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1. Introduction

Zubov states an elegant necessary and sufficient limit set condition for positive orbital
stability of compact invariant sets in his book "Metody A. M. Lyapunova i ih
Primenenie" [11]. Stated in terms of our terminology of LT for the negative limit set,
Zubov's proposition is as follows: A necessary and sufficient condition for positive
stability of a compact invariant set M is L~(X\M)n M = 0. Unfortunately, Zubov's
condition L~(X\M)nM = 0 has subsequently been shown to be necessary but not
sufficient (see [9]). Bass and Ura devote considerable effort in [2] and [9] to correcting
Zubov's proposition and Desbrow obtains additional results principally concerning
unstable sets in [6] and [7]. Ura gives his classical corrected prolongational version of
Zubov's assertion on locally compact phase spaces in [9] and extends it to any closed
invariant set with compact boundary on such spaces in [10]. Ura's theorem using our
terminology of D~ for the negative prolongation is the following: A necessary and
sufficient condition for positive stability of a closed invariant set M with compact boundary
on a locally compact phase space is D~(X\M)nM = 0 (or equivalently, D+(M) = M in
terms of the positive prolongation). Bhatia and Hajek show in their monographs [3] and
[4] that all of the conclusions above remain unchanged for positively invariant sets with
compact boundaries on locally compact spaces which, of course, includes as a very
restrictive subclass, the invariant sets.

Our objective is to show that Zubov's proposition holds for certain closed positively
invariant sets with compact boundaries on locally compact phase spaces and to classify
and characterize certain closed sets for which Zubov's condition fails. Bass and Ura
consider compact invariant sets whereas we direct our attention to the larger class of
closed positively invariant sets. Attraction theory delineated in references [1] through
[5] is employed in order to accomplish this task. In particular we introduce the
following useful concept. A weak attractor (attractor) M is called recursive provided the
net (xt), teR+ is frequently (ultimately) in M for each x in the region of weak attraction
A*(M) (attraction A+(M)). This new terminology can be avoided by simply stating the
criterion given in the definition, however, we believe the use of the new terminology is
justified because the recursive weak attractors form an important subclass of the class of
weak attractors. It was Bhatia and Hajek's generalization of the attraction concept that
identified this new class of sets. They show in Proposition 8.10 of [4] that a point x is
weakly attracted to a set of M if and only if either the net (xt), t > 0, is frequently in M
or else L+(x)n M=j=0. The notion of attractors used in the Bass-Ura work are
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characterized by the condition 0=fcL+(x)<=M for every x in A+(M) where M is compact
invariant. The only recursive attractors satisfying these restrictive conditions are
compact components of X. Of course, positively invariant compact recursive attractors
still satisfy the attraction condition imposed by Bass and Ura but many positively
invariant closed recursive attractors, even with compact boundaries, do not. That a
recursive weak attractor is not necessarily a recursive attractor, attractor, strong
attractor, or stable can readily be seen by simple examples.

The trajectory, orbit closure, limit, prolongational limit, and prolongational relations
for a dynamical system (X, n) are respectively denoted by C, K, L, J, and D. The
positive and negative versions of these relations carry the appropriate superscript. The
symbols M°, dM, M, and X\M denote the interior, boundary, closure, and complement
of the set M, respectively. All basic properties of dynamical system theory used in this
paper are presented in detail in references [3], [4], and [5].

Standing hypothesis: Henceforth, we let {X,n) be a given flow on a locally compact
Hausdorff phase space X.

2. Stable and unstable attractors

The following theorem is our first correction of Zubov's proposition. Essentially it
asserts that Zubov's condition is necessary and sufficient for certain closed sets to be
asymptotically stable.

Theorem 1. A closed weak attractor with compact boundary is stable if and only if it is
positively invariant and satisfies L~(X\M) nM = 0.

