
Unscented Kalman Filter. A quaternion-based method is used to describe the relative
attitude kinematics. In order to maintain the quaternion normalization constraint in
the filter, an unconstrained three-component vector of generalized Rodrigues
parameters (GRPs) is used to represent quaternion error vectors and a multiplicative
quaternion-error method is employed. This method was first proposed by Crassidis
and used in the Unscented Quaternion Estimator (USQUE) (Crassidis and Markley,
2003) and Inertial Navigation System/Global Positioning System (INS/GPS)
integrated navigation systems (Crassidis, 2005). To obtain the propagated sigma-
point GRPs, the propagated sigma-point error quaternions should be first computed
by multiplying the propagated sigma-point quaternions with a reference quaternion.
Recently, Chang et al. (2014) pointed out that the better choice for the reference
quaternion was not the sigma-point quaternion at the centre but the mean of the
propagated sigma-point quaternions. It is reported that this can further improve the
filtering performance when the nonlinearities of the dynamics model are severe or a
good a priori estimate of the state is unavailable. An averaging-quaternion algorithm
(Cheng et al., 2007) is used to average a set of weighted sigma-point quaternions,
which can maintain the unit-norm property of the quaternion. Thus, we adopt this
scheme and give a modified version of the UKF. The performances of the EKF and
two versions of the UKF with respect to initial condition errors are compared.
The organisation of this paper proceeds as follows. The Unscented Kalman Filter is

briefly reviewed in Section 2. In Section 3, various reference frames used in this paper
are summarised and a review of the relative equations of motion for eccentric orbits is
provided. The relative quaternions that map the master’s LVLH frame to the slave
and master body frames are defined, and the corresponding relative quaternion
kinematics equations are given. In Section 4, the gyro measurement model is reviewed
and a stringent VISNAV measurement model for the LOS observations is shown.
In Section 5, a brief review of the implementation equations for the EKF is shown,
and a novel relative spacecraft attitude and position estimation approach based on
UKF is derived. A modified UKF is also proposed based on the averaging-quaternion
algorithm. In Section 6, simulation results are presented to compare the performances
of the EKF and the UKF with respect to initial condition errors. Concluding remarks
are given in Section 7.

2. UNSCENTED KALMAN FILTER. In this section, the UKF is
reviewed. Consider the following discrete-time nonlinear dynamical system with
additive process and measurement noises:

xk = f (xk−1, k) + wk−1 (1)
ỹk = h xk, k( ) + vk (2)

where xk[Rn is the state vector at time k; ỹk [ Rm is the measurement vector at time k;
f (·) and h (·) are known nonlinear functions; wk−1 and vk are independent Gaussian
white process noise and measurement noise with covariances Qk−1 and Rk,
respectively.
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In the UKF, the Unscented Transformation (UT) is employed to calculate the
statistics of a random variable which undergoes a nonlinear transformation.
Compared with the EKF, the UKF has better convergence characteristics and greater
accuracy for nonlinear systems. Furthermore, the UKF avoids the derivation of
Jacobian matrices and has the same computational complexity as the EKF.
The entire algorithm is shown as follows (Wan and van der Merwe, 2001):

(a) Initialisation:

x̂0 = E x0[ ], P0 = E x0 − x̂0( ) x0 − x̂0( )T� � (3)
(b) Time update equations:

1) Evaluate the sigma points:

Xk−1 = x̂k−1 x̂k−1 + γ
ffiffiffiffiffiffiffiffiffiffi
Pk−1

p
x̂k−1 − γ

ffiffiffiffiffiffiffiffiffiffi
Pk−1

ph iT
, k = 1, . . . ,1 (4)

where γ = ffiffiffiffiffiffiffiffiffiffiffi
n+ λ

√
, n is the dimension of the state, and λ=α2(n+κ)−n is a

composite scaling parameter. The constant α determines the spread of the
sigma points and is usually chosen as a small positive value (e.g.,
1×10−44α41). The constant κ is a secondary scaling parameter, which
is usually chosen as κ=3−n.

2) Evaluate the propagated sigma points (i=0, 1, . . . 2n)

X∗
k|k−1(i) = f Xk−1(i)( ) (5)

3) Estimate the predicted state and covariance matrix

x̂−k =
X2n
i=0

Wmean
i X∗

k|k−1(i) (6)

P−
k =

X2n
i=0

W cov
i X∗

k|k−1(i) − x̂−k
� �

X∗
k|k−1(i) − x̂−k

� �T
+Qk−1 (7)

The weights, Wi
mean and Wi

cov, are computed using

Wmean
0 =λ/(n+ λ)
W cov

0 =Wmean
0 + (1− α2 + β)

W cov
i =Wmean

i = 1/ 2(n+ λ)[ ] , i = 1, . . . , 2n

(8)

where β is a nonnegative weighting coefficient for incorporating prior
knowledge of the distribution (a good starting guess is β=2).

