The summation of a slowly convergent series

By S. Paterson.

The series

$$
\begin{equation*}
S_{2 r}(x) \equiv \sum_{n=1}^{\infty} n^{2 r} e^{-n 2 x} \tag{1}
\end{equation*}
$$

in which r is zero or an integer is rapidly convergent if x is large but may be very slowly convergent if x is small. The object of this note is to derive an alternative series for $S_{\mathbf{r} r}(x)$ which is rapidly convergent for small values of x.

If we let

$$
\Phi_{-r}(z) \equiv \frac{2}{\sqrt{ } \pi} \int_{z}^{\infty} \int_{z}^{\infty} \ldots \int_{z}^{\infty} e^{-z}(d z)^{r+1}, r \geqq-1
$$

then it can readily be established ${ }^{1}$ by induction that

$$
\begin{equation*}
2 r \Phi_{-r}(z)=-2 z \Phi_{-(r-1)}(z)+\Phi_{-(r-2)}(z) \tag{2}
\end{equation*}
$$

from which it follows that

$$
\begin{equation*}
(2 \sqrt{ } x)^{r-2} \Phi_{-(r-2)}(n \pi / \sqrt{ } x)=\frac{d}{d x}\left\{(2 \sqrt{ } x)^{r} \Phi_{-r}(n \pi / \sqrt{ } x)\right\} \tag{3}
\end{equation*}
$$

Now as a special case of Poisson's identity we have

$$
S_{0}(x) \equiv \sum_{n=1}^{\infty} e^{-n^{4} x}=-\frac{1}{2}+\frac{1}{2} \sqrt{ }(\pi / x)+\sqrt{ }(\pi / x) \sum_{n=1}^{\infty} e^{-n^{n} \pi^{\pi} / x}
$$

which may be written in the form

$$
\begin{equation*}
S_{0}(x)=\frac{1}{2}(\sqrt{\pi / x}-1)+\frac{1}{2} \pi x^{-\frac{1}{2}} \sum_{n=1}^{\infty} \Phi_{1}(n \pi / \sqrt{ } x) . \tag{4}
\end{equation*}
$$

Integrating this equation with respect to x from x to ∞ leads to the relation

$$
\begin{equation*}
S_{-2}(x)=\frac{\pi^{2}}{6}-\sqrt{\pi x}+\frac{1}{2} x-2 \pi \sqrt{ } x \sum_{n=1}^{\infty} \Phi_{-1}(n \pi / \sqrt{ } x) \tag{5}
\end{equation*}
$$

which in turn leads to

$$
\begin{equation*}
S_{-4}(x)=\frac{\pi^{4}}{90}-\frac{\pi^{2} x}{6}+\frac{2\left(\pi x^{3}\right)^{\frac{1}{2}}}{3}-\frac{x^{2}}{4}+\pi(2 \sqrt{ } x)^{3} \sum_{n=1}^{\infty} \Phi_{-3}(n \pi / \sqrt{ } x) . \tag{6}
\end{equation*}
$$

[^0]In the general case we obtain the expression

$$
\begin{gather*}
S_{-2 r}(x)=2^{2 r-1} \pi^{2 r}\left\{\frac{B_{r}}{2 r!0!}-\frac{B_{r-1} x}{4 \pi^{2}(2 r-2)!1!}\right. \\
\left.+\ldots \ldots+(-1)^{r-1} \frac{B_{1} x^{r-1}}{\left(4 \pi^{2}\right)^{r-1} 2!(r-1)!}\right)+(-1)^{r} \sqrt{ } \pi \frac{2^{2 r-1} r!x^{r-}}{(2 r)!} \\
+(-1)^{r-1} \frac{x^{r}}{2(r!)}+(-1)^{r+1} \pi(2 \sqrt{ } x)^{2 r-1} \sum_{n=1}^{\infty} \Phi_{-(2 r-1)}(n \pi / \sqrt{ } x) \quad(7) \tag{7}
\end{gather*}
$$

in which B_{r} denotes the r-th Bernoulli number.
The magnitude of the contribution $\pi(2 \sqrt{ } x)^{2 r-1} \quad \Sigma \Phi_{-(2 r-1)}$ to the final result can be estimated by expanding $\Phi_{-(2 r-1)}$ in descending powers of $\pi x^{-\frac{1}{2}}$; we then find that $\pi(2 \sqrt{ } x)^{2 r-1} \Sigma \Phi_{-(2 r-1)}$ is of the order of $(x / \pi)^{2 r-\frac{1}{2}} e^{-\pi^{*} / x}$ which is always negligible if $0<x \leqq \mathbf{1}$.

