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On the Continued Fractions associated with the

Hypergeometric Equation.

By E. LINDSAY INCE, Carnegie Fellow.

(Received 29th January 1916. Read 11th February 1916).

§ 1. Introductory.

The present paper is based on a method attributed to Euler of
expressing as a continued fraction the logarithmic derivate of a solu
tion of a linear differential equation of the second order. The method
is particularly applicable to equations of hypergeometric type, and,
in that connection, was previously employed by the present author *
as a means of adding to the number of known transformations of
continued fractions. The theory of the hypergeometric equation
has been very thoroughly worked out, so that we may expect, by
making use of the known properties of its solutions, to arrive at
much that is new in the theory of continued fractions. Thus the
investigation mentioned above was intended to show how to every
transformation of one hypergeometric equation into another
corresponds a transformation in continued fractions. The present
paper makes use of the researches of Schwarz, in which he solved
certain cases of the hypergeometric equation in a finite form, and
indicates a method by which continued fractions may be derived
which are expressible in an algebraic form.

§2. The two continued fractions derived from the hypergeometric
equation.

Consider the hypergeometric equation

Differentiating, it becomes

*-Proc. Edin. Math. Soc, Vol. XXXII. (1913-14), p. 101.
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and, in general, after differentiating r times,

From this set of recurrence-relations we are led at once to the
continued fraction
\_dy a/? («•+!) (P + 1)x(1-x)
y dx~y-(a. + P+l)x+y+l-(a.+ P + 3)x+...

(a + r)Q8 + r) *(!-«) .
...+ y + r-(a. + fi + 2r + l)x +... ( '

Starting again from the hypergeometric equation (1), we may
obtain a second set of recurrence-relations by repeated integration;
thus, on integrating once, we obtain

and on integrating again,

and after integrating r times,
x (1 - x) yr_2 + { y - r - ( « . + / 3 - 2r + 1) a;} yr_x - (a. - r) (/3 - r) yr = 0

where ^ denotes I y dx, y2 denotes I yx dx, and so on.

This set of recurrence-relations leads in its turn to the continued
fraction

y dx x{\-x) y-2-(a. + P-3)x
(a,-2)(p-2)x(l-x) (a-r)QB-*•)*(!-»)

_ y-3-(a. + P-5)x - ... - y-r-l-(a. + P-2r-l)x-...K '

These two continued fractions evidently converge most rapidly
when the variable x approaches the values 0 and 1. In fact, when
x approaches the value 0, the continued fraction (A) tends towards

the value —, and when x approaches the value 1, it tends towards

the value ~—= Likewise, when x tends to zero, the con-
y-a.-p-\ 1 -ytinued fraction (B) approaches the value , and when x tends

to unity, it approaches the value •
x — 1
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Now, consider the typical solution of the differential equation
(1) in the neighbourhood of its singular points x = 0 and a;=l.
The exponents at the singularity x = 0 are 0 and 1 -y , and corre-
sponding to these respectively

a.B , 1 dy CLB

y = 1 + —— x+ .... whence f- = —— + ...
y y dx y

and

whence 1 f -
dy dx x 2 - y

Similarly, corresponding respectively to the exponents 0 and
y - a. - p at the singularity x=l, we have

i a.6 . , . 1 dy a.B
y—l-i —Q—- (x - 1) + ..., whence = •—^—- + ...

and

whence J - ^ ^ .
7-I

all of which expansions proceed in ascending powers of X or of X— 1.

Comparing these expressions for — -j~- with the limiting values

obtained directly from the two continued fractions, we arrive at the
notable result that the continued fraction (A) corresponds to the expan-
sions with zero exponent at each of the two singularities 0 and 1, and
the continued fraction (B) to the expansions relative to the non-zero
exponents. The continued fractions have, therefore, a range of
convergence much more widely extended than any of the expansions
in series. In fact, since the hypergeometric equation has no finite
singularity other than x = 0 and x = l, the continued fractions (A)
and (B) would converge throughout the finite part of the x plane,
with the possible exception of the zeros of the series y.

