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Abstract

We study the étale cohomology of Hilbert modular varieties, building on the methods
introduced by Caraiani and Scholze for unitary Shimura varieties. We obtain the anal-
ogous vanishing theorem: in the ‘generic’ case, the cohomology with torsion coefficients
is concentrated in the middle degree. We also probe the structure of the cohomology
beyond the generic case, obtaining bounds on the range of degrees where cohomol-
ogy with torsion coefficients can be non-zero. The proof is based on the geometric
Jacquet–Langlands functoriality established by Tian and Xiao and avoids trace formula
computations for the cohomology of Igusa varieties. As an application, we show that,
when p splits completely in the totally real field and under certain technical assump-
tions, the p-adic local Langlands correspondence for GL2(Qp) occurs in the completed
homology of Hilbert modular varieties.
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1. Introduction

1.1 Statement of results
In this paper, we study the étale cohomology of Hilbert modular varieties, building on the
methods introduced for unitary Shimura varieties in [CS17, CS19].

Let us first discuss a general vanishing conjecture for the cohomology of locally sym-
metric spaces. Let G/Q be a connected reductive group and let X be the symmet-
ric space for G(R), in the sense of [BS73]. For a neat compact open subgroup K ⊂
G(Af ), we can consider the associated locally symmetric space XK(G). Also define the
invariants1

l0 := rk(G(R))− rk(K∞)− rk(A∞) and q0 := 1
2(dimRX − l0).

A folklore conjecture predicts that the cohomology of the locally symmetric space XK(G)
with Z�-coefficients vanishes, after imposing an appropriate non-degeneracy condition, outside
the range of degrees [q0, q0 + l0] (which is symmetric about 1

2 dimRX). See, for example, the
discussion around [Eme14, Conjecture 3.3] and also [CG18, Conjecture B]. As these references
explain, this conjecture has important consequences for automorphy lifting theorems and the
p-adic Langlands programme.

When F is a totally real field and G := ResF/Q GL2, the corresponding locally symmet-
ric spaces are closely related to Hilbert modular varieties, which are (non-compact) Shimura
varieties of abelian type. When working with Shimura varieties rather than with locally
symmetric spaces, it is more natural to consider l0(Gad), which is equal to 0 by the sec-
ond axiom in the definition of a Shimura datum. In this case, the conjecture mentioned
above predicts that the non-degenerate part of the cohomology is concentrated in the middle
degree.

To make this more precise, let K ⊂ G(Af ) be a neat compact open subgroup and let ShK(G)
be the corresponding Hilbert modular variety. This is a smooth, quasi-projective scheme over Q,

1 Here, K∞ ⊂ G(R) is a maximal compact subgroup and A∞ is the group of R-points of the maximal Q-split torus
in the centre of G.
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of dimension g := [F : Q]. Its complex points can be described as

ShK(G)(C) = G(Q)\(C � R)g ×G(Af )/K.

Let � be a prime number; we have a spherical Hecke algebra T defined in § 2.1.2, generated by
the standard Hecke operators Tv, S±1

v for v not belonging to a suitable finite set S of places of
F . The algebra T acts on the étale cohomology groups H i

(c)(ShK(G),F�).2 Take a maximal ideal
m ⊂ T in the support of H i

(c)(ShK(G),F�). It follows from Scholze’s work, at least when � > 2,
cf. Theorem 2.2.1, that there exists a unique continuous, semisimple Galois representation

ρ̄m : ΓF → GL2(F̄�),

where ΓF denotes the absolute Galois group of F , which is characterised as follows: for every
v �∈ S, ρ̄m is unramified at v and the characteristic polynomial of ρ̄m(Frobv) is equal to X2 −
TvX + SvN(v) (mod m).

We say that m is non-Eisenstein if ρ̄m is absolutely irreducible. The most optimistic vanishing
conjecture predicts that the localisation H i

(c)(ShK(G),F�)m should be concentrated in the middle
degree i = g if m is non-Eisenstein. We make significant progress towards this.

Theorem A (see Theorem 7.1.1). Let � > 2 be a prime and let m ⊂ T be a maximal ideal in
the support of H i

c(ShK(G),F�) or H i(ShK(G),F�). Assume that the image of ρ̄m is not solvable.
Then H i(ShK(G),F�)m = H i

c(ShK(G),F�)m is non-zero only for i = g.

Remark 1.1.1. (i) By Dickson’s theorem, cf. [DDT97, Theorem 2.47 (b)], the projective image
of ρ̄m is either conjugate to a subgroup of the upper triangular matrices, or to PGL2(F�k) or
PSL2(F�k), for some k ≥ 1, or it is isomorphic to one of D2n, for some n ∈ Z>1 prime to �, A4,
S4, or A5. The image of ρ̄m is not solvable if and only if the following condition is satisfied:

(a) if � = 3, the projective image of ρ̄m is isomorphic to A5 or contains a conjugate of PSL2(F9);
(b) if � > 3, the projective image of ρ̄m is isomorphic to A5 or contains a conjugate of PSL2(F�).

(ii) If m is non-Eisenstein, then H i(ShK(G),C)m is concentrated in the middle degree. This
follows from the explicit description of the cohomology with complex coefficients of Hilbert
modular varieties (see [Fre13, Chapter III]).

(iii) Previously, Dimitrov had obtained a vanishing theorem for the cohomology of Hilbert
modular varieties with torsion coefficients in [Dim09, Theorem 2.3] (see also [Dim05]), under
stronger assumptions. More precisely, Dimitrov proves a theorem for cohomology with coefficients
in certain local systems on ShK(G). In addition to a large image assumption on ρ̄m, he also
requires that the level is prime to � and that � is large compared to the weight giving rise to
the local system. Since we make no assumption on the level at �, a standard argument using the
Hochschild–Serre spectral sequence allows us to upgrade Theorem A to also apply to cohomology
with twisted coefficients.

Let p �= � be a prime which splits completely in F and such that ρ̄m is unramified at every
place of F above p. If v is such a place, we say that ρ̄m is generic at v if the eigenvalues of
ρ̄m(Frobv) have ratio different from p±1. If the projective image of ρ̄m satisfies the condition
in Remark 1.1.1(1), then the Chebotarev density theorem implies, cf. Lemma 7.1.8, that there
exists a prime p as above such that ρ̄m is generic at every v | p.3 As in [CS17, CS19], Theorem A

2 This denotes the étale cohomology (with compact support) of the variety base changed to Q̄, but we suppress
Q̄ to simplify the notation.
3 Note, however, that Frank Calegari has produced an example of an absolutely irreducible mod � Galois
representation with projective image D4 � (Z/2Z)2 for which no such prime p exists.
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relies on the study of the cohomology of (perfectoid) Igusa varieties and on the geometry of the
Hodge–Tate period map at the auxiliary prime p.

The key new idea in our situation is to establish a geometric Jacquet–Langlands transfer
comparing the cohomology of Igusa varieties attached to different quaternionic Shimura varieties.
This replaces the direct computation of the cohomology of Igusa varieties via the trace formula
carried out in [CS17]. We also exploit the relation between Igusa varieties and fibres of the
Hodge–Tate period map for compact quaternionic Shimura varieties. We explain this idea more
in § 1.2.

Furthermore, Theorem A is obtained as a special case of the following more precise result,
that probes the structure of the cohomology beyond the generic case. Given a prime p which
splits completely in F and such that ρ̄m is unramified at every place of F above p, denote by
δp(m) ∈ [0, g] the number of places above p where ρ̄m is not generic.

Theorem B (see Theorem 7.1.6). Let � > 2 be a prime. Let p �= � be an odd prime which splits
completely in F and such that K = KpKp with Kp hyperspecial. Let m ⊂ T be a non-Eisenstein
maximal ideal. Then

H i
c(ShK(G),F�)m

∼→ H i(ShK(G),F�)m

vanishes outside i ∈ [g − δp(m), g + δp(m)].

Theorem B is inspired by Arthur’s conjectures [Art96], describing the interplay between
the Hecke action and the Lefschetz structure on the cohomology of Shimura varieties with
C-coefficients. Our result is consistent with the existence of such a structure on the cohomology
with F�-coefficients as well.

In the case of Harris–Taylor unitary Shimura varieties, Boyer established the analogue of
Theorem B in [Boy19] (see also the discussion around [Kos20, Theorem 1.3]). Our argument is
partly inspired by Boyer’s, but it is different: we rely on the ingredients mentioned above, as well
as on the affineness and smoothness of Newton strata. This allows us to apply Artin vanishing
at a crucial step in the proof, followed by Poincaré duality.

Remark 1.1.2. (i) If δp(m) = 0, we expect that H i
c(ShK(G),F�)m = 0 for i > g (and, dually,

H i(ShK(G),F�)m = 0 for i < g) even without the non-Eisenstein assumption on m. This is the
analogue of [CS19, Theorem 1.1] in our context. To establish this, one may need the semi-
perversity result [CS19, Theorem 4.6.1] in our setting, which relies on a detailed understanding
of toroidal compactifications of Igusa varieties.

(ii) Using the same method based on geometric Jacquet–Langlands, we also obtain analogues
of Theorems A and B for compact quaternionic Shimura varieties, without the non-Eisenstein
assumption: see Theorem 7.5.2.

As a quick application of Theorem A, we show that the p-adic local Langlands correspondence
occurs in the completed homology of Hilbert modular varieties. More precisely, fix a prime p > 3
which splits completely in F ; in the following discussion, the prime p will play the role of the
prime denoted by � above. Fix a large enough finite extension L/Qp with ring of integers O.
Under suitable assumptions (e.g. hypothesis (3) in Theorem C) we can attach to the restriction
of ρ̄m to places v | p a universal local deformation ring Rloc

p := ⊗̂v|p,ORdef
v and an Rloc

p -module
P := ⊗̂v|p,OPv. The latter represents a large part of the p-adic local Langlands correspondence
in this setting, cf. [Paš13]. (See § 8 for more details on the notation.)

