
3
Some optics

To obtain insight into the electron scattering process, we appeal to some
elementary optics, with which the reader is certainly familiar from an
introductory physics course. If one looks through a telescope at a star,
or shines a laser through a pinhole, one does not really observe a point
of light, but actually a diffraction pattern with a bright disc at the center
and a series of concentric rings with diminishing intensity. If the radius
of the aperture through which the light passes is a, and the wavelength of
the incident light is λ1, then the angle θ to the first diffraction minimum
of the central Airy disc is given by

aθ ≈ 0.61λ1 (3.1)

Here θ is measured from the central ray, starting at the aperture. Now
introduce the incident wave number k1 and “momentum transfer” κ

k1 ≡ 2π

λ1
; wave number

κ ≈ k1θ ; momentum transfer (3.2)

Equation (3.1) can then be rewritten as

κa ≈ 1.22 π (3.3)

This relation has a marvelous consequence. Suppose one shines light
from a laser of given wavelength on a pinhole, and projects the resulting
diffraction pattern on a screen behind the pinhole. The angle to the first
minimum can be determined by making macroscopic measurements of
the distance of the screen from the aperture and the transverse distance
on the screen out to the first minimum. Equation (3.3) then allows one
to determine the radius a of the pinhole. One can measure a radius of
arbitrarily small size if only the momentum transfer is large enough! The
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10 Part 1 Introduction

Fig. 3.1. Optical pathlength with respect to central ray in Fraunhofer diffraction.

Fig. 3.2. The “momentum transfer” κ = k1 − k2.

momentum transfer is inversely proportional to the wavelength. Thus to
obtain large momentum transfer, one has to go to short wavelength. One
evidently needs a wavelength comparable to the size of the aperture to
make this measurement.

Let us extend these simple considerations. In Fraunhofer diffraction one
has an incident plane wave and an outgoing plane wave in the direction
of observation as illustrated in Fig. 3.1. The optical pathlength of an
arbitrary ray with respect to the central ray is evidently given from this
figure as

Δopt =
2π

λ1
(k̂1 · x − k̂2 · x) = κ · x (3.4)

where k̂1 and k̂2 are unit vectors in the incident and outgoing directions
respectively. Here the momentum transfer κ is defined by (Fig. 3.2)

κ = k1 − k2 (3.5)

Since the lengths of the incoming and outgoing wave numbers are identical
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Fig. 3.3. (a) Fraunhofer diffraction of light from a circular aperture; and (b)
Electron scattering through the Coulomb interaction from a spherical charge
distribution.

|k2| = |k1|, the square of the momentum transfer is given by

κ2 = 2k2
1(1 − cos θ)

= 4k2
1 sin2 θ

2
(3.6)

Here θ is the angle between the incident and outgoing wave number
vectors (Fig. 3.2). Huygens Principle says that each point on a wavefront
serves as a new source of outgoing waves. The outgoing waves interfere.
To determine the net outgoing wave from a circular aperture one must
add the contributions from each little element of the disc weighted by
exp{iΔopt} as illustrated in Fig. 3.3 (a). The resulting amplitude of the light
wave far from the scatterer is thus given by

Aγ =

∫
Aperture

d2x eiκ·x (3.7)

The diffraction pattern evidently measures the two-dimensional Fourier
transform of the aperture.

Now consider the scattering of an electron from a spherical charge
distribution through the Coulomb interaction. de Broglie and quantum
mechanics tell us that there is a wave associated with the electron of
wavelength

λ1 =
h

p1
; electron (3.8)

Here h ≡ 2πh̄ is Planck’s constant and p1 the incident electron momentum.
The scattering amplitude from each little element will be proportional to
the amount of charge there, or to the charge density ρch(x). The resulting
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12 Part 1 Introduction

amplitude of the electron wave far from the target is thus given in direct
analogy with the above by (see Fig. 3.3 b)

Ael =

∫
Nucleus

d3x ρch(x) eiκ·x (3.9)

The diffraction pattern of the scattered electron measures the three-
dimensional Fourier transform of the target charge distribution.

In electron scattering, the incident electron momentum is evidently
p1 = h̄k1 and the momentum transferred from the electron is h̄κ; this is
the reason for the terminology.

One can see a macroscopic diffraction pattern from arbitrarily small
charge distributions if only the momentum transfer is large enough, or
equivalently, if the wavelength is small enough. It follows from Eq. (3.8)
that to achieve very small wavelengths, one must go to very high electron
energies. It is an irony (and an expensive one!) that to look in detail
with accuracy and precision at very small objects such as nuclei and
nucleons one needs accurate and precise high-energy electron accelerators
to produce the incident electron beams and correspondingly large, accurate
and precise spectrometers to detect the scattered electrons.

One can put in some numbers. To have an electron with wavelength
1 fm = 10−13 cm, a typical nuclear dimension, one needs a relativistic
electron of energy1

λ = 1 fm

⇒ E = pc = h̄kc = 1240 MeV (3.10)

To obtain some insight, it is useful to evaluate the above amplitudes
for the simple cases of a circular disc and unit spherical charge distribu-
tion, both of radius a. With the introduction of polar coordinates in the
first case, and the use of spherical coordinates in the second, one finds
[Fe80]

Adisc
γ =

∫ a

0
ρ dρ

∫ 2π

0
dφ exp {iκ⊥ρ cosφ}

= πa2

[
2J1(κ⊥a)

κ⊥a

]

Asphere
el =

∫ a

0
r2 dr

∫
dΩr exp {iκr cos θr}

=

(
4πa3

3

)[
3j1(κa)

κa

]
(3.11)

1 Recall h̄c = 197.3 MeV fm. Here c is the speed of light.

https://doi.org/10.1017/9781009290616.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290616.005


3 Some optics 13

Here Jn(α) and jn(α) are cylindrical and spherical Bessel functions re-
spectively. The quantities in square brackets in the above expressions are
known as form factors. It is instructive to make some log plots of the
square of these quantities on your PC. The first zero of J1(α) occurs at
α1,1 = 1.22 π; this is the origin of Eq. (3.3).
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