Proof. Let M be a closed positively invariant weak attractor with compact boundary
for which LT(X\M)nM = 0. We proceed by contradiction showing that D+(M) = M.
Let yeM and xeD+(y)\M. Then K+(x)nM = 0 and M is contained in the open set
X\K~(x). Select an open neighbourhood V of M such that VcA*(M)r\{X\K~(x)) and
V\M° is compact. Define Tz = inf{teR + :zte V) for each zeA+(M). Evidently, 0^Tz<
+ oo. Also define T=sup{Tz:zedV}. We now show that T< +oo. For zedV there is a
zt in V for some t<Tz+\. The continuity of % yields Tp^t<Tz + \ for each p in some
neighbourhood Vz of z. There is a finite subcover {VZi,...,VZk} of the compact set dV. For
each point p in u {Vz.:i = l,...,k} we have Tp^max{Tz. + l:i= l,...,/c}. Thus, T<+oo.
Next, V was chosen so that xeX\V. Let (x,) be a net in V converging to y and (t,) be a
net in R+ such that xjj-tx. As (x,t,) is ultimately in X\V, (xt) and (£,) can be selected so
that (x.t,) is in X\V. Since C+(x,) is connected and dV is compact there is a maximum T,
in [O,ti] such that x-tiedV. Thus, ( ; -T ,^ r and xiti = (xix^Hti-T^edV\O,T]. Hence,
xedV[0, T] and C~(x) must meet dV. This is absurd because V was chosen so that
C~(x)<=X\V. Consequently, D+(y)c=M, and hence, D+(M) = M. According to Ura's
Theorem, M is stable.

Conversely, any stable set is positively invariant and, by Ura's Theorem, D+(M) = M
so that D~(X\M) = X\M. Whence, L~(X\M)nM = 0 completing the proof of the
theorem.
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Corollary 1.1. A closed weak attractor M with compact boundary is stable if and only
ifK'{X\M)nM = 0.

Corollary 1.2. A closed weak attractor with compact boundary satisfying Zubov's
condition is stable if and only if it is positively invariant.

Corollary 1.3. / / a closed weak attractor M with compact boundary satisfies Zubov's
condition, then C+(M) is the smallest stable set containing M.

Corollary 1.4. A closed recursive weak attractor with compact boundary containing no
semi-trajectory is stable if and only if it is positively invariant.

Corollary 1.5. A closed weak attractor with compact boundary containing no complete
orbit is stable if and only if it is positively invariant.

If X is not locally compact, then Zubov's condition need not be sufficient for stability
even for positively invariant recursive attractors with compact boundary. The
succeeding example is of an unstable compact positively invariant global recursive
attractor M satisfying Zubov's condition on a nonlocally compact quotient phase space.
Note that M also satisfies Ura's prolongational stability condition.

Example 1. We shall define a flow (X/~,n/~) on a nonlocally compact quotient
space determined by an equivalence relation ~ defined on a proper subset of
/ = [0 , l ]x[0, l ] with usual planar topology. Let X = ({J?=o{2-k} x [0, l))u {(0,0), (0,1)}.
Let ~ be the identity equivalence relation on X\{{0,0), (0,1)} and let (0,0) and (0,1) be
~ equivalent. Defining a flow n on I using an autonomous system of differential
equations so that each point of [0,1] x {0,1} is critical and each line segment {x} x(0,1),
O^x^ l , is a regular trajectory directed toward (x,0) is easy. Let n/~ be the flow
induced on X/~ by n. Then, X/~ has countably many components
{{2~k,y)/~:0^y<l}; k=0,l ,2, . . . consisting of a regular trajectory and a critical point
(2~*,0)/~ as well as a component consisting of a single critical point (0,0)/~. The set
M = {(x,y)l~ sX/~:2y^x} is a compact positively invariant global recursive weak
attractor in X/~ with L~(X/~\M) = 0. However, no positively invariant
subneighbourhood of the neighbourhood {(x,y)/~:2y<x + l or 4y<2x+l} of M exists.

In view of Hajek's Theorem 1 of [8] we give a necessary and sufficient condition for
stability of a closed weak attractor on a locally compact metric space. A construction
similar to the one in the proof of Theorem 1 on neighbourhoods of boundary points
can be employed to show that the condition is sufficient.

Theorem 2. Let X be a metric space. A closed weak attractor M is stable if and only if
M is positively invariant, M satisfies Zubov's condition, and every point in the boundary of
M has a neighbourhood V such that C+{V)\M has compact closure.

We now turn our attention toward sets not satisfying Zubov's condition.
An arbitrary set M is said to be a saddle set if and only if there exists a
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neighbourhood U of M such that every neighbourhood V of M contains a point x with
C+(x)<£U and (T(x)<£C/.