Theorem C. Let p > 3 be a prime which splits completely in F . Assume that the following
assertions hold true.
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(i) The projective image of the Galois representation ρ̄m attached to m contains a conjugate of
PSL2(Fp) or is isomorphic to A5.

(ii) If ρ̄m is ramified at some place v not lying above p, then v is not a vexing prime.
(iii) For each place v | p, the restriction of ρ̄m to ΓFv is absolutely irreducible.

Then the completed homology H̃g(K̄1(N(ρ̄m))p,O)m, as a module over T(K̄1(N(ρ̄m))p)m[Ḡ(Qp)],
can be described as

H̃g(K̄1(N(ρ̄m))p,O)m � T(K̄1(N(ρ̄m))p)m⊗̂Rloc
p
P⊕m

for some m ≥ 1.

Theorem C points towards an extension of Emerton’s landmark local–global compatibility
theorem for modular curves [Eme11] to the case of Hilbert modular varieties. Here, we apply the
axiomatic approach via patching developed in [CEG+18, GN22] in order to obtain an uncondi-
tional ‘proof of concept’. We note that, for this application, it is crucial to know that completed
homology is a projective object in an appropriate category of

∏
v|p PGL2(Zp)-modules. This relies

on knowing Theorem A with twisted coefficients coming from arbitrary Serre weights, something
that is not available from the earlier results of [Dim09]. In Remark 8.2.3, we also sketch how to
obtain a version of compatibility with the p-adic local Langlands correspondence without any
assumptions on the tame level.

Theorem A should have numerous other applications to the p-adic Langlands programme for
GL2 over a totally real field F , including in the case when p ramifies in F . Once cohomology
is concentrated in one degree, one can combine the Taylor–Wiles–Kisin patching method with
purely local techniques, as in [EGS15, BHS19] (for example). Traditionally, these methods have
been used for Shimura sets attached to definite unitary groups or for Shimura curves. The
advantage of Hilbert modular varieties is that their (co)homology may be more suitable to
studying low-weight forms, such as Hilbert modular forms of parallel weight 1.

1.2 The method of proof
As we mentioned above, the proof of Theorems A and B uses the geometry of the Hodge–Tate
period morphism at an auxiliary prime p �= � for quaternionic Shimura varieties, particularly the
relation between fibres of this morphism and perfectoid Igusa varieties. The key new idea in the
proof, inspired by the work of Tian and Xiao on the Goren–Oort stratification on quaternionic
Shimura varieties [TX16], is to establish instances of geometric Jacquet–Langlands functoriality
for Igusa varieties. This idea, which was not present in either of [CS17, CS19], allows us to handle
the cohomology of Igusa varieties. We exploit this (and further ingredients mentioned below) to
transfer systems of Hecke eigenvalues in the cohomology of non-ordinary strata from Hilbert
modular varieties to (perfectoid) compact quaternionic Shimura varieties. Using this we show
that, in the setting of Theorem A, cohomology localised at m must be supported on the ordinary
locus; it is then relatively easy to prove that the cohomology is concentrated in one degree.

We illustrate a version of the key new idea mentioned above first using the toy model of
the modular curve, the Shimura variety for G := GL2 /Q. Let Kp ⊂ G(Af ) be a sufficiently
small compact open subgroup. By [Sch15, § 3], we have the Hodge–Tate period morphism πHT :
ShKp(G)→ P1,ad and the Hodge–Tate period domain admits the Newton stratification

P1,ad = P1(Qp)
⊔

Ω2.

Here, P1(Qp) is the closed stratum corresponding to the ordinary locus and Ω2, the Drinfeld
upper half plane, is the open stratum corresponding to the supersingular locus. For every
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geometric point x : Spa(C,OC)→ Ω2, the fibre π−1
HT(x) is a perfectoid version of a supersin-

gular Igusa variety. In view of [How22, Corollary 3.7.4] (which originates in an observation of
Serre [Ser96]), this can, in turn, be identified with the double coset D×\D×(Af )/Kp, where D/Q
is the quaternion algebra that is ramified precisely at p and∞. If m ⊂ T is a non-Eisenstein max-
imal ideal such that (RπHT∗F�)m is supported on Ω2, then m is also in the support of the module
H0(D×\D×(Af )/Kp,Q�). This means that there exists a cuspidal automorphic representation
of D× whose associated Galois representation is a characteristic 0 lift of ρ̄m.

However, if we choose p such that ρ̄m|ΓQp
is generic, then any characteristic 0 lift corresponds,

under the classical local Langlands correspondence, to a generic principal series representa-
tion of GL2(Qp). Such a representation cannot be the local component at p of the global
Jacquet–Langlands transfer of a cuspidal automorphic representation of D×. Therefore, if ρ̄m

is generic at p, then the complex of sheaves (RπHT∗F�)m is supported only on the ordinary locus
P1(Qp).

Morally, the Hilbert case for a totally real field F of degree g behaves like a product of g copies
of the modular curve case. In this setting, Tian and Xiao establish geometric instances of the
Jacquet–Langlands correspondence in [TX16]. Inspired by their result in the case when p splits
completely in F , we express the geometric Jacquet–Langlands relation as a Hecke-equivariant
isomorphism between Igusa varieties attached to different Shimura varieties, cf. Theorem 4.2.4.4

In Theorem 6.3.3, we obtain a clean geometric description of the μ-ordinary locus at infinite
level on quaternionic Shimura varieties. This relies on (a perfectoid version of) the Mantovan
product formula [Man05], established in § 5, and on the induced structure of the corresponding
Rapoport–Zink spaces, cf. [Han21, GI16]. Theorems 4.2.4 and 6.3.3 allow us to transfer systems
of mod � Hecke eigenvalues between different Shimura varieties, which forms the basis for an
inductive argument to prove Theorem B.

Some technical difficulties we encounter are that Hilbert modular varieties are Shimura vari-
eties of abelian type and that they are non-compact. However, the non-compactness does not
impose serious difficulties. The only Newton stratum that intersects the boundary of Hilbert
modular varieties is the ordinary one. This, together with the geometric Jacquet–Langlands
relation on the level of interior Igusa varieties, makes the analysis of interior Newton strata
similar to that in [CS17]. Because we are localising at a non-Eisenstein maximal ideal, we avoid
employing partial minimal and toroidal compactifications of Igusa varieties or semi-perversity;
in particular, our argument is independent of [CS19], and only relies on the (easier) study of the
geometry of the Hodge–Tate period map in the compact setting of [CS17].

Recently, Koshikawa [Kos21] gave a new strategy for proving the vanishing theorems of [CS17,
CS19], removing most technical assumptions from these results. This strategy relies on [FS21]
together with the geometry of the Hodge–Tate period morphism. The idea is to show that
only the cohomology of the ordinary locus contributes to the generic part of the cohomology of
Shimura varieties, by proving a local vanishing theorem for the generic part of the cohomology
of Rapoport–Zink spaces. After reducing to the ordinary locus, [Kos21] uses the semi-perversity
result mentioned above to control the range of degrees of cohomology. Koshikawa’s arguments
could be applied in the Hilbert setting as well, though this would require some version of our
results in § 5 and semi-perversity. One advantage of our method is that it gives information about
the complexes of sheaves (RπHT∗F�)m rather that just the cohomology groups H∗(ShK(G),F�)m.

4 To make sense of Igusa varieties, we want an integral model with a nice moduli interpretation. This is not
directly available for quaternionic Shimura varieties. For this reason, in the body of the paper, we work with
certain auxiliary unitary Shimura varieties that are closely related to Hilbert and quaternionic Shimura varieties;
we ignore this point throughout the introduction.

2284

https://doi.org/10.1112/S0010437X23007431 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X23007431


On the cohomology of Hilbert modular varieties

1.3 Notation
We use the following notation throughout the paper, unless otherwise stated.

The cardinality of a set T is denoted by |T |.
The symbol ⊗ stands for ⊗Z. If A is an abelian group, we let Â = A⊗ Ẑ and Â(p) = A⊗ Ẑ(p).

We also set Af = Q̂, the finite adeles of Q, and A
(p)
f = Q̂(p), the finite adeles of Q away from p.

If L is a perfect field, we denote by L̄ an algebraic closure of L, and by ΓL the absolute
Galois group Gal(L̄/L). Assume now that L is a number field. If v is a finite place of L, we
denote by Lv the completion of L at v, and by Ov the ring of integers of Lv. We denote by �v a
uniformiser of Ov, and by N(v) the cardinality of the residue field Ov/(�v). We denote by Frobv
the geometric Frobenius at v. We let AL,f = L̂, the ring of finite adeles of L.

If A→ B is a ring morphism and S → SpecA is a scheme, we denote by SB the base change
S ×SpecA SpecB. We use a similar notation for adic spaces. If S, T are two schemes over Q, we
denote by S × T the fibre product S ×Spec Q T .

If L is a field and S is a variety or adic space over L, the symbols H i(S,F�), H i(S,Z�) and
H i(S,Q�) denote the étale (respectively, �-adic étale) cohomology of SL̄.

2. Hilbert modular varieties and Galois representations

In this section, we establish some preliminary results about Hilbert modular varieties. In partic-
ular, we construct Galois representations attached to systems of Hecke eigenvalues occurring in
their cohomology with F�-coefficients, using [Sch15].

2.1 Shimura varieties and locally symmetric spaces for ResF/QGL2

Fix a totally real number field F of degree [F : Q] =: g, and let OF be the ring of integers of
F . Totally positive elements in F (respectively, OF ) will be denoted by F+ (respectively, O+

F ).
Let Σ∞ := {τ1, . . . , τg} be the set of real embeddings of F ; let G := ResF/QGL2 with centre
Z � ResF/QGm.

2.1.1 Let S := ResC/RGm be the Deligne torus, and let h : S→ GR �
∏g
i=1 GL2,R be the

morphism which on R-points is given by

z = a+ ib ∈ S(R) 
→
(
a b
−b a

)g

∈ G(R).