4) Redraw a complete new set of sigma points

Xk|k−1 = x̂−k x̂−k + γ
ffiffiffiffiffiffiffi
P−
k

p
x̂−k − γ

ffiffiffiffiffiffiffi
P−
k

p� �T (9)
This alternative approach introduces fewer sigma points being used than the
augmenting sigma point method (Wan and van der Merwe, 2001).

5) Estimate the predicted measurement (i=0, 1, . . . 2n)

k|k−1(i) = h Xk|k−1(i)
� � (10)

ŷ−k =
X2n
i=0

Wmean
i k|k−1(i) (11)
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(c) Measurement update equations:
1) Estimate innovation covariance matrix and cross-covariance matrix

Pykyk =
X2n
i=0

W cov
i k|k−1(i) − ŷ−k

� �
k|k−1(i) − ŷ−k

� �T + Rk (12)

Pxkyk =
X2n
i=0

W cov
i Xk|k−1(i) − x̂−k

� �
k|k−1(i) − ŷ−k

� �T (13)

2) Estimate the Kalman gain, updated state and covariance

Kk = PxkykP
−1
ykyk

(14)
x̂+k = x̂−k + Kk ỹk − ŷ−k

� � (15)
P+
k = P−

k − KkPykykK
T
k (16)

For higher-dimensional systems, caution should be exercised when κ is negative
since a possibility exists that the predicted covariance can become non-positive and
semi-definite. A modified form of the prediction algorithm can be employed to
overcome this problem (Julier and Uhlmann, 1997).

3. RELATIVE ORBITAL MOTION AND QUATERNION
KINEMATICS. In this section, an overview of the general relative equations of
motion for eccentric orbits and the quaternion kinematics is shown. Two relative
quaternions that map the master’s LVLH frame to the master body frame and to the
slave body frame are defined. The corresponding relative quaternion kinematics
equations are derived.

3.1. Reference Frames.

(1) Earth-Centred-Inertial (ECI) frame (I frame): The frame has its origin at the
centre of the Earth and is non-rotating with respect to the stars (except for
precession of equinoxes). The z axis points in the direction of the North pole,
the x axis points in the direction of the Earth’s prime meridian, and the y axis
completes the right-handed system.

(2) Local-Vertical-Local-Horizontal (LVLH) frame (H frame): The LVLH frame is
centred at the master spacecraft body, the x axis is directed from the spacecraft
radially outward and often labelled as the R-bar, z axis is normal to the master’s
orbital plane, and y axis is defined as the cross-product of the other two axes.

(3) Body Frame: This frame is fixed onto the spacecraft body and rotates with it.
Body frames fixed to the two spacecraft are designated as master (m frame) and
slave (s frame), respectively.

3.2. Relative Orbital Motion Equations. In this section, the relative equations
of motion using Cartesian coordinates in the rotating LVLH frame are summarised.
The relative orbit position vector ρ is expressed in the master’s LVLH frame
components as ρ=[x, y, z]T. If the relative orbit coordinates are small compared to the
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master orbit radius, the general relative equations of motion for eccentric orbits are
given by (Kim et al., 2007)

ẍ− xθ̇
2

1+ 2
rm
p

	 

−2θ̇ ẏ− y

ṙm
rm

	 

= ϖx

ÿ+ 2θ̇ ẋ− x
ṙm
rm

	 

−yθ̇

2
1− rm

p

	 

= ϖy

z̈+ zθ̇
2 rm
p

= ϖz

(17)

where p, rm and θ̇ are the semilatus rectum, orbit radius and true anomaly rate of the
master spacecraft, respectively. The acceleration disturbance vector ϖ; [ϖx ϖy ϖz]

T is
modelled as a zero-mean Gaussian white-noise process with

E ϖ(t)ϖT (τ)� � = σ2ϖδ(t− τ)I 3×3 (18)
The true anomaly acceleration and orbit-radius acceleration of the master

spacecraft are given by

θ̈ = −2
ṙm
rm

θ̇ r̈m = rmθ̇
2

1− rm
p

	 

(19)

Thus, a ten-dimensional nonlinear state-space model can be derived by using
Equations (17) and (19). The state vector xp consists of relative position and velocity of
the slave, radius and radial rate as well as the true anomaly and rate of the master,
given by

xp = x y z ẋ ẏ ż rm ṙm θ θ̇
� �T

; xp1 xp2 xp3 xp4 xp5 xp6 xp7 xp8 xp9 xp10

� �T (20)

Using Equations (17) and (19), the ten-dimensional nonlinear differential equations
are given by

