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Abstract

T. A. Gillespie showed that on a Hilbert space the sum of a well-bounded operator and a commuting real
scalar-type spectral operator is well-bounded. A longstanding question asked whether this might still hold
true for operators on L p spaces for 1 < p < ∞. We show here that this conjecture is false. Indeed for a
large class of reflexive spaces, the above property characterizes Hilbert space.
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1. Introduction

There is a significant body of results which relate the spectral decomposition
properties, or the functional calculus properties, of the sum of two commuting
operators to those of the summands. Two much-studied classes are the scalar-type
spectral operators and the well-bounded operators. For simplicity, let X be a reflexive
Banach space. On such a space, an operator T is scalar-type spectral if and only if
it admits an integral representation with respect to a countably additive projection-
valued measure or, equivalently, if it admits a C(σ (T )) functional calculus. An
operator T ∈ B(X) is well-bounded if it admits a Riemann–Stieltjes-type integral
representation with respect to an increasing family of projections on X or, equivalently,
if it admits an AC[a, b] functional calculus. (Fuller definitions are given in Section 2.)
The distinction between these classes is that the spectral expansions for a scalar-
type spectral operator are of an unconditional nature, while those for well-bounded
operators correspond to conditional decompositions of the Banach space.

McCarthy [13, 14] proved that the sum and product of two commuting scalar-type
spectral operators acting on an L p (1 ≤ p ≤ ∞) space is again scalar-type spectral.
This result has been extended to a wide class of other Banach spaces, including, for
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example, weakly complete Banach lattices (see [6]). On the other hand, there are
reflexive spaces (indeed even UMD spaces), such as the von Neumann–Schatten C p
spaces, on which the sum of two commuting scalar-type spectral operators may fail to
be scalar-type spectral. More recently, it was shown in [2] that on spaces with Kalton
and Weis’ property (1) the sum of two commuting scalar-type spectral operators is,
however, always well-bounded. The class of spaces with property (1) includes not
only all UMD spaces but also those with analytic UMD [8]. As was noted in [2], this
result can not be extended to all reflexive spaces.

Gillespie [5] showed that even on `2, the sum of two commuting well-bounded
operators need not be well-bounded. In a positive direction however, he showed that
on this space, the sum and product of a real scalar-type spectral operator (that is,
a scalar-type spectral operator with real spectrum) and a commuting well-bounded
operator are always well-bounded. It had been asked whether this last result might
hold on a wider class of spaces such as the reflexive L p spaces. (This question
appears explicitly in [2, Section 2], although its consideration significantly predates
this reference.) In [2] it was shown that a sufficient condition for the sum of a real
scalar-type spectral operator S and a commuting well-bounded operator T to again
be well-bounded is that the spectral family of projections associated with T be R-
bounded.

The aim of this paper is to adapt part of the construction given by Kalton and the
second author in [7] to produce counterexamples to the above question on any non-
Hilbertian reflexive Banach lattice.

2. Well-bounded operators

An operator T ∈ B(X) is well-bounded if it admits an AC(J ) functional calculus
for some compact interval J ⊂ R. Here AC(J ) denotes the space of absolutely
continuous functions on J = [a, b], which is a Banach algebra equipped with the norm
‖ f ‖AC(J ) = | f (b)| + varJ f . Thus, T is well-bounded if there exists some constant
K and a compact interval J such that ‖ f (T )‖ ≤ K‖ f ‖AC(J ). We use the notation

‖T ‖W B := sup{‖ f (T )‖ : f ∈ AC[a, b] and ‖ f ‖AC(J ) = 1}.

Standard results about well-bounded operators ensure that this quantity depends only
on T and not on the choice of interval.

Associated to each well-bounded operator on a reflexive Banach space is a
uniformly bounded family of projections known as a spectral family. If a well-bounded
operator T has associated spectral family {E(λ)}λ∈R, then for all f ∈ AC(J ),

f (T ) =

∫
⊕

J
f (λ) d E(λ).

The integral here is a Riemann–Stieltjes-type integral.
We refer the reader to [4] for further details (and the appropriate definitions for

nonreflexive spaces) of the theory of well-bounded and scalar-type spectral operators.
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Background definitions concerning bases in Banach spaces and Banach lattices may
be found in [10] and [11].

3. The main result

The first and main step is to consider the case of a reflexive Banach space with an
unconditional basis.

THEOREM 3.1. Let X be a reflexive Banach space which is not isomorphic to `2. If X
admits an unconditional basis, then there exist a real scalar-type spectral operator
S ∈ B(X) and a well-bounded operator T ∈ B(X) such that ST = T S and S + T is
not well-bounded.

PROOF. It was shown in [12] (see the remark at the end of that paper) that if a Banach
space X has a normalized unconditional basis and every normalized unconditional
basis of X is symmetric, then X is isomorphic to one of c0, `1 or `2. It follows that
if a reflexive space X which is not isomorphic to `2 has an unconditional basis, then
X admits a normalized unconditional basis which is not symmetric. In particular, X
must admit a normalized unconditional basis (xn) which is not equivalent to any of the
standard bases of c0 or `p (1 ≤ p < ∞).

Then [9, Proof of Theorem 4] (see also [10, Theorem 2.a.10]) shows that there
exists a permutation π and a block basis (vn) of (xπ(n)) whose closed linear span is
not complemented. To simplify the notation we may assume that (vn) is in fact a block
basis of (xn), with

vn ∈ span(xrn+1, . . . , xrn+1),

where (rn) is a suitably chosen increasing sequence of integers. Write Xn for
span(xrn+1, . . . , xrn+1), and let Pn denote the projection from X onto Xn determined
by the basis projections. Let αn = n−2. The unconditionality of (xn) implies that
S :=

∑
∞

n=1 αn Pn is a real scalar-type spectral operator on X .
For each n, there is a norm one projection Ṽn from Xn onto the span of vn .