Let K◦∞ :=
∏g
i=1 SO2(R) ⊂ G(R) (a maximal compact connected subgroup). The G(R)-

conjugacy class of h, denoted by X, is identified with G(R)/Z(R)K◦∞ � (C � R)g, and the couple
(G,X) is a Shimura datum with reflex field Q. For every compact open subgroup K ⊂ G(Af )
the Shimura variety ShK(G) is a quasi-projective variety with a canonical model over the reflex
field Q, with complex analytic uniformisation

ShK(G)(C) = G(Q)\X ×G(Af )/K.

The Shimura varieties ShK(G) are called Hilbert modular varieties. If K ⊂ G(Af ) is neat (which
we will always assume in what follows), then ShK(G) is smooth; moreover, if K ′ ⊂ K is a
normal compact open subgroup then the map ShK′(G)→ ShK(G) is a finite étale Galois
cover.
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We have a map

ShK(G)(C)→ F×\{±1}g × A×
F,f/det(K) � F×,+\A×

F,f/det(K) (2.1.1.1)

induced by the map sending (x∞, xf ) ∈ G(R)×G(Af ) to (sgn detx∞,detxf ). An element in F×

acts on {±1}g by multiplying by the sign of the image via each real embedding. Fibres of the
map in (2.1.1.1) are connected components of the source.

2.1.2 Hecke action. We have the Hecke algebra TK(G) := Z[K\G(Af )/K] of compactly sup-
ported, K-bi-invariant functions on G(Af ), with multiplication given by convolution. Every
element of TK(G) gives rise to a correspondence on ShK(G) as follows: given g ∈ G(Af ), let
Kg := K ∩ gKg−1; we have a correspondence [KgK] on ShK(G) given by the following diagram.

Here the vertical maps are the canonical projections and the upper horizontal map on complex
points is induced by right multiplication by g on G(Af ). Therefore, we obtain an action of TK(G)
on the cohomology groups H i(ShK(G),F�) as well as on the cohomology groups with compact
support H i

c(ShK(G),F�), where � is a prime number. In the rest of the paper, we will rather
work with a smaller Hecke algebra, defined as follows: fix a finite set S of places of F containing
all the infinite places, all the places v | �, and all the finite places v such that Kv is not conjugate
to GL2(Ov), where Ov is the ring of integers in the completion Fv of F at v. Let

T :=
⊗
v �∈S

′ Z[GL2(Ov)\GL2(Fv)/GL2(Ov)]

denote the abstract spherical Hecke algebra away from S. For every v �∈ S, choose a uniformiser
�v of Ov. We denote by Tv the double coset GL2(Ov)(�v 0

0 1 ) GL2(Ov) and by Sv the double
coset GL2(Ov)(�v 0

0 �v
) GL2(Ov), seen as elements of T. The algebra T is commutative and is

generated by the operators Tv, S±1
v for v �∈ S. The inversion map on G induces a map ι : T→ T;

for a maximal ideal m ⊂ T we denote by m∨ its image via ι.

2.1.3 Locally symmetric spaces. We have the locally symmetric space XK(G) attached to G
and K, defined as follows:

XK(G) := G(Q)\G(R)×G(Af )/(R>0K
◦
∞)K.

Letting ZK := Z(Q) ∩K, the quotient TK := Z(R)/{±1}gR>0ZK is a torus of dimension g − 1
by Dirichlet’s unit theorem, and the projection XK(G)→ ShK(G) is a TK-bundle (see [Gra16,
Lemma 3.1.2]). Let us define K∞ :=

∏g
i=1 O2(R), and let us consider the space

X̄K(G) := G(Q)\G(R)×G(Af )/(R>0K∞)K.

In other words, we are quotienting by a maximal compact subgroup at infinity instead of its con-
nected component of the identity. This is the space used in [Sch15] (see the introduction there).
The matrix (−1 0

0 1 ) normalises SO2(R); hence, we get a right action of C := (Z/2Z)g on XK(G),
and we have X̄K(G) = XK(G)/C. The recipe given above endows the (Betti) cohomology of
XK(G) and X̄K(G) with an action of T, which commutes with the action of C. Furthermore,
if we make C act on F×\{±1}g × A×

F,f/det(K) by switching signs at archimedean places, then
the map in (2.1.1.1) is C-equivariant.

Let Ĉ be the set of characters of C with values in F×
� . The following lemma relates the

cohomology of the spaces ShK(G), XK(G) and X̄K(G).
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Lemma 2.1.4. Let � be an odd prime.

(i) Assume that det(K) = K ∩ Z(Af ). Then for every i ≥ 0 the pullback mapH i(ShK(G),F�)→
H i(XK(G),F�) is injective.

(ii) Assume that det(K) ∩ F× only consists of totally positive elements. Then there is a Hecke-
equivariant decomposition

H∗(XK(G),F�) =
⊕
χ∈Ĉ

H∗(XK(G),F�)χ

and pullback induces an isomorphism H∗(X̄K(G),F�) � H∗(XK(G),F�)Id.

Proof. (i) Under the assumption that det(K) = K ∩ Z(Af ), [Gra16, Proposition 3.3.9] constructs
cohomology classes in H∗(XK(G),F�) whose restrictions to each fibre of the map XK(G)→
ShK(G) give a basis of its cohomology; the statement hence follows from the Leray–Hirsch
theorem.

(ii) Since det(K) ∩ F× consists of totally positive elements by assumption, an explicit com-
putation shows that C acts freely on F×\{±1}g × A×

F,f/det(K). In other words, the group C

acts on XK(G) freely permuting connected components. This implies that H∗(X̄K(G),F�) �
H∗(XK(G),F�)Id. The Hecke-equivariance of the direct sum decomposition in the statement
follows from the fact that the action of C commutes with the Hecke action. �

2.2 Construction of Galois representations
The aim of this section is to prove the following result.

Theorem 2.2.1. Let � be an odd prime and K ⊂ G(Af ) a neat compact open subgroup. Let
m ⊂ T be a maximal ideal in the support of H i(ShK(G),F�) or H i

c(ShK(G),F�) for some i ≥ 0.
There is a unique continuous, semisimple, totally odd Galois representation

ρ̄m : ΓF → GL2(F�)

such that, for all but finitely many places v of F , ρ̄m is unramified at v and the characteristic
polynomial of ρ̄m(Frobv) is equal to X2 − TvX + SvN(v) (mod m).

Remark 2.2.2. One could prove the above result by adapting the arguments in Chapter IV
of [Sch15]. The main technical point one needs to deal with is the construction of ad hoc com-
pactifications of Hilbert modular varieties.5 For the sake of brevity, we will instead explain below
how to deduce the theorem from (a special case of) the main result of [Sch15]; however, at the
time of writing, the totally real case of the latter is conditional on Arthur’s work [Art13].

Proof. Uniqueness of ρ̄m follows from the Chebotarev density theorem and the Brauer–Nesbitt
theorem; to prove existence of ρ̄m it suffices to consider the cohomology groups H∗(ShK(G),F�)
(by Poincaré duality and the discussion in [CS19, p. 35]). Furthermore, if K ′ ⊂ K is a normal
compact open subgroup, then there is a Hecke-equivariant Hochschild–Serre spectral sequence
relating cohomology of ShK′(G) and ShK(G). Therefore, at the cost of possibly enlarging the
set S in § 2.1.2, we may replace K by a normal compact open subgroup. In particular, we may
take K = K(N) for N large enough, where K(N) := {M ∈ GL2(ÔF ) |M ≡ ( 1 0

0 1 ) (mod N)}.
This ensures that the assumption in the first point of Lemma 2.1.4 is satisfied. Furthermore,
Chevalley’s theorem on units guarantees that we may choose N in such a way that the hypothesis
in the second point of Lemma 2.1.4 is satisfied as well. We fix such an integer N from now on.

5 This is slightly subtle because Hilbert modular varieties are Shimura varieties of abelian type and do not directly
embed into Siegel modular varieties. However, one can handle this issue by carefully choosing the tame level.
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By assumption there is i ≥ 0 such that H i(ShK(G),F�)m �= 0. By Lemma 2.1.4 we deduce that
H i(XK(G),F�)m �= 0, hence H i(XK(G),F�)

χ
m �= 0 for some χ ∈ Ĉ. If χ is the trivial character,

then by Lemma 2.1.4 we have H i(X̄K(G),F�)m �= 0, and by [Sch15, Theorem 1.3] and [CL16,
Theorem 1.2] we can attach to m a Galois representation as in the statement of the theorem.

Now let us suppose that χ is not the trivial character. The map {±1}g → F×\{±1}g ×
A×
F,f/det(K) sending ε to the equivalence class of (ε, 1) is injective. We may extend χ : {±1}g →

F×
� to a character ψ : F×\{±1}g × A×

F,f/det(K)→ k× for a large enough finite extension k

of F�. The function ψ gives rise to a cohomology class cψ ∈ H0(XK(G), k). Let fψ : T→ T

the map sending the operator Tg attached to the double coset of g ∈ G(Af ) to ψ(det(g)−1)Tg.
Cup product with cψ induces a map H i(XK(G), k)→ H i(XK(G), k) which is Hecke-equivariant
if we endow the source (respectively, target) with the usual Hecke action (respectively, the
composite of the usual Hecke action and fψ). This is proved in great generality in [ACC+23,
Proposition 2.2.22], and it can be checked in our situation by a direct computation.

Furthermore, the above map sends H i(XK(G), k)χ to H i(XK(G), k)Id. Indeed, for ε ∈ C we
have ε∗(cψ) = χ(ε)cψ; hence, for every c ∈ H i(XK(G), k)χ:

ε∗(cψ ∪ c) = ε∗cψ ∪ ε∗c = χ(ε)cψ ∪ χ(ε)c = cψ ∪ c.