On the other hand if we differentiate (4) repeatedly and make use of equation (3) in the form

$$
(4 x)^{-r-\frac{1}{1}} \Phi_{2 r+1}(n \pi / \sqrt{ } x)=\frac{d^{r}}{d x^{r}}\left\{(4 x)^{-\frac{1}{2}} \Phi_{1}(n \pi / \sqrt{ } x)\right\}
$$

we find that

$$
\begin{align*}
S_{2 r} & =\frac{(2 r)!\sqrt{ } \pi}{r!(2 \sqrt{ } x)^{2 r+1}}+\frac{(-1)^{r} 2 \sqrt{ } \pi}{(2 \sqrt{ } x)^{2 r+1}} \sum_{n=1}^{\infty}\left[\frac{d^{2 r} e^{-z^{2}}}{d z^{2 r}}\right]_{z=n \pi / \sqrt{ } x} \\
& =\frac{\sqrt{ } \pi}{2^{r} x^{r-1}}\left\{\frac{(2 r)!}{r!2^{r+1}}+(-1)^{r} \sum_{n=1}^{\infty} e^{-n^{*} \pi^{n}: 2 x} D_{2 r}(n \pi \sqrt{2 / x})\right. \tag{8}
\end{align*}
$$

where D denotes Weber's parabolic cylinder function.
Since the first term in the asymptotic expansion of $D_{2 r}(z)$ is $e^{-1 z^{2}} \cdot z^{2 r}$ the ratio of the series in (8) to the other term is of order $2(r!)\left(4 \pi^{2} / x\right)^{r} e^{-\pi^{*} x} /(2 r)!$, and this is of the order $10^{- \pm}$, or smaller, if

$$
r \leqq \pi^{2}(1 / x-1) / \log \left(\pi^{2} / x\right) .
$$

Thus we conclude that

$$
\begin{equation*}
S_{2 r}=\frac{\sqrt{ } \pi(2 r)!}{r!(4 x)^{r+\frac{2}{2}}, r \geqq 1} \tag{9}
\end{equation*}
$$

to better than 1 in 10,000 provided that

$$
\begin{array}{rccccccccc}
x \leqq 0.7 & 0.62 & 0.52 & 0.45 & 0.38 & 0.32 & 0.28 & 0.25 & 0.22 & 0.20 \\
\text { if } r=1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 .
\end{array}
$$

Since we have neglected the factor $2^{2 r+1}(r!) /(2 r)$! which decreases as r increases, the range is actually somewhat wider for the larger values of r.

By writing \boldsymbol{y} for $\pi / \sqrt{ } x$ in the above relations, we obtain a corresponding set of expressions for $\sum_{n=1}^{\infty} \Phi_{2 r+1}(n y)$ for $y \geqq 10$. For example from (8) we have

$$
\sum_{n=1}^{\infty} \Phi_{2 r+1}(n y) \doteq(-1)^{r+1}(2 r)!/ \pi^{\frac{1}{2}} r!
$$

which is independent of $y(\geqq 10)$, and for $r=1$ gives

$$
\sum_{n=1}^{\infty} e^{-\frac{1 n}{n} z^{n}} D_{2}(n z) \doteq \frac{1}{2}, \text { if } z>14
$$

Gairview, Glencairn St.,
Stevenston, Ayrshire.

A Generalisation of Dirichlet's Multiple Integral

By I. J. Good.

The purpose of this note is to generalise the Dirichlet-Liouville formula which expresses a certain type of multiple integral in terms of a single integral. ${ }^{1}$ In our formula the multiple integral will involve several arbitrary functions instead of only one, and it will be expressed as a product of single integrals.

Let n be a positive integer. Let $f_{1}(t), f_{2}(t), \ldots, f_{n}(t)$ be Lebesgue measurable functions when $0 \leqq t \leqq 1$. A finite sequence of n real numbers $m_{1}, m_{2}, \ldots, m_{n}$ is given. We write $m_{n+1}=0$ and

$$
\begin{aligned}
& M_{r}=m_{1}+m_{2}+\ldots+m_{r} \\
& X_{r}=x_{1}+x_{2}+\ldots+x_{r}
\end{aligned}
$$

[^1]
[^0]: ${ }^{1}$ Hartree, D. R., Mem. Proc. Manchester Lit. Phil. Soc., 80, 85, (1936).

[^1]: ${ }^{2}$ See, for example, G. F. Meyer, Vorlesungen über die Theorie der bestimmten Integrale (Leipzig, 1871), 566 et seq.; or E. T. Whittaker and G. N. Watson, Modern Analysis (4th edn., Cambridge, 1935), section 12.5; or H. Jeffreys and B. S. Jeffreys, Methods of Mathematical Physics (Cambridge, 1946), section 15.08; or L. J. Mordell, " Dirichlet's integrals," Edin. Math. Notes, No. 34 (1944), 15-17.