ẋp = f xp
� �

;

xp4

xp5

xp6

xp1x
2
p10 1+ 2xp7/p
� �+ 2xp10 xp5 − xp2xp8/xp7

� �
−2xp10 xp4 − xp1xp8/xp7

� �+ xp2x
2
p10 1− xp7/p
� �

−xp7x
2
p10xp3/p

xp8

xp7x
2
p10 1− xp7/p
� �
xp10

−2xp8xp10/xp7

2
66666666666666666664

3
77777777777777777775

(21)

3.3. Relative Quaternion Kinematics. In this section a brief review of the relative
quaternion kinematics between two rotated coordinate systems is shown. The quatern-
ion is defined by q; [ϱT q4]T, with ϱ; [q1 q2 q3]

T=e sin (ϕ/2) and q4=cos(ϕ/2), where
e is the unit Euler axis and ϕ is the rotation angle (Shuster, 1993). The quaternion
q obeys the unit normalisation constraint given by ||q||=1. The attitude matrix is
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related to the quaternion by

A(q) = q24 − ϱ


 

2� �

I 3×3 + 2ϱϱT − 2q4[ϱ×] = ΞT (q)Ψ(q) (22)

With

Ξ(q) ; q4I3×3 + ϱ×� �
−ϱT

" #
Ψ(q) ; q4I3×3 − ϱ×� �

−ϱT

" #
(23)

where I3×3 is a 3×3 identity matrix and [ϱ×] is a cross product matrix defined by

ϱ×� �
;

0 −q3 q2
q3 0 −q1
−q2 q1 0

2
4

3
5 (24)

Successive rotations can be accomplished by using quaternion multiplication. In this
paper, quaternion multiplication is defined using the convention of Lefferts et al.
(1982) in which the quaternion multiplication expression appears in the same order as
the corresponding attitude matrix multiplication: A(q′)A(q)=A(q′⊗ q). The compo-
sition of the quaternions is bilinear, with

q′ ⊗ q = Ψ(q′) q′
� �

q = Ξ(q) q
� �

q′ (25)
The quaternion kinematics equation is given by

q̇ = 1
2
Ξ(q)ω = 1

2
Ω(ω)q (26)

where ω is the three-component angular rate vector and

Ω(ω) ; − ω×[ ] ω
−ωT 0

� �
(27)

The relative quaternions qs/H and qm/H, which map the master’s LVLH frame (H
frame) to the slave body frame (s frame) and to the master body frame (m frame), are
defined as

qs/H = qs ⊗ q−1
H , qm/H = qm ⊗ q−1

H (28)
where qs, qm and qH are the inertial attitudes of the slave body frame, master body
frame and master’s LVLH frame, respectively. The relative quaternion kinematics
equations are given by (Mayo, 1979)

q̇s/H = 1
2
Ξ(qs/H)ωs

s/H , q̇m/H = 1
2
Ξ(qm/H)ωm

m/H (29)

where ωs/H
s is the angular velocity of the s frame relative to the H frame expressed in s

coordinates, and ωm/H
m is the angular velocity of the m frame relative to the H frame

expressed in m coordinates. They are defined as

ωs
s/H ; ωs

s/I − As
H (qs/H)ωH

H/I (30)
ωm

m/H ; ωm
m/I − Am

H(qm/H )ωH
H/I (31)

where ωs/I
s and ωm/I

m are the inertial angular velocities of the slave and master
spacecraft, respectively; AH

s and AH
m are the attitude matrices that convert vectors from
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the H frame to the s frame and to the m frame, respectively; and ωH/I
H is the angular

velocity of master’s H frame expressed in H coordinates defined as

ωH
H/I = 0 0 θ̇

� �T (32)
A discrete-time propagation of Equation (29) is given by (Mayo, 1979)

qs/Hk+1
= Ω̄ ωs

s/I

� �
Γ̄ ωH

H/I

� �
qs/Hk

(33)
With

Ω̄ ωs
s/I

� �
=

cos 1
2 ωs

s/I




 


Δt� �
I3×3 − ψk×

� �
ψk

−ψT
k cos 1

2 ωs
s/I




 


Δt� �
2
4

3
5 (34)

Γ̄ ωH
H/I

� �
=

cos 1
2 ωH

H/I




 


Δt� �
I 3×3 − ζk×[ ] −ζk

ζTk cos 1
2 ωH

H/I




 


Δt� �
2
4

3
5 (35)

where

ψk ; sin 1
2 ωs

s/I




 


Δt� �
ωs

s/I/ ωs
s/I




 



ζk ; sin 1

2 ωH
H/I




 


Δt� �
ωH

H/I/ ωH
H/I




 


 (36)

and Δt is the sampling interval.
Likewise, the discrete-time propagation of the relative quaternion qm/H is given by

qm/Hk+1
= Ω̄ ωm

m/I

� �
Γ̄ ωH

H/I

� �
qm/Hk

(37)
where Ω̄(ωm

m/I ) can be obtained by substituting ωm/I
m for ωs/I

s in Equation (34).
The relative attitude quaternion that maps the master body frame to the slave body

frame is obtained by

qs/m = qs/H ⊗ q−1
m/H (38)

4. SENSOR MODELS. In this section the VISNAV measurement model and
gyro measurement model are reviewed. The corresponding attitude matrices for the
relative quaternions mentioned above are used to construct the LOS observations, and
the assumption that both the master body and LVLH frames are the same can be
removed.