The outcome of our discussion is that, letting m(ψ) := fψ(m), we have the equivalence

H i(XK(G), k)χm �= 0⇔ H i(XK(G), k)Idm(ψ) �= 0.

We deduce that H i(X̄K(G), k)m(ψ) �= 0, hence we have a Galois representation ρ̄m(ψ) attached to
m(ψ) by [Sch15, Theorem 1.3]. We can finally take ρ̄m to be the twist of ρ̄m(ψ) by the character
of ΓF corresponding to ψ via global class field theory. �

2.3 Cohomology of the boundary
Recall that a maximal ideal m ⊂ T in the support of H∗(ShK(G),F�) is said to be non-Eisenstein
if the associated Galois representation ρ̄m is absolutely irreducible.

Lemma 2.3.1. Let � > 2 be a prime and assume that m is non-Eisenstein. Then:

(i) for every integer i, the natural map from compactly supported cohomology to cohomology
induces an isomorphism H i

c(ShK(G),F�)m � H i(ShK(G),F�)m;
(ii) take δ ≥ 0 and assume that H i

c(ShK(G),F�)m = H i
c(ShK(G),F�)m∨ = 0 for each i < g − δ;

then H i(ShK(G),F�)m = 0 if i is outside the interval [g − δ, g + δ].

Proof. Consider the Borel–Serre compactification ShK(G)BS of ShK(G), constructed in [Har87],
with boundary ∂. Recall that the cohomology of ShK(G)BS agrees with that of ShK(G), as
the two spaces are homotopy equivalent, and the compactly supported cohomology of ShK(G)
coincides with the cohomology of ShK(G)BS relative to the boundary. Hence, we have a
T-equivariant long exact sequence

. . . H i
c(ShK(G),F�)→ H i(ShK(G),F�)→ H i(∂,F�)→ H i+1

c (ShK(G),F�) . . . .

We claim that if m is non-Eisenstein then cohomology of the boundary vanishes after localising
at m; this implies the first point. The second follows using Poincaré duality (which interchanges
m and m∨, as in [CS19, p. 35]). It remains to justify our claim. By [Har87, p. 46] we have
H∗(∂,F�) � H∗(P (Q)\(C � R)g ×G(Af )/K,F�), where P ⊂ G is the standard upper parabolic.
To prove our claim we may replace K by a normal compact open subgroup, so that the condition
det(K) = K ∩ Z(Af ) is satisfied. We will assume that this is the case in the rest of the proof.
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The space P (Q)\(C � R)g ×G(Af )/K is a disjoint union of quotients P (Q) ∩ giKg−1
i \(C � R)g,

where gi runs over a set of representatives of P (Q)\G(Af )/K.
On the other hand, we have the locally symmetric space XK(G). The boundary

of its Borel–Serre compactification is homotopy equivalent to the space P (Q)\G(R)×
G(Af )/(R>0K

◦∞)K (see [Gra16, p. 94]). The latter is a disjoint union of quotients P (Q) ∩
giKg

−1
i \G(R)/(R>0K

◦∞) with gi as above. The action of Z(R) on G(R)/(R>0K
◦∞) induces an

action on P (Q)\G(R)×G(Af )/(R>0K
◦∞)K. This action preserves the fibres of the projection

map

P (Q)\G(R)×G(Af )/(R>0K
◦
∞)K → P (Q)\(C � R)g ×G(Af )/K, (2.3.1.1)

and factors through an action of the torus TK = Z(R)/{±1}gR>0ZK . The argument in the proof
of [Gra16, Lemma 3.1.2] shows that each projection map P (Q) ∩ giKg−1

i \G(R)/(R>0K
◦∞)→

P (Q) ∩ giKg−1
i \(C � R)g is a TK-bundle. Hence, the same is true for the map in (2.3.1.1).

Furthermore, we have the following commutative diagram.

As we already mentioned, by [Gra16, Lemma 3.1.2] the right vertical map is a TK-bundle, and
[Gra16, Proposition 3.3.9] constructs cohomology classes in H∗(XK(G),F�) whose restrictions
to each fibre of the right vertical map give a basis of its cohomology. Pulling back via the upper
horizontal map we obtain classes in H∗(P (Q)\G(R)×G(Af )/(R>0K

◦∞)K,F�) enjoying the same
property. In particular, by Leray–Hirsch the pullback map in cohomology induced by the left ver-
tical map is injective. Now assume that H∗(∂,F�)m = H∗(P (Q)\(C � R)g ×G(Af )/K,F�)m �= 0.
We deduce that the cohomology H∗(P (Q)\G(R)×G(Af )/(R>0K

◦∞)K,F�)m of the bound-
ary of XK(G) is non-zero. Finally the argument in [NT16, § 4] shows that m must be
Eisenstein. �

3. Quaternionic and unitary Shimura varieties

In this section, we introduce quaternionic Shimura varieties as well as certain closely related
unitary Shimura varieties that admit nice integral models.

3.1 Quaternionic Shimura data and the associated unitary Shimura data
3.1.1 Quaternionic Shimura data. As in the previous section we use the notation G :=

ResF/QGL2; we also let TF := ResF/QGm. Let K ⊂ G(Af ) be a neat compact open subgroup. Fix
a prime p > 2 which is totally split in F and such that K = KpKp with Kp = GL2(OF ⊗ Zp).

Recall that Σ∞ denotes the set of real places of F . We will denote by Σp the set of embeddings
of F into Q̄p, which we identify with the set of prime ideals p ⊂ OF lying above p. We fix an
isomorphism ιp : Q̄p

∼→ C, inducing a bijection ιp,∞ : Σp
∼→ Σ∞. For every subset T ⊂ Σp we set

T∞ := ιp,∞(T ) and we denote by BT the quaternion algebra over F ramified precisely at T
∐
T∞.

We let GT := ResF/QB
×
T , and we fix an isomorphism GT (A(p)

f ) � G(A(p)
f ). The group GT,R is

isomorphic to
∏
τ∈T∞ H× ×

∏
τ∈Σ∞�T∞ GL2,R where H is the algebra of Hamilton quaternions.

Let XT be the GT (R)-conjugacy class of the morphism hT : S→ GT,R sending an R-point z =
a+ ib ∈ S(R) to (zτ )τ∈Σ∞ , where zτ = 1 for τ ∈ T∞ and zτ = ( a b

−b a ) if τ ∈ Σ∞ � T∞. The couple
(GT , XT ) is a weak Shimura datum (in the sense of [TX16, § 2.2]) whose reflex field FT can be

2289

https://doi.org/10.1112/S0010437X23007431 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X23007431


A. Caraiani and M. Tamiozzo

described as follows: the group Aut(C/Q) acts on Σ∞ by post-composition. Let ΓT ⊂ Aut(C/Q)
be the subgroup preserving T∞; then FT = CΓT ⊂ C.

Let KT = KT,pK
p ⊂ GT (Af ) be the compact open subgroup such that Kp ⊂ GT (A(p)

f ) �
G(A(p)

f ) is the subgroup chosen above andKT,p =
∏

p|pKT,p is of the following type: if p ∈ Σp � T ,
then we fix an isomorphism ρp : BT (Fp)× → GL2(Fp) and we take KT,p := ρ−1

p (GL2(Op)). If
p ∈ T , then we take KT,p to be the group of units in the unique maximal order in the division
quaternion algebra BT ⊗F Fp.

3.1.2 The auxiliary CM extension. Choose a CM extension E/F such that every place
p ∈ Σp is inert in E; in particular, BT ⊗F E is isomorphic to the matrix algebra M2(E). Let
c ∈ Gal(E/F ) be the non trivial element and let ΣE,∞ be the set of complex embeddings of E: it
comes with a restriction map ΣE,∞ → Σ∞ whose fibres are the orbits for the action of Gal(E/F )
sending an embedding τ̃ ∈ ΣE,∞ to τ̃ c := τ̃ ◦ c. Choose a set T̃ ⊂ ΣE,∞ containing exactly one
lift of each τ ∈ T∞. For every τ̃ ∈ ΣE,∞, define an integer sτ̃ ∈ {0, 1, 2} as follows:

• if τ̃|F �∈ T∞ then sτ̃ = 1;
• if τ̃ ∈ T̃ then sτ̃ = 0;
• if τ̃ c ∈ T̃ then sτ̃ = 2.

For each τ ∈ T∞ (respectively, τ ∈ Σ∞ � T∞) we choose the isomorphism E ⊗F,τ R � C

induced by the embedding τ̃ ∈ ΣE,∞ � T̃ lifting τ (respectively, an arbitrary lift of τ). Let TE :=
ResE/QGm; via the previous choices we obtain an isomorphism TE(R) =

∏
τ∈Σ∞(E ⊗F,τ R)× �∏

τ∈Σ∞ C×. Let hT,E : S→ TE,R be the morphism which on R-points sends z = a+ ib ∈ S(R) to
(zτ )τ∈Σ∞ , where zτ = z (respectively, zτ = 1) if τ ∈ T∞ (respectively, τ ∈ Σ∞ � T∞). The reflex
field ET ⊃ FT of the TE(R)−conjugacy class of hT,E is the subfield of C fixed by the stabiliser
in Aut(C/Q) of T̃ .

3.1.3 Unitary Shimura data. We denote by HT the algebraic group fitting in the exact
sequence

0→ TF → GT × TE → HT → 0,

where the map TF → GT × TE is given by a 
→ (a, a−1). Note that, because of Hilbert’s
theorem 90, the map GT × TE → HT induces surjections on Q-points and Af -points. The (GT ×
TE)(R)−conjugacy class of the map hT × hT,E : S→ (GT × TE)R and the HT (R)-conjugacy class
of the induced map hHT

: S→ HT,R can both be identified with XT �
∏
τ∈Σ∞�T∞(C � R), and

they give rise to weak Shimura data (GT × TE , XT ) and (HT , XT ) with reflex field ET . We let
X+
T :=

∏
τ∈Σ∞�T∞(C � R)+, where (C � R)+ ⊂ (C � R) is the upper half-plane.