— x+ and 1 H
7

are quite distinct and cannot be transformed into one another, so that
we come to the conclusion that, even though the continued fraction
(A) may converge throughout a region including the points x = 0
and x = 1, yet it represents in the neighbourhood of x = 0 a function

But the two series 1 +— x+ ... and 1 H ~—r(x-l)
y-a.-P-ly '

https://doi.org/10.1017/S0013091500037524 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500037524


149

entirely different from that which it represents in the neighbour-
hood of x=l. Equations (4) and (5) of §4 may be taken as
examples of this phenomenon.

§ 3. The Solution in Finite Form.
There are certain definite cases in which the hypergeometric

equation admits of a solution in a finite form, and these cases are
determined as follows :—

The Schwarzian derivative connected with the equation (1) is
given by the relation

, , 1 - X ' , l - v a , A.'-./i' + v ' - l

where X2 = ( l - y ) 2 , ^ = (a. _ (3f, v* = (y - a. - fif.
Now there are fifteen separate cases, in which A, fi, v are definite
numerical constants, where a relation in finite terms exists between
x and s. When that is the case, the hypergeometric equation can
be solved in a finite form. These fifteen cases may be tabulated
as follows * :—

Case
I.
IT. ...
III. ...
IV. ...
V.
VI. ...
VII. ...
VIII.
IX. ...
X. ...
XL ...
XII. ...
XIII.
XIV....
XV. ...

X
... 1/2

... 1/2

2/3

... 1/2

2/3

... 1/2

2/5

2/3

... 1/2

3/5

2/5

2/3
4/5

... 1/2

3/5

1/2
1/3

1/3

1/3

1/4

1/3

1/3

1/5

2/5

1/3

2/5

1/3
1/5

2/5

2/5

V

\jn

1/3

1/3

1/4

1/4

1/5

1/3

1/5

1/5

1/5

2/5

1/5
1/5

1/3

1/3

* Sohwarz, Orelle, lxxv. (1872), p. 292.
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Knowing the solution in any one of these cases, we may construct
the relative continued fraction, and thus obtain an identity
between a continued fraction and an algebraical expression.

Schematically represented, the hypergeometric equation is

0 oo 1

0 a. 0

l - 7 ft y-a.-

or, in te rms of t he new constants A, ft, v,

0 oo 1

1 - X - ft - v

p-

0 0

so that A, ft, v are the exponent differences at the singularities
0, oo , 1 respectively, and may, without loss of generality, be taken
to be always positive. As a. and j3 are interchangeable, we may
further assume that a. is greater than /?, so that /x = <x - /3. We shall
also limit ourselves to the case in which the ordinary hypergeometric
series .F (a., ft,y, x) converges right up to the point x = 1, so that y-a.-ji
is positive and v = y - a. - /3. We then have A. = 1 - y, or A = y - 1,
according as y is less or greater than unity. Thus, with these
restrictions, we find that two distinct differential equations corre-
spond to each set of values of A, /*, v, and as to each differential
equation corresponds two distinct continued fractions we may
ultimately arrive at 60 continued fraction relations of the kind
required.*

§ 4. A Case in Detail.

Let us consider Case I. in which A = -^-, v = —
Z n

On

solving the relations A = l - y , /t = a. - f3, v = y - a. - /?, we find that

* Since the continued fractions in (A) and (B) are convergent at both the
singular points 0 and 1, we may discard the restriction that y-a-f) >0, and
thus further increase the possible number of continued fraotion relations.
No further generality is, however, obtained by interchanging X and v.
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y = ~2"> °' = i r ~ 2 ~ ' ^ = ~ o~ > a n c ' *n e corresponding hyper-

geometric equation is

or

f 0 00 1

0 0 x

1 1 1
2 2n n

The quotient, s, of the two solutions of this equation is given by

so that
(!-*)«-

The complete primitive of (3) then is

-I/n + S (1 + „/ x

y = (4s'-

= A' (1 - a;)1'" (1 +

= A'{\- J

where A, B, A', B' are arbitrary constants.
Consider the behaviour near the singularity x = 1 of the two