4.1. VISNAV Measurement Model. The VISNAV system consists of an optical
sensor combined with specific light sources (beacons), which can be used for close
range photogrammetry-type applications (Kim et al., 2007). In general, the beacon
locations are known within the master body frame and the sensor focal plane location
is known within the slave body frame. Without loss of generality, the assumption that
the master body frame coincides with its LVLH frame is not made here. An
illustration of the VISNAV system is provided in Figure 1. The measurement model in
unit vector form for the ith LOS is given by

b̃i = As
H qs/H
� �

ri + υi, υTi A
s
Hri = 0 (39)
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with

ri ;
′
i − ρ
′
i − ρ



 

 = 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X ′

i − x
� �2+ Y ′

i − y
� �2+ Z′

i − z
� �2q X ′

i − x
� �
Y ′

i − y
� �
Z′

i − z
� �

2
64

3
75 (40)

where b̃i denotes the measured unit vector for the ith beacon in the s frame, and (x, y, z)
are the relative position coordinates modelled by Equation (17). ′

i ; X ′
i ,Y

′
i , Z′

i

� �
are the coordinates of the ith beacon with respect to the master body frame expressed
in the H frame, given by

′
i = Am

H qm/H

� �h iT
i (41)

where i ; Xi, Yi, Zi( ) are the known coordinates of the ith beacon with respect to
the master body frame expressed in the m frame.
The sensor measurement noise υi in Equation (39) is approximately Gaussian which

satisfies

E υi{ } = 0 (42)

E υiυTi
� � = σ2i I3×3 − As

Hri
� �

As
Hri

� �Th i
(43)

and E{·} denotes expectation. Equation (43) is known as the QUEST measurement
model, which is quite accurate for small field-of-view sensors. According to Shuster
(1990), the measurement covariance matrix in Equation (43) can be replaced by

Figure 1. Vision-based navigation system.
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σi
2I3×3. Multiple vector measurements can be expressed as

yk =

b̃1
b̃2

..

.

b̃N

2
66664

3
77775
k

=

As
H qs/H
� �

r1

As
H qs/H
� �

r2

..

.

As
H qs/H
� �

rN

2
66666664

3
77777775
k

+
υ1
υ2
..
.

υN

2
6664

3
7775
k

(44)

where N is the total number of observations. The corresponding measurement noise
covariance matrix is given by

Rk = blkdiag σ21I 3×3 σ22I 3×3 · · · σ2NI 3×3
� � (45)

where “blkdiag” denotes a block diagonal matrix of appropriate dimension.
4.2. Gyro Measurement Model. The common gyro measurement model is given

by (Farrenkopf, 1978)

ω̃ =ω+ β + ηυ
β̇ = ηu

(46)

whereω is the true inertial angular rate, ω̃ is the measured inertial angular rate, β is the
drift, and ηυ and ηu are independent zero-mean Gaussian white-noise processes with

E ηυ(t)ηTυ (τ)
� � = σ2υδ(t− τ)I 3×3

E ηu(t)ηTu (τ)
� � = σ2uδ(t− τ)I 3×3

(47)

where δ (t− τ) is the Dirac delta function. The discrete-time gyro measurements can be
generated using the following recursive equations (Crassidis, 2005):

ω̃k+1 = ωk+1 + 1
2

βk+1 + βk
� �+ σ2υ

Δt
+ 1

12
σ2uΔt

	 
1/2

Nυk (48)

βk+1 = βk + σuΔt1/2Nuk (49)
where the subscript k denotes the kth time-step, Δt is the gyro sampling interval, and
Nυk andNuk are zero-mean Gaussian white-noise processes with covariance each given
by the identity matrix.

5. RELATIVE ATTITUDE AND POSITION ESTIMATION. In this
section, the EKF and UKF implementation equations for relative spacecraft attitude
and position estimation are shown.