Let us denote by DT the tensor product BT ⊗F E and by (·) : DT → DT the tensor product
of the main involution on BT and complex conjugation on E. For every Q−algebra R we have a
canonical isomorphism

(BT ⊗Q R)⊗F⊗QR (E ⊗Q R) � (BT ⊗F E)⊗Q R,

hence we get a map GT (R)× TE(R)→ (DT ⊗Q R)×. This yields an identification

HT (R) = {g ∈ DT ⊗Q R | gḡ ∈ (F ⊗Q R)×}.
The latter description allows to see HT as a unitary group as follows: given an element σ ∈ DT

such that σ̄ = −σ the map sending g ∈ DT to g∗ = σ−1ḡσ is an involution of DT . Let us denote
by VT the Q-vector space underlying DT , together with its natural structure of left DT -module,
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so that EndDT
(VT ) = Dop

T . Consider the skew-Hermitian pairing

ψT : VT × VT → E

(v, w) 
→ TrDT /E(vσw∗);

for every g ∈ DT and v, w ∈ VT we have

ψT (vg, wg) = TrDT /E(vgσ(wg)∗) = TrDT /E(vgḡσw∗) = gḡψT (v, w),

hence, for every Q-algebra R,

HT (R) = {(g, c(g)) ∈ EndDT⊗QR(VT ⊗Q R)× (F ⊗Q R)× | ψT (vg, wg) = c(g)ψ(v, w)}.

3.2 Relation between quaternionic and unitary Shimura varieties
3.2.1 Fix a subset T ⊂ Σp; the reduced norm on BT gives rise to a map Nm : GT → TF .

Let THT
:= (TF × TE)/TF , where the embedding of TF in TF × TE is given by a 
→ (a2, a−1).

Letting NHT
: HT → THT

be the map induced by Nm× Id : GT × TE → TF × TE , we obtain a
commutative diagram

where the top arrow is compatible with the Deligne homomorphisms. Recall that we have fixed a
compact open subgroupKT ⊂ GT (Af ). Take a compact open subgroupKE = KE,pK

p
E ⊂ TE(Af )

and a compact open subgroup UT ⊂ HT (Af ) containing the image of KT ×KE . Let

CKT
:= F×,+\A×

F,f/Nm(KT ), CKE
:= E×\A×

E,f/KE

CKT×KE
:= CKT

× CKE
, CUT

:= THT
(Q)+\THT

(Af )/NHT
(UT ),

where THT
(Q)+ := (F×,+ × E×)/F×. We have maps CKT

→ CKT
× CKE

→ CUT
, where the first

map sends CKT
to (the equivalence class of) 1 on the second component. Letting GT (Q)+ ⊂

GT (Q) be the subgroup of elements with totally positive norm, and HT (Q)+ := (GT (Q)+ ×
TE(Q))/TF (Q), we obtain the following commutative diagram.

(3.2.1.1)
If T �= Σp (so that the spaces in the top row are positive dimensional), the fibres of the vertical
maps are connected components of the complex analytic spaces in the first row. The upper left
(respectively, upper right) space is identified with the complex points of ShKT

(GT ) (respectively,
ShUT

(HT )). If T = Σp, then we take this as a definition of (the complex points of) ShKT
(GT )

and ShUT
(HT ).

Following [DKS23], we will study the relation between the top left and the top right space of
the above diagram. To do so, we introduce the following notion, borrowed from [DKS23, § 2.3.1].

Definition 3.2.2. We say that KE is sufficiently small with respect to KT if the following
conditions are satisfied:

(i) E× ∩ {y/yc | y ∈ KE} = {1};
(ii) KE ∩ TF (Af ) ⊂ KT ;
(iii) NE/F (KE) ⊂ Nm(KT ).
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3.2.3 Given KT , it is always possible to choose KE sufficiently small with respect to KT ,
cf. [DKS23, § 2.3.1]. The main point is that the norm map O×

E → O
×
F has finite kernel, hence

we can choose KE satisfying the first condition. Note that this can be done independently of
KT ; given KT , we can then shrink KE so that it satisfies the second and third conditions.
Furthermore, we may choose KE of the form (OE ⊗ Zp)×K

p
E (if KT is as in § 3.1.1).

3.2.4 Hecke algebras. Let u : GT → HT be the composite of the inclusion GT → GT × TE
(whose second component is the composition of the structure map and the identity section) and
the projection GT × TE → HT . If UT ⊂ HT (Af ) contains the image of KT ×KE , then u induces
a map KT \GT (Af )/KT → UT \HT (Af )/UT , which, in turn, induces a (set theoretic) pullback
map r : TUT

(HT )→ TKT
(GT ). On the other hand, the inclusion GT → GT × TE gives rise to

a morphism of Hecke algebras i : TKT
(GT )→ TUT

(HT ) sending the characteristic function of a
double coset KT gKT to that of UT (g, 1)UT .

Lemma 3.2.5. Assume that KE is sufficiently small with respect to KT and that UT is the image
of KT ×KE . Then the composite r ◦ i : TKT

(GT )→ TKT
(GT ) is the identity.

Proof. Let us see GT as a subgroup of GT × TE and denote by q : (GT × TE)(Af )→ HT (Af )
the quotient map. Given g ∈ GT (Af ), we need to prove that

q−1(UT (g, 1)UT ) ∩GT (Af ) = KT gKT .

Take x belonging to the set on the left-hand side above. Then there exist (k1, e1), (k2, e2) ∈
KT ×KE and a ∈ TF (Af ) such that

x = (a, a−1)(k1, e1)(g, 1)(k2, e2).

As x ∈ GT (Af ), we must have a−1e1e2 = 1, hence e1e2 = a ∈ TF (Af ) ∩KE ⊂ KT . It follows that

x = (ak1gk2, 1) ∈ KT gKT . �

3.2.6 The above lemma implies, in particular, that the map i : TKT
(GT )→ TUT

(HT ) is
injective. In what follows, we will use this map to identify TKT

(GT ) with a sub-algebra of
TUT

(HT ). We will work with the Hecke algebra T =
⊗′

v Z[GL2(Ov)\GL2(Fv)/GL2(Ov)] as in
§ 2.1.2, where the product runs over the set of places of F lying above a rational prime different
from p and such that the component of KT at v is hyperspecial.

The statements in the next lemma are established, in a slightly different setting, in the proof
of [DKS23, Lemma 2.3.1].

Lemma 3.2.7. Assume that KE is sufficiently small with respect to KT and that UT is the image
of KT ×KE . Then we have the following.

(i) The map CKT
→ CUT

obtained composing the bottom arrows in (3.2.1.1) is injective.
(ii) The map j : ShKT

(GT )(C)→ ShUT
(HT )(C) obtained composing the top arrows in (3.2.1.1)

restricts to an isomorphism between each connected component of ShKT
(GT )(C) and a

connected component of the target.

Proof. For the reader’s convenience, let us briefly explain how the main points of the argument
in the proof of [DKS23, Lemma 2.3.1] adapt to our situation.
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(i) This follows from the fact that the inclusion TF → THT
sending a to (a, 1) is split by the

map (a, b) 
→ aNE/F (b), which induces splittings

THT
(Q)+ = (F×,+ × E×)/F× → F×,+ NHT

(UT )→ Nm(KT )

(a, b) 
→ aNE/F (b) (Nm(k), l) 
→ Nm(k)NE/F (l)

(note that the last formula gives a well-defined map NHT
(UT )→ Nm(KT ) because of the

assumptions that UT is the image of KT ×KE and NE/F (KE) ⊂ Nm(KT )) of the inclusions

F×,+ → THT
(Q)+ = (F×,+ × E×)/F× Nm(KT )→ NHT

(UT )

a 
→ (a, 1) Nm(k) 
→ (Nm(k), 1).

(ii) If T = Σp, there is nothing to prove. Assume that T �= Σp. Then the claim follows from
the equality, valid for every g ∈ GT (Af ):

GT (Q)+ ∩ gKT g
−1 = HT (Q)+ ∩ gUT g−1.

Clearly the group on the left-hand side is contained in the group on the right-hand side.
Conversely, let h ∈ HT (Q)+ ∩ gUT g−1. On the one hand, we can write (the equivalence class of)
h as h = a · e for some a ∈ GT (Q)+, e ∈ E×; on the other hand, h = g(k · y)g−1 for some k ∈ KT ,
y ∈ KE . It follows that ae = g(ky)g−1, which implies that e · c(e)−1 = y · c(y)−1 ∈ E× ∩ {y/yc |
y ∈ KE} = {1}. Therefore, y ∈ KE ∩ TF (Af ) ⊂ KT . This yields h ∈ GT (Q)+ ∩ gKT g

−1. �

3.2.8 Keeping the notation and assumptions of the previous lemma, we set I := CUT
/CKT

.
For each α ∈ I, let ShαUT

(HT )(C) ⊂ ShUT
(HT )(C) be the subspace consisting of connected

components mapping to the CKT
-coset inside CUT

given by α. We obtain a decomposition

ShUT
(HT )(C) =

∐
α∈I

ShαUT
(HT )(C)

into open and closed subspaces; the subspace corresponding to the coset containing the identity
is identified with ShKT

(GT )(C) (if Σp = T , cf. the argument in the second part of the proof of
[DKS23, Lemma 2.3.1]).

Corollary 3.2.9. Assume that KE is sufficiently small with respect to KT and that UT is the
image of KT ×KE . Let m ⊂ T be a maximal ideal and i ≥ 0 an integer. Then:

(i) H i(ShKT
(GT ),F�)m �= 0 if and only if H i(ShUT

(HT ),F�)m �= 0, and the same assertion is
true for the cohomology with Q�-coefficients;

(ii) the natural map H i
c(ShUT

(HT ),F�)m→ H i(ShUT
(HT ),F�)m is an isomorphism if and only

if the same is true for the map H i
c(ShKT

(GT ),F�)m→ H i(ShKT
(GT ),F�)m.