Let Vn = Ṽn Pn and Wn = Pn − Vn . Note that (V1, W1, . . . , Vn, Wn, . . .) defines a
Schauder decomposition of X .

Let Q1 = V1 and for n ≥ 2, let Qn = Wn−1 + Vn . Then {Qn} is a sequence of
disjoint finite-rank projections. Note that, for all N ,

N∑
n=1

Qn = VN +

N−1∑
n=1

Pn,

and so these partial sums are uniformly bounded. Let βn = −n−2
− n−3. It follows

from [1, Theorem 3.3] that T :=
∑

∞

n=1 βn Qn converges to a well-bounded operator
on X .

It is straightforward to verify that for all m and n, Pm and Qn commute. It follows
that S and T commute. It remains then to show that S + T is not well-bounded.
Suppose, to the contrary, that S + T is well-bounded.

https://doi.org/10.1017/S1446788708000244 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788708000244


196 I. Doust and G. Lancien [4]

A small calculation shows that

S + T =

∞∑
n=1

−
1

n3 Vn +

∞∑
n=1

γnWn,

where γn = αn + βn+1 is positive for all n ≥ 1. Choose fn ∈ AC[−1, 1], for n ≥ 1,
so that fn ≡ 1 on [−1, −n−3

], fn ≡ 0 on [−(n + 1)−3, 1] and fn decreases linearly
on [−n−3, −(n + 1)−3

]. Then fn(S + T ) =
∑n

j=1 V j . We now claim that the
increasing sequence of projections (

∑n
j=1 V j )

∞

n=1 is unbounded. Otherwise, since
X is reflexive, it would converge in the strong operator topology and its limit would be
a bounded projection onto the closed linear span of {vn, n ≥ 1}. Thus, {‖ fn(S + T )‖}

is unbounded and, as ‖ fn‖AC(J ) = 1 for each n, it follows that S + T must not be a
well-bounded operator. 2

The hypotheses in this theorem are not optimal, but they do suffice to cover the
cases of most interest. In particular, we have as a first corollary.

COROLLARY 3.2. Let 1 < p < ∞, p 6= 2, and let X = L p
[0, 1]. Then there exist a

real scalar-type spectral operator S ∈ B(X) and a well-bounded operator T ∈ B(X)

such that ST = T S and S + T is not well-bounded.

PROOF. The Haar system forms an unconditional basis for X . 2

4. Reflexive Banach lattices

Finally, we prove the result announced in the introduction.

COROLLARY 4.1. Let X be a reflexive Banach lattice which is not isomorphic to a
Hilbert space. Then there exist a real scalar-type spectral operator S ∈ B(X) and a
well-bounded operator T ∈ B(X) such that ST = T S and S + T is not well-bounded.

PROOF. We essentially follow [7, Proofs of Theorems 3.5 and 3.7]. Let us assume
that for any real scalar-type spectral operator S ∈ B(X) and any well-bounded operator
T ∈ B(X) commuting with S, the sum S + T is well-bounded. We then show that X is
order isomorphic to a Hilbert space. For this, since X is reflexive and therefore order
continuous, it is enough to prove that every normalized sequence of disjoint elements
of X is equivalent to the canonical basis of `2 (see [11, Lemma 1.b.13]).

So, let (vn) be a normalized sequence of disjoint elements of X . As in [7], we can
pick an unconditional Schauder decomposition (Xn) of X such that for each n, Xn is an
ideal of X and vn ∈ Xn . Then, by repeating the argument in the proof of Theorem 3.1,
we obtain that Y = span{vn, n ≥ 1} is complemented in X . Thus, for any real scalar-
type spectral operator S ∈ B(Y ) and any well-bounded operator T ∈ B(Y ) commuting
with S, S + T is well-bounded (indeed, any counterexample on Y could easily be
extended into a counterexample on X ). Finally, it follows from Theorem 3.1 that (vn)

is equivalent to the canonical basis of `2. 2
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REMARKS.

(1) Virtually identical constructions provide examples where the product rather than
the sum fails to be well-bounded; with {αn}, {βn}, {Pn} and {Qn} as in the proof
of Theorem 3.1, then setting

S = I +

∞∑
n=1

(eαn − 1)Pn and T = I +

∞∑
n=1

(eβn − 1)Qn,

will suffice.
(2) It should be noted that on nonreflexive spaces, these questions are somewhat

more complicated since the relationship between the functional calculus
conditions and the integral representation conditions is not as strong. On
spaces such as `∞, or indeed any Grothendieck space with the Dunford–Pettis
property, the countable additivity requirement for a spectral measure allows
very few scalar-type spectral operators. On such a space every scalar-type
spectral operator is a finite linear combination of disjoint projections [15] and
consequently the sum of a real scalar-type spectral operator and a commuting
well-bounded operator is always well-bounded.

(3) More recently, the present authors and F. Lancien [3] have used ideas from [8]
to show that if either X or X∗ is a Grothendieck space, then the sum of a real
scalar-type spectral operator and a commuting well-bounded operator is always
well-bounded. This settles the question on, in particular, any L1 or C(K ) space.

(4) On some nonreflexive spaces it is relatively easy to construct explicit examples
where the sum of a real scalar-type spectral operator and a commuting well-
bounded operator is not well-bounded. For example, on the space of trace class
operators C1, the operators S(A) = D1 A and T (A) = AD2, where D1 and D2
are diagonal matrices with real entries, are commuting scalar-type spectral
operators whose sum, in general, will fail to be well-bounded.
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