5.1. Relative Attitude and Position Estimation Using Extended Kalman Filter. As
mentioned in the previous section, the estimation equations are given by

˙̂q s/H = 1
2
Ξ q̂s/H
� �

ω̂s
s/H (50)

ω̂s
s/H = ω̂s

s/I − As
H q̂s/H
� �

ω̂H
H/I (51)

˙̂qm/H = 1
2
Ξ q̂m/H

� �
ω̂m

m/H (52)
ω̂m

m/H = ω̂m
m/I − Am

H q̂m/H

� �
ω̂H

H/I (53)
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ω̂s
s/I = ω̃s

s/I − β̂s (54)
ω̂m

m/I = ω̃m
m/I − β̂m (55)

˙̂xp = f x̂p
� � (56)

ω̂H
H/I = 0 0 ˆ̇θ

h iT
(57)

˙̂β s = 0 (58)
˙̂βm = 0 (59)

The state and error-state vectors are defined as

x ; qTs/H qTm/H βTs βTm xTp
h iT

= qTs/H qTm/H βTs βTm ρT ρ̇T rm ṙm θ θ̇
h iT (60)

Δx ; δαTs/H δαTm/H ΔβTs ΔβTm ΔρT Δρ̇T Δrm Δṙm Δθ Δθ̇
h iT

(61)
where δα is the vector of small attitude (roll, pitch and yaw) errors, and the other error-
state terms Δ. are defined as Δ† ; †− †̂.
According to the derivations in Zhang et al. (2014), the error-state dynamics

equations used in the EKF propagation are given by

Δẋ = FΔx+ Gw (62)
where the matrices F, G, process noise vector w and spectral density matrix Q are
given by

F ;

− ω̂s
s/I×

h i
03×3 −I 3×3 03×3 03×9 −As

H q̂s/H
� �

n

03×3 − ω̂m
m/I×

h i
03×3 −I3×3 03×9 −Am

H q̂m/H

� �
n

03×3 03×3 03×3 03×3 03×10

03×3 03×3 03×3 03×3 03×10

010×3 010×3 010×3 010×3
∂f xp
� �
∂xp

����
x̂p

2
66666666664

3
77777777775
,

n = 0 0 1
� �T

(63)

G ;

−I3×3 03×3 03×3 03×3 03×3

03×3 −I 3×3 03×3 03×3 03×3

03×3 03×3 I 3×3 03×3 03×3

03×3 03×3 03×3 I3×3 03×3

03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 I 3×3

02×3 02×3 02×3 02×3 02×3

02×3 02×3 02×3 02×3 02×3

2
66666666664

3
77777777775

(64)

w ; ηTsυ ηTmυ ηTsu ηTmu ϖT
� �T (65)

Q = blkdiag σ2sυI3×3 σ2mυI3×3 σ2suI 3×3 σ2muI 3×3 σ2ϖI3×3
� � (66)
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The complete EKF implementation equations are given in Zhang et al. (2014) and
are not shown here for brevity.

5.2. Relative Attitude and Position Estimation Using Unscented Kalman Filter.
5.2.1. UKF1. In the UKF design, since the predicted quaternion mean is

computed by using an averaged sum of quaternions, the resulting quaternion cannot
be guaranteed to have the unit-norm constraint. In order to overcome this problem, an
unconstrained three-component vector of Generalised Rodrigues Parameters (GRPs)
is used to propagate and update a nominal quaternion, which is defined by (Crassidis
and Markley, 2003)

δp ; f
δϱ

a+ δq4
(67)

where a is a parameter from 0 to 1, and f is a scale factor. Notice that when a=0
and f=1 then Equation (67) gives the Gibbs vector, and when a=1 and f=1 then
Equation (67) gives the standard vector of Modified Rodrigues Parameters (MRPs).
We will choose f=2(a+1) so that ||δp|| is equal to the rotational error-angle for
small errors.
We start by defining the following state vector:

Xk(0) = x̂+k ;

δp̂+s/Hk

δp̂+m/Hk

β̂
+
sk

β̂
+
mk

x̂+pk

2
666666664

3
777777775
, Xk(i) ;

X
δps/H
k (i)

X
δpm/H

k (i)
Xβs

k (i)
Xβm

k (i)
Xxp

k (i)

2
666666664

3
777777775
, Xxp

k (i) ;

Xρ
k(i)

X ρ̇
k(i)

X rm
k (i)

X ṙm
k (i)

Xθ
k(i)

X θ̇
k(i)

2
6666666664

3
7777777775
,

i = 1, 2, ...44

(68)

where X
δps/H
k and X

δpm/H

k are from the attitude-error parts of relative quaternions qs/H
and qm/H, respectively; X

βs
k and Xβm

k are from the gyro drift parts for the slave and
master spacecraft, respectively; Xxp

k is from the part of ten-dimensional state vector xp.