Proof. We will work over the complex numbers throughout this proof, and omit this from the
notation for simplicity. The decomposition ShUT

(HT ) =
∐
α∈I Sh

α
UT

(HT ) introduced above yields
a direct sum decomposition

H i(ShUT
(HT ),F�) =

⊕
α∈I

H i(ShαUT
(HT ),F�) (3.2.9.1)

and each summand on the right-hand side is preserved by the action of T. Indeed, the Hecke
algebra T is spanned by characteristic functions of double cosets KT gKT , whose component
at a place v is of the form GL2(Ov)

(�av
v 0

0 �bv
v

)
GL2(Ov), for some uniformiser �v of Ov and

av, bv ∈ Z. The group KE is sufficiently small with respect to KT,g := KT ∩ gKT g
−1; letting
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UT,g ⊂ HT (Af ) be the image of KT,g ×KE (which coincides with the group UT ∩ gUT g−1), the
Hecke correspondence

restricts to a correspondence on each ShαUT
(HT ). Indeed, the map ShUT,g

(HT )→ ShUT,g−1 (HT )
induced by right multiplication by (g, 1) ∈ HT (Af ) preserves each ShαUT,g

(HT ), as NHT
((g, 1)) ∈

A×
F,f ⊂ THT

(Af ). Hence, each summand in (3.2.9.1) is preserved by the action of T.
On the other hand, we have an action of TE(Af ) on ShUT

(HT ): the action of e ∈ TE(Af ) sends
each ShαUT

(HT ) to SheαUT
(HT ). In particular, TE(Af ) acts transitively on the set of subvarieties

ShαUT
(HT ), inducing isomorphisms, for every α ∈ I:

H i(ShαUT
(HT ),F�) � H i(Sh1

UT
(HT ),F�) = H i(ShKT

(GT ),F�).

Finally, the action on cohomology induced by the TE(Af )-action on ShUT
(HT ) commutes with

the action of T. It follows that the above isomorphism induces an isomorphism

H i(ShUT
(HT ),F�)m �

⊕
α∈I

H i(ShKT
(GT ),F�)m. (3.2.9.2)

The isomorphism (3.2.9.2) (which also holds with Q�-coefficients) implies part (i). Furthermore,
the previous argument also applies to compactly supported cohomology, yielding a direct sum
decomposition of H i

c(ShUT
(HT ),F�)m as in (3.2.9.2). Hence we obtain a similar decomposition

for the kernel and cokernel of the map H i
c(ShUT

(HT ),F�)m→ H i(ShUT
(HT ),F�)m, from which

part (ii) follows. �

3.3 Integral models of unitary Shimura varieties
3.3.1 Fix a totally negative element d ∈ OF coprime to p; choose isomorphisms θT :

M2(E) = D∅
∼→ DT for every non-empty subset T ⊂ Σp. For every such T , choose an element

δT ∈ DT as in [TX16, Lemma 3.8], and let σT =
√

dδT . Via the construction in § 3.1.3, such a
choice gives an involution ∗T on each DT . By [TX16, Lemma 5.4] we may, and will, choose the
elements δT in such a way that these involutions are respected by the isomorphisms θT . Let
OD∅ = M2(OE) ⊂ D∅ and ODT

= θT (OD∅) for every non-empty subset T ⊂ Σp.
Take KT ⊂ GT (Af ) as in § 3.1.1, KE = (OE ⊗ Zp)×K

p
E ⊂ TE(Af ) sufficiently small with

respect to KT and let UT ⊂ HT (Af ) be the image of KT ×KE . The inverse of the chosen iso-
morphism ιp : Q̄p

∼→ C determines a distinguished p-adic place ℘ of the reflex field ET ⊂ C. Let
E℘ ⊂ Q̄p be the completion of ET at ℘, and O℘ its ring of integers. Following [DKS23, § 2] and
[TX16, § 3], an integral model of ShUT

(HT ) over O℘ can be constructed as follows. Consider the
functor sending an O℘-scheme S to the set of isomorphism classes of tuples (A, ι, λ, η) where:

(i) A/S is an abelian scheme of dimension 4g;
(ii) ι : ODT

→ EndS(A) is an embedding;
(iii) λ : A→ A∨ is a Z×

(p)-polarisation whose attached Rosati involution coincides with ∗T on
ODT

;
(iv) η is a UT -level structure, in the sense of [DKS23, § 2.2.2].
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Furthermore, the above data are required to satisfy the following conditions.

(a) For every b ∈ OE , the characteristic polynomial of ι(b) acting on Lie(A/S) equals∏
τ̃∈ΣE,∞

(X − τ̃(b))2sτ̃ ,

where the integers sτ̃ were defined in § 3.1.2.
(b) The kernel ker(λ[p∞]) : A[p∞]→ A∨[p∞] is a finite flat subgroup scheme contained in∏

p∈T A[p] and such that for each p ∈ T the rank of ker(λ[p∞]) ∩A[p] is p4.
(c) The cokernel of λ∗ : HdR

1 (A/S)→ HdR
1 (A∨/S) is locally free of rank two over

⊕
p∈T OS ⊗Zp

(OE ⊗OF
OF /p) (here HdR

1 (A/S) denotes the de Rham homology sheaf of A/S).

This functor is represented by a scheme YUT
(HT ) which is an infinite disjoint union of

smooth, quasi-projective (respectively, projective if T is non-empty) O℘-schemes. The group
O×,+
F,(p) acts on this scheme as follows: an element u ∈ O×,+

F,(p) sends (A, ι, λ, η) to (A, ι, uλ, η). This

action factors through the group O×,+
F,(p)/NE/F (UT ∩ E×), and the resulting quotient is a smooth

quasi-projective scheme giving the desired integral model of ShUT
(HT ).

Remark 3.3.2. (i) More precisely, the above description of the moduli problem, using the level
structure as in [DKS23, § 2.2.2], is valid for locally noetherian schemes S. We will need later on to
work with non-locally noetherian schemes as well; in this case, one can use a different definition
of the level structure, adapting [Lan18, Definition 1.3.7.6].

(ii) For any field extension L of ET , one can define schemes YUT
(HT )L over SpecL for

arbitrary UT = UpTUT,p representing a moduli problem as above, including UT,p-level structure.

Remark 3.3.3. Note that, if S is the spectrum of a ring where p is nilpotent, then conditions (a),
(b) and (c) in the definition of the above moduli problem can be stated in terms of the p-divisible
group (with OE-action) of the abelian scheme A. Indeed, by [Mes72, p. 164] the Lie algebra of
A/S (respectively, of the universal vector extension of A/S) is isomorphic to the Lie algebra of
A[p∞] (respectively, of the universal vector extension of A[p∞]). Hence, the first condition is the
Kottwitz condition on A[p∞]; the second condition manifestly only depends on A[p∞], and the
same is true for the third, as the first de Rham cohomology of A/S is identified with the Lie
algebra of the universal vector extension of the dual of A by [MM06, Chapter 1, § 4].

4. Comparison of unitary Igusa varieties

In this section, we establish an isomorphism between Igusa varieties that are a priori attached to
different unitary Shimura varieties. This relies on a reinterpretation of (some of) the arguments
in [TX16] in the case of a totally split prime.

4.1 Kottwitz sets
We keep the notation introduced in the previous section. In particular, we fixed in § 3.1.1 a
prime p which splits completely in F ; hence, we can write DT ⊗Q Qp =

∏
p∈Σp

DT,p and HT,Qp :=
HT ×Q Qp =

∏
p∈Σp

HT,p, where DT,p := DT ⊗F Fp and, for every Fp−algebra R,

HT,p(R) = {g ∈ DT,p⊗Fp R | gḡ ∈ R×}.

According to [TX16, Lemma 3.8], the subgroup defined by

H1
T,p(R) := {g ∈ HT,p(R) | gḡ = 1}
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is an unramified (respectively, non-quasi-split) group over Fp if p ∈ Σp � T (respectively, p ∈ T ).
Furthermore, the natural maps GT ← GT × TE → HT are compatible with the Deligne homo-
morphisms and induce isomorphisms of derived and adjoint groups. Denoting by μT the
cocharacter of HT,Q̄p

induced by (HT , XT ) and by the isomorphism ιp, we have the Kottwitz set
B(HT,Qp , μT ). We can write B(HT,Qp , μT ) =

∏
p∈Σp

B(HT,p, μT,p), where μT,p is the p-component
of μT , and it follows from [Kot97, (6.5.1), (6.5.2)] that B(HT,p, μT,p) can be described as
follows:

(i) it contains two elements, the basic one and the μ-ordinary one, if p ∈ Σp � T ;
(ii) it is a singleton if p ∈ T .

Let b = (bp)p∈Σp ∈ B(HT,Qp , μT ) and let B ⊂ Σp � T be the set of places such that bp is
basic. Let T ′ := T

∐
B and b′ ∈ B(HT ′,Qp , μT ′) be the element which is μ-ordinary at every

place p ∈ Σp � T ′. We call b′ the element in B(HT ′,Qp , μT ′) associated with b.

4.2 Igusa varieties
Every b ∈ B(HT,Qp , μT ) corresponds to a Newton stratum in the special fibre of YUT

(HT ), hence
to a Newton stratum in the special fibre of ShUT

(HT ). Let (Xb
T , ι

b
T , λ

b
T ) be a p-divisible group

with extra structure attached to an F̄p-point in such a stratum. Note that, as p splits completely
in F , this datum is equivalent to the datum of a collection of p-divisible groups with extra
structure (Xbp

T , ι
bp
T , λ

bp
T ), for each p ∈ Σp. Similarly, if (G, ιG , λG) is a p-divisible group with extra

structure then an isomorphism (or, more generally, a quasi-isogeny) φ : Xb
T → G commuting with

the ODT
-action splits as a sum of isomorphisms (or quasi-isogenies) φp indexed by places p ∈ Σp.

