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SUMMARY

The distribution of visits to a particular gene frequency in a finite
population of size N with non-overlapping generations is derived. It is
shown, by using well-known results from the theory of finite Markov
chains, that all such distributions are geometric, with parameters depen-
dent only on the set of fry's, where bi:j is the mean number of visits to
frequency j/2N, given initial frequency i/2N. The variance of such a distri-
bution does not agree with the value suggested by the diffusion method.
An improved approximation is derived.

Consider a gene, say of type A, that is introduced into a diploid population that
is of size N in every generation. We assume that there is no mutation. Then, if the
initial frequency of A is ij2N, there is a proper random variable Tijt which is the
number of generations spent at frequency j/2N in the progress of the population
toward fixation or loss of the gene. The purpose of this note is to show how the entire
distribution of T^ may be derived, once the means of Ti} and T^ are known. Thus, it
will only be necessary to obtain approximations to E(Ti:j) and E(T^) to be able to
immediately write down an approximation to the probability that Ty assumes a
particular value. This contrasts to the approach of Maruyama & Kimura (1971) and
Maruyama (1973), who set up a system of differential equations to compute the
moments of the distribution of T€i. Our approach also will be shown to be applicable
to the problem of deriving the distribution of Tip given ultimate fixation, which was
considered by Maruyama (1972).

We begin by noting that the underlying stochastic process is a finite Markov chain
with states-Z?i; i = 0,1,... , 22V, associated with gene frequencies i/2N. We define/y
to be the probability that there is, at some time, a visit to state Ep given that the
initial state i s ^ . We suppose first that i =j= j . Then, to ensure that Ti} = m ^ 1, there
must be an initial transition from.Ef to Ep followed by m— 1 returns to Ep and then
a failure to return to Ep Utilizing the Markov property of the process, we conclude
that, if i + i , then

^ = ^ = / < / / » - 1 ( 1 _ 4 ) . ( 1 )

It is also clear that P(r<, = 0) = 1-/„. (2)

If i = j , then TH = m ^ 1 if and only if there are m — 1 returns to the initial state,
followed by a failure to return. Because Ei is now the initial state, it is, of course,
impossible for the population to spend no generations ati^. Hence, expressions (1)
and (2) still apply, provided we replace/y by 1. Expressions (1) and (2) are well
known in the theory of finite Markov chains.
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Either by consideration of the generating function of Tii} or directly, one may
verify that (cf. Kemeny & Snell, 1960)

E(Tij)=fii/(l-fJi), (3)

O-*(r4y) = 6< i (26w-6w-l) , (4)

if we introduce the notation bit for E(Ti:j). It is convenient to rewrite the distribution
of Ttj in terms of the fry's. Thus, we have from (3) that /y = &#/&#, so that (1) and
(2) take the form

, = 0) = 1 - (6,/6,,); (5)

P(Ti} = m) = (bjbl) [1 - I/ft,,]"-1 (m > 1), (6)

which is how they appear in Kemeny & Snell (1960, p. 62). Note that in this formula-
tion the count of bu includes the initial generation in Et.

All the foregoing reasoning is still applicable if we consider the conditional
distribution of Tip given that there is ultimate fixation. This is because, even with
the conditioning, the process is still a finite Markov chain. The only change that
needs to be made in (4), (5) and (6) is to replace fri3- by

biilF = E[Ttj|ultimate fixation].

We note that if we replace fri3- by b^F in (4) it is not consistent with the formula
given by Maruyama (1972) for the expected value of T\p given ultimate fixation.
In his notation this expectation is written as O^\z, y)/(2N)2, while what we have
written as bijiF is denoted by <£>1(x,y)/2N. I t then follows from expression (7) in
Maruyama's paper that, in our notation,

^[T^fixation] = 2bijiPbjj[F.

Also, Maruyama (1973) has obtained an expression which is

in our notation, rather than 2blibij-blj, as implied by (4).
Nagylaki (1974) has derived the distribution of sojourn times by another method

than the one used here and has obtained results consistent with those of Maruyama.
However, his derivation is for a process that is continuous in its state space and
time parameter. He has informed us that his methods also may be used to obtain
the sojourn time distributions for a discrete time Markov chain and the results then
agree with (5) and (6).

In the remainder of this paper we consider the Fisher-Wright model with no
selection. In this case the probability of a transition fromi^ toEi in one generation is

I t is well known (cf. Ewens, 1973) that in this case the diffusion approximation gives

h = v

» 1 -j/2N

_ 2i
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As Ewens (1973) has shown, bijlF is equal to (b^P^/P^ where Pf is the probability of
ultimate fixation, given initial state Et. With neutral genes Pj/Pt = j/i, so that

&«!*•= 2, j = i + l,...,2N (9)

as found by Maruyama (1972) and Ewens (1973).
It seems natural to extend (8) to i = j , so that bu is set equal to 2. Professor Alan

Robertson has suggested to us that this is wrong, since this implies that, when i and
N are large, the mean number of visits toEi after time 0 would be 1 rather than 2,
as at Ei_1 and Ei+1, which seems implausible. He suggests that the results of
Maruyama and of Ewens refer to subsequent visits, not counting the initial state,
and therefore in the present formulation bti = biiiF = 3, so that if T*j represents the
number of visits to state 25,- after time 0 and JV is large,