In order to describe X
δps/H
k andX

δpm/H

k , we need to define a new quaternion generated by

multiplying an error quaternion by the current estimate. Take X
δps/H
k for instance, the

following quaternions are firstly computed:

q̂+s/Hk
(0) = q̂+s/Hk

(69)
q̂+s/Hk

(i) = δq̂+s/Hk
(i) ⊗ q̂+s/Hk

, i = 1, 2, . . . , 44 (70)

where δq̂+s/Hk
(i) ; δϱ+T

s/Hk
(i) δq+4,s/Hk

(i)
h iT

is represented by

δq+4,s/Hk
(i) =

−a X
δps/H
k i( )




 


2+f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2 + 1− a2

� �
X

δps/H
k (i)




 


2
r

f 2 + X
δps/H
k (i)




 


2 , i = 1, 2, . . . , 44 (71)

δϱ+
s/Hk

(i) = f −1 a+ δq+4,s/Hk
(i)

h i
X

δps/H
k (i), i = 1, 2, ..., 44 (72)
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Next, the sigma-point quaternions in Equation (70) are propagated forward using
Equation (33), with

q̂−s/Hk+1
(i) = Ω̄ ω̂s+

s/Ik (i)
� �

Γ̄ ω̂H+
H/Ik (i)

� �
q̂+s/Hk

(i), i = 0, 1, . . . , 44 (73)

in which the estimated inertial angular velocities of the slave spacecraft are given by

ω̂s+
s/Ik (i) = ω̃s

s/Ik − Xβs
k (i), i = 0, 1, ..., 44 (74)

and the estimated angular velocities of the master’s H frame are given by

ω̂H+
H/Ik (i) = 0 0 X θ̇

k(i)
h iT

, i = 0, 1, ..., 44 (75)

The propagated error quaternions are then computed using

δq̂−s/Hk+1
(i) = q̂−s/Hk+1

(i) ⊗ q̂−s/Hk+1
(0)

h i−1
, i = 0, 1, . . . , 44 (76)

Notice that δq̂−s/Hk+1
(0) is the identity quaternion. Finally, the propagated sigma-point

GRPs are computed using Equation (67) as

X
δps/H
k+1 (0) = 0 (77)

X
δps/H
k+1 (i) = f

δϱ−
s/Hk+1

(i)
a+ δq−4,s/Hk+1

(i) , i = 1, 2, . . . , 44 (78)

with δϱ−T
s/Hk+1

(i) δq−4,s/Hk+1
(i)

h iT
= δq̂−s/Hk+1

(i) . Likewise, the sigma-point GRPs X
δpm/H

k

can be propagated in the same manner.
In addition, notice that as the gyro drifts are expected to stay at their previous values

(due to zero-mean process noises), we have

Xβs
k+1(i) = Xβs

k (i), Xβm
k+1(i) = Xβm

k (i), i = 0, 1, . . . 44 (79)
All other sigma-point quantities formed from xp, such as relative position and

velocity of the slave, radius and radial rate in addition to the true anomaly and rate of
the master, are propagated using Equation (21). The predicted state and covariance
are then computed using Equations (6) and (7). The propagated quaternions and
relative positions are used to calculate the sigma-point measurements

k+1(i) =

As
H q̂−s/Hk+1

(i)
� �

r̂−1k+1
(i)

As
H q̂−s/Hk+1

(i)
� �

r̂−2k+1
(i)

..

.

As
H q̂−s/Hk+1

(i)
� �

r̂−Nk+1
(i)

2
6666664

3
7777775
, i = 0, 1, . . . , 44 (80)

with

r̂−jk+1
(i) =

′
jk+1 (i) − Xρ

k+1(i)
′
jk+1 (i) − Xρ

k+1(i)


 

 , j = 1, 2, . . . ,N, i = 0, 1, . . . , 44 (81)

′
jk+1(i) = Am

H q̂−m/Hk+1
(i)

� �h iT
j, i = 0, 1, . . . , 44 (82)
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The predicted measurement, innovation covariance matrix and cross-covariance
matrix are computed using Equations (11) to (13). Next, the state vector and co-
variance matrices are updated using Equations (15) and (16), with x̂+k+1 ;

δp̂+T
s/Hk+1

δp̂+T
m/Hk+1

β̂
+T
sk+1

β̂
+T
mk+1

x̂+T
pk+1

h iT
. Then, δp̂+s/Hk+1

and δp̂+m/Hk+1
are converted

to δq̂+s/Hk+1
and δq̂+m/Hk+1

using Equations (71) and (72), respectively. The updated
quaternions are computed using

q̂+s/Hk+1
= δq̂+s/Hk+1

⊗ q̂−s/Hk+1
(0), q̂+m/Hk+1

= δq̂+m/Hk+1
⊗ q̂−m/Hk+1

(0) (83)

Finally, δp̂+s/Hk+1
and δp̂+m/Hk+1

are reset to zero for the next propagation.