We will write φ = (φp)p∈Σp .

4.2.1 Let IgbT be the scheme representing the functor that sends a ring R of characteristic
p to the set of isomorphism classes of data (r,A, ι, λ, η, φ) defined as follows:

(i) r : F̄p → R is a ring morphism;
(ii) (A, ι, λ, η)/SpecR is a datum as in the definition of the integral model of ShUT

(HT ),
satisfying conditions (a), (b) and (c) in § 3.3;

(iii) φ = (φp)p∈Σp : A[p∞] ∼→ Xb
T ×F̄p,r R is an isomorphism commuting with the ODT

-action and
such that each φp respects the polarisation up to a Z×

p -factor.

Two tuples (r,A, ι, λ, η, φ), (r′, A′, ι′, λ′, η′, φ′) are said to be isomorphic if r = r′ and there is an
isomorphism of abelian schemes over SpecR between A and A′ commuting with all the additional
data.

Forgetting everything but the structure map r we see that IgbT is fibred over F̄p; in what
follows, if there is no danger of confusion, we will abusively denote its points with values in
an F̄p-algebra (R, r) just by (A, ι, λ, η, φ) ∈ IgbT (R). The functor defining IgbT is representable:
indeed, IgbT → YUT

(HT )F̄p
relatively represents the moduli problem parametrising isomorphisms

φ : A[p∞] ∼→ Xb
T ×F̄p,r R as above. By definition, such an isomorphisms is a compatible sequence

of isomorphisms φk : A[pk] ∼→ Xb
T [pk]×F̄p,r R for k ≥ 0. Hence IgbT is the inverse limit of the

schemes IgbT,k → YUT
(HT )F̄p

parametrising isomorphisms φk as above; each of these moduli
problems is relatively representable (cf. [CS17, Proposition 4.3.3]) and the transition maps are
finite.

Recall that we have an action of O×,+
F,(p) on YUT

(HT )F̄p
. For each k ≥ 0, consider the quotient

Δk := O×
F,(p)/{NE/F (u), u ∈ UT ∩ O×

E , u ≡ 1 (mod pk)}; set Δ := lim←−k Δk. The action of O×,+
F,(p)
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on IgbT,k lifting the action on YUT
(HT )F̄p

factors through Δk, hence we get an action of Δ on

IgbT . We define IgbT := IgbT /Δ.
For each p ∈ Σp fix an element xp ∈ O+

F with p-adic valuation one, and with p′-adic valuation
zero for every p′ ∈ Σp � {p}. The following lemma gives a description of the functor of points of
IgbT in terms of abelian schemes up to p-quasi-isogeny; see also [CS17, Lemma 4.3.4].

Lemma 4.2.2. Let R be a ring of characteristic p. There is a bijection, functorial in R, between

IgbT (R) and the set of isomorphism classes of data (r,A, ι, λ, η, ρ) defined as follows:

(i) r : F̄p → R is a ring morphism;
(ii) A is an abelian scheme of dimension 4g over SpecR;
(iii) ι : ODT

→ EndR(A) is an embedding;
(iv) λ : A→ A∨ is a Z×

(p)-polarisation such that the attached Rosati involution coincides with
∗T on ODT

;
(v) η is a level structure, defined as in § 3.3;
(vi) ρ = (ρp)p∈Σp : A[p∞]→ Xb

T ×F̄p,r R is a quasi-isogeny commuting with ODT
-action and such

that each ρp respects the polarisation up to a Q×
p -factor.

Two tuples (r,A, ι, λ, η, ρ), (r′, A′, ι′, λ′, η′, ρ′) are regarded as isomorphic if r = r′ and there is a
p-quasi-isogeny from A to A′ commuting with ODT

-action, level structure and the quasi-isogenies
ρ, ρ′, and respecting polarisations up to a product of integral powers of the elements xp.

Remark 4.2.3. Before proving the lemma, let us comment on its content. The first point is that
the datum (A, ι, λ, η) is not a priori required to satisfy the conditions (a), (b) and (c) in § 3.3;
the second point is that the isomorphism φ in the definition of the moduli problem represented
by IgbT is replaced by a quasi-isogeny ρ (at the price of changing the notion of isomorphism of
the data we are parametrising). Both points will be crucial in the next theorem.

Proof. Let R be an F̄p-algebra. An isomorphism class of data (A, ι, λ, η, φ) corresponding to an
R-point of IgbT gives rise to a tuple as in the statement of the lemma. Conversely, let (A, ι, λ, η, ρ)
be a datum as in the statement of the lemma; multiplying ρ by suitable powers of the elements
xp we obtain an isogeny, abusively still denoted by the same symbol, ρ : A[p∞]→ Xb

T ×F̄p
R,

commuting with ODT
-action and polarisation (the latter up to a Q×

p -factor on each component).
Letting B = A/ ker(ρ), the map ρ induces an isomorphism ρ̄ : B[p∞] ∼−→ Xb

T ×F̄p
R, and this

property characterises uniquely B among abelian schemes in the p-power isogeny class of A. In
order to complete the proof we need to endow B with extra structures ιB, λB, ηB, φ in such a
way that (B, ιB, λB, ηB, φ) is a point of IgbT , and the quotient map q : A→ B respects the extra
structures as in the statement of the lemma.

Let us start by defining the ODT
-action on B. Given o ∈ ODT

we consider the self-quasi-
isogeny ιB(o) := q ◦ ι(o) ◦ q−1 of B. Let us look at the following diagram.

By assumption, the largest square and the left square in the diagram commute; it follows that
the right square also commutes. We deduce that ιB(o) : B → B is a morphism (and not just a
quasi-isogeny) as the same is true for ιbT (o) : Xb

T ×F̄p
R→ Xb

T ×F̄p
R. Hence, the map sending
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o to ιB(o) endows B with an ODT
-action, which commutes with the quotient map A→ B by

construction.
Let us now define the polarisation λB. We consider the quasi-isogeny λ′B := (q∨)−1 ◦ λ ◦ q−1 :

B → B∨. It fits in the following diagram.

By assumption, the map ρ = ρ̄ ◦ q can be written as ρ = (ρp)p∈Σp where each ρp respects
polarisations on the p-component of the relevant p-divisible groups up to a factor cp ∈ Q×

p ,
i.e. we have (ρ∨p )−1 ◦ λp ◦ (ρp)−1 = cpλ

X
bp
T

. For each p let vp be the valuation of cp, and set

λB := (
∏

p∈Σp
x
−vp
p )λ′B; then the isomorphism ρ̄ commutes with the polarisations λB and λXb

T

up to a Z×
p -factor on each component.

Let ηB be the (prime to p) level structure on B induced by η and q. Let the isomorphism φ
be given by ρ̄. Note that changing the polarisation on A by a product of powers of the elements
xp does not affect the polarisation λB, hence the isomorphism class of (B, ιB, λB, ηB, φ) only
depends on the isomorphism class of (A, ι, λ, η, ρ) (in the sense of the lemma).

Furthermore, by construction, the map q commutes with polarisations up to a product of
powers of the elements xp, and respects all the other additional structures; therefore, the data
(A, ι, λ, η, ρ) and (B, ιB, λB, ηB, φ) are isomorphic in the sense of the lemma.

Finally, the datum (B, ιB, λB, ηB) satisfies conditions (a), (b) and (c) in § 3.3, hence is a
point of IgbT . This follows from Remark 3.3.3 and from the fact that the p-divisible group Xb

T

comes from an abelian variety with extra structure satisfying the same conditions. �

Theorem 4.2.4. Let b ∈ B(HT,Qp , μT ) and let B ⊂ Σp � T be the subset of places p such that
bp is basic. Let T ′ = T

∐
B and let b′ ∈ B(HT ′,Qp , μT ′) be the element associated with b. Then

there is an isomorphism

IgbT � Igb
′
T ′

whose induced map in cohomology is equivariant with respect to the action of the Hecke operators
outside p.

Proof. It suffices to produce an isomorphism IgbT � Igb
′
T ′ which satisfies the requirements in the

theorem and is in addition O×,+
F,(p)-equivariant. Recall that in § 3.3 we have chosen isomorphisms

(D∅, ∗∅,OD∅) � (DT , ∗T ,ODT
),

i.e. isomorphisms θT : D∅
∼→ DT respecting orders and involutions; we use these isomorphisms

to identify the above data, and we denote them by (D, ∗,OD) in this proof. With this notation,
Lemma 4.2.2 tells us that, for every T ⊂ Σp and every F̄p-algebra R, the set IgbT (R) is the set of
isomorphism classes of data (A, ι, λ, η, ρ) where:

(i) A/SpecR is an abelian scheme of dimension 4g;
(ii) ι : OD → EndR(A) is an embedding;
(iii) λ : A→ A∨ is a Z×

(p) polarisation whose attached Rosati involution coincides with ∗
on OD;
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(iv) η is a level structure, defined as in § 3.3;
(v) ρ : A[p∞]→ Xb

T ×F̄p
R is a quasi-isogeny commuting with OD-action and polarisation (the

latter up to a constant).