P£ = m I ultimate fixation) = J(f )m (10)

for all i,j and m = 0,1, 2,.... The variance of this conditional distribution is

cr*(T*)iF^6. (11)

The approximation to bu can be improved by considering how the bt/s are com-
puted for the underlying Markov chain. Thus, there is a transition from2^ toEj in n
steps with probability pffi. This is also the mean number of visits to state Et at time
n, so that m

^ v rrSn) nc>\
"a — 2J Pa • (it)

Expression (12) and the Chapman-Kolmogorov equations imply that

co 2 i V - l 2 A ' - 1

ij=Pi}+ li 2J P\r Pri=Pif+ lu birPr}> (13)
n=l r= l r= l

If i = j , it follows from (7), (8) and (13) that

rfii!(2iV-i-l)!\2iVM 2NJ 2N

+ 2rJt+i(i-lV-(2N-i)\\2N) Y~2N) Wy

Approximating the sums by integrals, we have, if p = i/2N,

(14)
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where B(a, b) is the Beta-function with parameters a and b. It is known (see, for
example, Abramowitz & Stegun (1968, p. 944)) that the difference between the two

)2N~i( 2N\
• \pi{l-p)2

^ f ' j ^ (15)

If N is large and p is not near 0 or 1, we have from the central limit theorem that

bu= (3-4(4:N7Tp(l-p))-l)l(l-(4N7rp(l-p))-i). (16)

As N -> oo, bu approaches 3, as suggested by Robertson. Considered as a function
ofp, with given N, bu assumes its maximum value atp = \ and diminishes as \p — \\
increases. If, on the other hand, p is near 0, the Poisson approximation leads us to

bu= (3-4e-^7i!)/(l-e-S7i!). (17)

Expressions (8) and (16) are approximations, applicable when N is large. The b^'s
can be computed directly by noting that (13) may also be put in the form

% = [&a>-A,2iv-i] = ei(I-O)-1. (18)

where ê  is the 1 x 2N — 1 vector with 1 in the ith position and zeros elsewhere and
O is the matrix of probabilities of transitions from transient states to transient
states. Since the right side of (18) is the ith row of (I — Q)~\ it follows that the
quantities btj are the elements of (I— Q)"1, as shown by Kemeny & Snell (1960,
ch. in). If there are neutral genes, bijlF = (jb^ji. Some values of bij]F have been com-
puted for the case in which 2N = 50 and there is no selection, and are displayed in
Table 1.

Table 1. Some values ofbiiWfor 2N = 50

0

i

1
9

17
25
33
41
49

1

2-238
—
—
—
—
—

9

1-998
2-770

—
—
—
—

17

1-996
1-996
2-818

—
—
—

25

1-993
1-993
1-994
2-828

—
—

33

1-987
1-987
1-987
1-987
2-818

—

41

1-969
1-969
1-969
1-969
1-970
2-770

49

1-643
1-643
1-643
1-643
1-643
1-643
2-238

These results indicate that (9) gives a good approximation to biilF ifj is not near
50. Approximate values of biifF = bu, calculated from (16), are 2-828, 2-865, 2-873,
2-865 and 2-828 if i = 9, 17, 25, 33 and 41 respectively. They are too large, as might
have been expected, because the diffusion approximation that was used in place of
bir in (13) to obtain (16) is an overestimate.
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If we substitute the expressions given by (9) and (16) for bij]F and bu in (4) we have

for j = i+1,..., 2N. As N -> oo, the right side approaches 6. Considered as a function
of p, with given N, it assumes its maximum value at^> = \ and diminishes as \p — \\
increases. Approximate values of o-2(Ti3)|F computed from (19) when i — 1, j = 9,
17, 25, 33 and 41 are 5-312, 5-460, 5 492, 5-460 and 5-312 respectively.

Expression (19) is applicable if j is not too near 0 or 2JV and indicates that, for
such intermediate values of j , o'2(?'i;)|F will approach 6 as N -> oo. If, on the other
hand, p is near 0, (17) implies that <r2(Iy)|F approaches a smaller value.

By using bijW in place of btj in (4), and the figures in Table 1, it is possible to
compute a2(Ti:j\F. Some numerical values are given in Table 2.

Table 2. Some values of <r2{Ti:l)iF for 2N = 50

5

i

1
9

17
25
33
41
49

1

2-77
—
—
—

—
—

9

5-08
4-90
—
—

—

17

5-27
5-27
5-12
—

—

25

5-31
5-31
5-31
517

—
—

33

5-26
5-26
5-26
5-26
512
—
—

41

506
506
5-06
5-06
506
4-90
—

49

301
3-01
301
301
301
301
2-77

The approximate values given by (19) are thus overestimates, although, qualita-
tively, the prediction of the behaviour of cr2(Ti:j)iF is not misleading. The variances
cr2(Ti3)|F are not all approximately equal to 4 for j ^ i, as asserted by Maruyama
(1972). Instead, if i is small, they increase toward a peak that is well above 5 as
j increases toward 25 and then decline as j becomes still larger. This is what we
would expect from (19).

We are grateful to Professor Alan Robertson for helpful suggestions and comments and to
Dr Bud Meador, Charlotte Bentley and Pamela Doctor for help in computing Table 1.

This article is Journal Paper No. J-7887 of the Iowa Agriculture and Home Economics
Experiment Station, Ames, Iowa, Project 1669. Research was supported in part by National
Institute of Health, Grant GM13827.
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