5.2.2. UKF2. In the previous section, a generalized Rodrigues error-vector is
used to represent the quaternion error vector and the updates are performed using
quaternion multiplication, which guarantees that quaternion normalization is
maintained in the filter. This method has been successfully applied in the unscented
quaternion estimator and INS/GPS integrated navigation systems. Recently, Chang
et al. (2014) pointed out that the better choice for the reference quaternion in Equation
(76) was not the sigma-point quaternion at the centre but the mean of the propagated
sigma-point quaternions. Actually, the best choice for the reference quaternion is the
true quaternion if available. Obviously, it is unavailable, thus, a quaternion estimate
closer to the true quaternion is preferred. The sigma-point quaternion at the centre
q̂−s/Hk+1

(0) is just viewed as the linear propagation of the mean of the state, whereas the
mean of the propagated sigma-point quaternions derived by the UT is more accurate
than any one of these sigma-point quaternions. Therefore, the mean of the propagated
sigma-point quaternions should be used in Equations (76) and (83) instead of
q̂−s/Hk+1

(0). It is reported that this can further improve the filtering performance when
the nonlinearities of the dynamics model are severe or a good a priori estimate of the
state is unavailable (Chang et al, 2014). The focus is how to average a set of weighted
sigma-point quaternions and maintain the unit-norm property of the quaternion.
Cheng et al. (2007) extended the results in Oshman and Carmi (2006) and derived an
algorithm to determine an optimal average norm-preserving quaternion by minimiz-
ing the weighted sum of the squared Frobenius norms of the attitude matrix
differences. Herein, we adopt this method to modify the previous proposed UKF.
From the intuitive perspective, the mean of the propagated sigma-point quaternions

can be computed as

q̂−s/Hk+1
=

X2n
i=0

Wmean
i q̂−s/Hk+1

(i) (84)

where Wi
mean is the scalar weight for the ith sigma-point quaternion which has been

described in Equation (8). However, this simple procedure has two drawbacks. One
obvious drawback is that the unit-norm property of the resulting quaternion is
destroyed by the averaging operation. Another is that the change of the sign of any
q̂−s/Hk+1

(i) will change the average, whereas it is clear that the quaternions q and −q
denote the same rotation. To overcome this problem, Cheng et al. (2007) derived an
optimal averaging-quaternion algorithm based on the viewpoint that we really want to
average attitudes rather than quaternions. Following this viewpoint, the average
norm-preserving quaternion q̂−s/Hk+1

can be determined by minimizing the following
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weighted sum of the squared Frobenius norms of the attitude matrix differences:

q̂−s/Hk+1
=Δ argmin

q[S3

X2n
i=0

Wmean
i A(q) − A q̂−s/Hk+1

(i)
� �


 


2

F
(85)

where S3 denotes the unit 3-sphere, ||.||F denotes the Frobenius norm, and A (q) is the
attitude matrix corresponding to quaternion q. According to Cheng et al. (2007), the
determination for the average quaternion q̂−s/Hk+1

can be transformed to solve the
following maximisation problem:

q̂−s/Hk+1
=Δ argmax qTMq

q[S3

(86)

where

M =
X2n
i=0

Wmean
i q̂−s/Hk+1

(i)q̂−s/Hk+1
(i)T (87)

A more detailed description of the averaging-quaternion algorithm can be found in
Cheng et al. (2007) and is not repeated here for conciseness. It is well known that the
solution of Equation (86) is the eigenvector of M corresponding to the maximum
eigenvalue. The eigenvector is chosen to hold unit norm to avoid the first drawback.
The second drawback can also be avoided because changing the sign of any q̂−s/Hk+1

(i)
does not change the value ofM. Thus, the average norm-preserving quaternion q̂−s/Hk+1

solved by Equation (86) is used to substitute for q̂−s/Hk+1
(0) in Equations (76) and (83).

Similarly, the average norm-preserving quaternion q̂−m/Hk+1
is treated in the same

manner. This is the modification version of the previous proposed UKF.

6. SIMULATION RESULTS. In this section, simulations are performed to
estimate relative quaternions, relative position, and velocity between two spacecraft,
as well as the gyro biases. A summary of the true values of simulation parameters is
given in Table 1, and six beacon locations are shown in Table 2. The performances of
the EKF and two versions of the UKF with respect to initial condition errors are
compared. The transformation parameters for the GRPs are given by a=1 and f=4.
The parameters used in the UKF are given by α=0·005, β=2 and κ=3−n, where
n=22. The entire simulation time is 300 minutes. For a fair comparison, the
simulation results are based on 50 Monte Carlo runs.
In Kim et al. (2007) and Zhang et al. (2014), all initial variables are set to their true

values, except for the gyro biases, which are set to zero. In this scenario, the attitude
errors of [10°−10° 5°]T and [−10° 10° 5°]T are added into initial estimates of qs/H and
qm/H for each axis, respectively. The initial gyro bias estimates for the slave and master
spacecraft are set to zero. The 1σ errors are added into the initial relative position and
velocity, radius and radial rate as well as the true anomaly and rate. The initial
covariance matrix is diagonal. The three attitude error parts of the initial covariance
for qs/H and qm/H are each set to one standard deviation error of 10°, i.e., [10×(π/180)]2

rad2. The three gyro-bias parts of the initial covariance for the slave and master
spacecraft are each set to 2° per hour, i.e., 2× π/(180× 3600)� �� �2

rad/s
� �2

. The
relative position and velocity parts of the initial covariance are each set to 5 m2 and
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0·02 (m/s)2, respectively. The master’s radius and radial rate parts of the initial
covariance are each set to 1000 m2 and 0·01(m/s)2, respectively. The master’s true
anomaly and rate parts of the initial covariance are set to 1×10−4rad2 and
1×10−4(rad/s)2, respectively.
The performances of the EKF and two versions of the UKF are compared in