Classically, the saddle set terminology applied only to compact invariant sets.
Recently, however, other sets have been considered fruitfully, particularly closed
positively invariant sets. We shall classify and characterize positively invariant and
arbitrary weak attractors in terms of the saddle set and attraction concepts.

Bhatia and Hajek show that a positively invariant set M is a strong attractor if and
only if it is a stable weak attractor [4], (8.14, 8.15). Thus, a closed positively invariant
weak attractor with compact boundary is not a strong attractor if and only if Zubov's
condition fails. In the remaining theorems we consider classes of weak attractors which
are saddle sets, bilateral weak attractors, or unilateral weak attractors on locally
compact and arbitrary phase spaces. These results include the classification or
characterization statements promised earlier. Note that each weak attractor is either
stable, a saddle set, or neither and is either a unilateral weak attractor or else a bilateral
weak attractor. The six possible combinations of these conditions form mutually
exclusive and exhaustive classes of weak attractors. Examples from each class are easily
constructed.

Henceforth, we shall denote the region of strong attraction for a set M by A+(M).
Our next theorem characterizes saddle sets and bilatreal weak attractors for the sets
addressed by the first theorem.

Theorem 3. Let M be a closed positively invariant weak attractor with compact
boundary. Then we have the following:

(a) M is a saddle set if and only if A+(M)\M^A+(M)\M; and
(b) M is a bilateral weak attractor if and only if A*(M)\M = A~(M)\M.

Proof. First, let A+(M)\Mi=A+(M)\M. For a point x in At(M)\A+{M) u M we can
choose a neighbourhood U of M such that every neighbourhood W of x and T>0
satisfy WTR+ <£U. Select U and a neighbourhood W of x so that U n W=0. Let V be
any neighbourhood of M. Contained in W is a neighbourhood Wo of x such that
W0TaVnU for some T>0. Moreover, there is a T0>T for which W0T0£U. Thus,
W0T0 contains a point z such that C+(z)£U and C~{z)£U. Consequently, M is a
saddle set.

Conversely, let U be a closed neighbourhood of M such that U\M° is compact and
each neighbourhood V of M contains a point z for which C+(z)<fcU and C~(z) <£U.
Hence, we can select a net (x;) converging to a point x in dM and nets t^O and s,-^0
such that (Xjt,) and (x.Sj) converge to points p and q, respectively, in dU. Now, peD+(x)
and C+(x)czM so that peJ+(x). Thus, (x̂ -Xt,—Si) = x,t,->p and peJ+(q). Consider the
extended flow on the one point compactification X% of the subspace X0 = A*(M) of X
and let Mo denote M or Mu{to} whenever M is compact or noncompact, respectively.
Then, J*+(q)cfcM0 (the superscript * denotes the extension of a relation on Xo to X$)
so that q is in AZ+(M0)\M0 but, by Ahmad's Theorem 3.3 of [1], not in Af+(M0)\M0.
The point oo is not in either of these sets yielding AZ(M0)\M0 = A*(M)\M and
Af+(M0)\Mor>A*(M)\M completing the proof of the converse.

Next, let A*(M)\M = A~(M)\M. In order to show that M is a negative weak
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attractor we need only demonstrate that McA~(M). Let xeM. If C~(x)czM, then
xeC{x)aA~(M). Suppose that C~{x)jiM. There is a point xt in A+(M)\M = A~(M)\M
for some t<0. Hence, xeC{xt)cA~(M). We have M<=A~{M).

The converse is obvious because any bilateral attractor has equal positive and
negative regions of attraction. This completes the proof of the theorem.

The following theorem classifies the weak attractors of Theorem 3.

Theorem 4. Let M be a closed positively invariant weak attractor with compact
boundary. Exactly one of the following holds:

(a) M is stable.
(b) M is a saddle set.
(c) M is a nonsaddle set and some point of M is not strongly attracted to M.

Proof. Theorems 8.14 and 8.15 of [4] imply that M is stable if and only if
A+(M) = A+(M). Equivalent^, M is unstable if and only if either A+{M)\M + A+(M)\M
or else M<£A+(M) and A+(M)\M = A+(M)\M. Thus, by Theorem 3, M is unstable if
and only if statement (b) or statement (c) holds. The proof is complete.

Corollary 4.1. A closed positively invariant weak attractor with compact boundary is
unstable if and only if it is either a saddle set or a nonsaddle set containing a point not
strongly attracted to itself.
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