parts of this primitive. Writing 1 - x — £ it becomes

A' £"" {1 + JT^l)-V" + B' {1 + JT^l}11*

Near £ = 0, i.e. near * = 1 , {1+ s / l - | } 1 / M can be expended as a
Taylor's series in powers of £, so that this particular solution is the
one which corresponds to the exponent 0 at the singularity x = 1 of
the differential equation The quantity {1+ \l 1 - £ }~1/n can
likewise be expanded near £ = 0 as a Taylor's series in powers of £,
but the particular solution into which it enters contains also the
multiplicative factor £1/n, and therefore corresponds to the

exponent — at the singularity x = 1 of the differential equation.
n

Thus in the neighbourhood of the singularity x =? 1 the solution
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(1+ <Jx)v" corresponds to the continued fraction which we have
called (A), and the solution (1 - xf1" (1 + J x )~J/" to the continued
fraction (B).

It is, however, easily seen that, as might be expected, the
solution (1 + v x y/n does not also correspond to the exponent 0 at
the singularity x = 0, nor does the solution (1 - J x )1/B correspond
to the non-zero exponent at that singularity. In fact, it may
readily be verified that the appropriate solutions at the singularity
x = 0 are respectively

J{(1+ J~x~)Vn + (l- J~x)Vn) and ^ { ( 1 + sTx~fn-{\ ~ "J^f}-

We may thus deduce the two continued-fraction relations :—

1 . 1
n

1 - 3 -

= - i / ^ ^ in the neighbourhood of x = 0

{(1 + j x y*+(l - j x ya} jx 8

= -a;-1/2(l+ Jx)'1 in the neighbourhood of as=l (4)

and

-04)2
in the neighbourhood of x = 0

= — +—ar'" (1 + -Jx)-1 in the neighbourhood of *=1. ... (5)
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The second differential equation

of Case I. may be similarly treated, and will be found to give rise
to the same two continued fractions as occur in (4) and (5), though
in the reverse order. In like manner the remaining fourteen cases
may be worked out, the differential equations of each case leading
to a pair of continued fraction relations.

§5. The cases of A. + /* + v = 1.

The cases enumerated by Schwarz are characterised by the
inequality \ + p+v >1. When A + /i + v = l , there is a simple
method by which algebraic solutions of the hypergeometric
equation may be obtained. Forsyth (Differential Equations, 4th
Edition, Ex. 3, p. 121) gives the following examples, which may
conceivably give rise to new continued fraction relations, viz.

Case(i) ft=l A' = ( l - y ) - /t2 = (a . - l ) 2 ^ = (y-cx.- l )

(iii) y = a.+ l Aa = aJ /*s = ((X-/?)! i/s = (1 - ftf.

Cases (ii) and (iii) are virtually the same, and do not lead to
distinct continued fractions. Taking case (ii) we find that a
solution of the corresponding differential equation

di2y dy
x (1 — x) -i—»+ {ot. ~~ (c + B + 1) x\ CL ft y = 0 (6)

is (*-ir/s,
which represents the solution corresponding to the exponent - ft
at the singularity x = 1 and the exponent 0 at the singularity x = 0.
Thus we are led to the two continued fraction relations

P

i x (1 - x)

• B in the neighbourhood of x~0 (7)
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and
(g-l)Q8-l) (g- 2) (0-2)x(x-l)

a.-2-(a. + (S-3) x + a.-3-(a. + /3-5)x •

...+a.- r - l - (a. + /2-2r-l) x+ ...

= in the neigbourhood of *= 1 (8)

These two continued fractions may easily be transformed into
one another. The second solution has not in general an algebraic
form. In case (i) the continued fraction of (B) vanishes, and we
are led to a simple identity, while the continued fraction (A) is not
expressible algebraically.
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