Figures 2–9. Figures 2 and 3 show the roll, pitch and yaw errors for qs/H and qm/H,
respectively. As can be seen, two versions of the UKF attitude estimation errors do
converge to within their respective 3σ bounds within 300 minutes, whereas the EKF
attitude estimation errors do not converge to within their respective 3σ bounds.
Figures 4 and 5 show the norms of relative position and velocity errors, respectively. It
is seen that the EKF does not produce acceptable performance, which indicates the
first-order approximation cannot capture the initial condition errors. However, the
designed UKF is working properly. The norms of relative position and velocity
estimated errors are within 0·03 m and 3×10−5 m/s. From the partial enlargement
drawings, we can see that the UKF2 is a little superior than the UKF1, which agrees
well with the previous analysis. Figures 6 and 7 show the norms of slave and master
gyro bias errors, respectively. It can also be seen that the UKF2 performs a bit

Table 1. Simulation Parameters.

Simulation Parameter Name Values

Initial gyro biases βs= [1, 1, 1]T deg/hr
βm=[1, 1, 1]T deg/hr

Gyro noises σsυ = σmυ =
ffiffiffiffiffi
10

√
× 10−5 rad/ sec1/2

σsu = σmu =
ffiffiffiffiffi
10

√
× 10−10 rad/ sec3/2

VISNAV noise σi=1·8 arc-sec i=1, 2. . .6
Acceleration disturbances σϖ = ffiffiffiffiffi

10
√ × 10−11 m/s3/2

Angular velocities ωs/I
s =[−0·002, 0, 0·0011]T rad/s

ωm/I
m =[0, 0·0011, −0·0011]T rad/s

Initial quaternion qs/H=[0, 0, 0, 1]T

qm/H=[0, 0, 0, 1]T

Initial relative position ρ (0)= [200, 200, 100]Tm
Initial relative velocity ρ̇(0)= [0·01, −0·4325, 0·00]Tm
Initial master orbit radius and its rate rm(0)=6·986417×106 m

ṙm(0)=0
Initial true anomaly and its rate θ(0)=0

θ̇(0)=0·00108 rad/sec

Table 2. Beacon Location in Metres.

Beacon No. X-Location Y-Location Z-Location

1 0·5 0·5 0·0
2 −0·5 −0·5 0·0
3 −0·5 0·5 0·0
4 0·5 −0·5 0·0
5 0·2 0·5 0·1
6 0·0 0·2 −0·1
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better than the UKF1. A plot of the norm of relative attitude errors is shown in
Figure 8. The relative attitude between the slave and master spacecraft is estimated by
using Equation (38). As shown, both UKF1 and UKF2 can reach the norm of relative
attitude errors of less than 0·05° within 300 minutes, whereas the EKF does not
converge. Figure 9 shows the master orbital element errors of the UKF1 and UKF2,
and the results of the EKF are not shown because it fails to converge.

7. CONCLUSIONS. In this paper, a novel navigation approach based on an
Unscented Kalman Filter has been derived to estimate the relative attitude and
position between slave and master spacecraft. Our approach is to additionally estimate
the attitudes of both spacecraft relative to the master’s LVLH frame, so that the
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Figure 2. Attitude estimated errors for qs/H and 3σ bounds.
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Figure. 3. Attitude estimated errors for qm/H and 3σ bounds.
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simplified assumption that the master’s body frame coincides with its LVLH frame
is removed. The general relative equations of motion for eccentric orbits are used
to describe the positional dynamics. In the UKF design, an unconstrained three-
component vector of Generalized Rodrigues Parameters is employed to maintain the
quaternion normalization constraint. Besides the traditional UKF, a modified version
of the UKF is also presented. An averaging-quaternion algorithm is employed to
average a set of weighted propagated sigma-point quaternions, and then the mean of
these sigma-point quaternions is used for the reference quaternion instead of the
sigma-point quaternion at the centre. The performances of the EKF and two versions
of the UKF with respect to initial condition errors are compared. Simulation results
indicate that the proposed filters can provide more accurate estimates for relative
attitude and position than the Extended Kalman Filter. The modified UKF performs
a little better than the traditional UKF.
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