In particular, the only datum in the description of the functor of points of IgbT which depends on
T is the quasi-isogeny ρ : A[p∞]→ Xb

T ×F̄p
R. Hence, in order to complete the proof it suffices to

show that, if b is associated with b′, then there is a quasi-isogeny ρT,T ′ : Xb
T → Xb′

T ′ commuting
with the extra structure. The functor sending (A, ι, λ, η, ρ) to (A, ι, λ, η, ρT,T ′ ◦ ρ) will then give

the desired isomorphism IgbT � Igb
′
T ′ ; as O×,+

F,(p) only acts modifying polarisations by prime to p

quasi-isogenies, this isomorphism is O×,+
F,(p)-equivariant. The existence of a quasi-isogeny ρT,T ′ as

above follows from the construction in the proof of [TX16, Lemma 5.18]. Indeed, letting DT be
the Dieudonné module of Xb

T , the argument in [TX16, proof of Lemma 5.18, p. 2185] produces
a Dieudonné module pDT ⊂ N ⊂ DT , giving rise to a closed finite subgroup scheme Z ⊂ Xb

T [p];
moreover Xb

T /Z is isomorphic to Xb′
T ′ , and the construction in [TX16, proof of Lemma 5.18,

p. 2185] endows the quotient Xb
T /Z with extra structures respected by the isogeny Xb

T /Z → Xb
T

whose composite with the quotient map is multiplication by p. �
Remark 4.2.5. (i) The argument in [TX16, p. 47] mentioned above constructs N starting from
the unitary Dieudonné module of Xb

T and using the Frobenius operator; a key point is that this
results in a change of signature. The reader may find it helpful to check directly this phenomenon
in the explicit examples given in [BW06, (3.2)].

(ii) With the notation as in the above theorem, the main result of [TX16] implies that the
Newton strata indexed by b and b′ in the special fibres of the Shimura varieties attached to HT

and HT ′ are isomorphic. The above result shows that the same is true for the corresponding Igusa
varieties. This is natural to expect, in view of Lemma 4.2.2 and of the fact that the isomorphism
in [TX16] is obtained from a quasi-isogeny on the level of p-divisible groups. The existence of such
isomorphisms between Igusa varieties is established much more systematically in the function
field setting in Sempliner’s PhD thesis.

5. The geometry of the Hodge–Tate period morphism

The goal of this section is to establish the infinite-level Mantovan product formula for our abelian-
type unitary Shimura varieties. As a consequence, we can compute the fibers of the Hodge–Tate
period morphism in terms of Igusa varieties.

5.1 The product formula
Take p as in the previous section and choose a subset T ⊂ Σp; in order to simplify the notation,
unless otherwise stated we will keep T fixed throughout this section, and omit it from the
notation. Fix an element b = (bp)p∈Σp ∈ B(HQp , μ), and let (Xb, ιb, λb) be a p-divisible group
with extra structure attached to b, giving rise to a collection of p-divisible groups with extra
structure (Xbp , ιbp , λbp ), for p ∈ Σp, as in the previous section.

5.1.1 Let Ŏ℘ be the ring of integers of the completion of the maximal unramified extension
of E℘, and let NilpŎ℘

be the category of Ŏ℘-algebras in which p is nilpotent. Following [CS17,
Definition 4.3.11], we consider the functor Xb : NilpŎ℘

→ Sets sendingR to the set of isomorphism
classes of data (A, ι, λ, η, ϕ), where:

(i) (A, ι, λ, η)/SpecR is a datum as in § 3.3; and
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(ii) ϕ =
⊕

p∈Σp
ϕp : A[p∞]×R R/p =

⊕
p∈Σp

A[p∞]×R R/p→
⊕

p∈Σp
Xbp ×F̄p

R/p is a quasi-
isogeny commuting with the OD-action, and such that each ϕp respects the polarisation
up to a Q×

p -factor.

We will now decompose Xb as a product of Rapoport–Zink spaces and a formal lift of an
Igusa variety we introduced before, as in [CS17, Lemma 4.3.12]. The existence of such lifts is a
consequence of the next lemma, which is analogous to [CS17, Corollary 4.3.5].

Lemma 5.1.2. The scheme Igb is perfect.

Proof. We have to show that, for every ring R, the absolute Frobenius Fr : Igb → Igb induces
a bijection on R-points. We will use the description of the functor of points of Igb given in
Lemma 4.2.2. As the map Fr is not a morphism of F̄p-schemes, in this proof we need to take the
F̄p-algebra structure on R into account. Let (r,A, ι, λ, η, ρ) be an R-point of Igb; its image via
Frobenius is the R-point (r(p), A(p), ι(p), λ(p), η(p), ρ(p)) where:

(i) r(p) is the composite of r and the Frobenius on F̄p;
(ii) A(p) := A×R,FrR

R;
(iii) (ι(p), λ(p), η(p)) are induced from (ι, λ, η) by functoriality;
(iv) ρ(p) := ρ× Id : A[p∞]×R,FrR

R→ (Xb ×
Fp,r

R)×R,FrR
R = Xb ×

Fp,r(p) R.

Let FA : A→ A(p) be the relative Frobenius morphism. Then FA commutes with ι, ι(p) (as well
as with the level structures) by functoriality. Furthermore, we have

(FA)∨ ◦ λ(p) ◦ FA = (FA)∨ ◦ FA∨ ◦ λ = pλ

where the first equality holds true by functoriality of relative Frobenius and the second follows
from the fact that (FA)∨ is the Verschiebung on A∨, and the composite of Verschiebung and
Frobenius is multiplication by p. Finally, we have

ρ(p) ◦ FA = FXb ◦ ρ,
where FXb : Xb ×

Fp,r
R→ Xb ×

Fp,r(p) R is the relative Frobenius. Writing
∏

p∈Σp
xp = pt with

t ∈ O×,+
F,(p), we deduce that the R-point (r(p), A(p), ι(p), λ(p), η(p), ρ(p)) coincides with the R-point

(
r(p), A, ι,

1
t
λ, η, FXb ◦ ρ

)
.

Let us denote by r(−p) the composition of r and the inverse of Frobenius on Fp; we have the
Verschiebung map VXb : Xb ×F̄p,r R→ Xb ×F̄p,r(−p) R, and the map Igb → Igb which on R-points
is given by

(r,A, ι, λ, η, ρ) 
→
(
r(−p), A, ι, tλ, η,

1
p
VXb ◦ ρ

)

is the inverse of the map induced by Fr : Igb → Igb. �

5.1.3 The formal Igusa variety. Since the Igusa variety Igb is perfect, it lifts canonically to
a flat p-adic formal scheme Ig

b : NilpŎ℘
→ Sets described as follows (see [CS17, p. 719]): fix a

lift (up to quasi-isogeny) X̂b/Ŏ℘ of Xb with extra structure. For R ∈ NilpŎ℘
, the R-points of

Ig
b are isomorphism classes of data (A, ι, λ, η, φ) as in § 4.2.1, except that the target of φ is

X̂b
R := X̂b ×Ŏ℘

R.
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The group Δ defined in § 4.2 acts on Ig
b, and we set Igb := Ig

b
/Δ.

5.1.4 Rapoport–Zink spaces. For every p ∈ Σp we have the Rapoport–Zink space Mbp which
is the formal scheme NilpŎ℘

→ Sets sending R to the set of isomorphism classes of data (G, ι, λ, ρ),
where:

(i) G is a p-divisible group over R;
(ii) ι : OD,p→ EndR(G) is an action of OD,p := OD ⊗OF

OFp ;
(iii) λ is a polarisation compatible with the involution on OD,p induced by ∗ and such that the

Kottwitz condition is satisfied;
(iv) ρ : G ×R R/p→ Xbp ×F̄p

R/p is a quasi-isogeny commuting with the OD,p-action, and
respecting polarisations up to a Q×

p -factor.

Furthermore, we require λ to be principal if p �∈ T . If p ∈ T , we ask the cokernel of the map
induced by λ on Lie algebras of the universal vector extensions of the relevant p-divisible groups
to be locally free of rank two over R⊗Zp OE/pOE .

Two tuples (G, ι, λ, ρ) and (G′, ι′, λ′, ρ′) are regarded as isomorphic if there exists an iso-
morphism G → G′ commuting with ι, ι′, ρ and ρ′, and respecting polarisations up to a Z×

p -factor.
Let Mb :=

∏
p∈Σp

Mbp .

5.1.5 We will now define a map α : Ig
b ×Ŏ℘

Mb → Xb. We will denote the object to which
some extra structure is attached by a subscript.

Fix R ∈ NilpŎ℘
and take

(A, ιA, λA, ηA, φA) ∈ Ig
b(R) and (Gp, ιGp , λGp , ρGp )p∈Σp ∈Mb(R).

Let G =
⊕

p∈Σp
Gp and let ρG : G → X̂b

R be the quasi-isogeny lifting
⊕

p∈Σp
ρGp ; we get a

quasi-isogeny ρ−1
G ◦ φA : A[p∞]→ G which commutes with the action of OD and such that

each component respects polarisations up to a Q×
p -factor. We need to construct a point

(B, ιB, λB, ηB, ϕB) ∈ Xb(R).
Let B be the unique abelian scheme in the p-isogeny class of A such that ρ−1

G ◦ φA induces an
isomorphism γ = (γp)p∈Σp : B[p∞] ∼→ G. We endow B with an action ιB : OD → EndR(B) and
with a level structure ηB defined as in the proof of Lemma 4.2.2. To define the polarisation λB,
look at the following diagram.

As in the proof of Lemma 4.2.2 we may rescale the quasi-isogeny (q∨)−1 ◦ λA ◦ q−1 and get a
polarisation λB on B such that γ interchanges it with λG up to a Z×

p -factor on each component.
Finally, let γ̄ be the reduction of γ modulo p and

ϕB := (
⊕
p∈Σp

ρGp ) ◦ γ̄ : B[p∞]×R R/p→ Xb ×F̄p
R/p.

Note that, by construction, the polarisation λB is unchanged if G is replaced by a p-divisible group
G′ endowed with an isomorphism to G respecting the extra structures, the polarisation being
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respected up to a Z×
p -factor on each component. Therefore, the resulting map α : Ig

b ×Ŏ℘
Mb →

Xb is well-defined.

Lemma 5.1.6. The map α : Ig
b ×Ŏ℘

Mb → Xb is an isomorphism.

Proof. We will construct an inverse β : Xb → Ig
b ×Ŏ℘

Mb of the map α. Take (B, ιB, λB, ηB, ϕB)
∈ Xb(R) and let G := B[p∞], endowed with the additional structures coming from B, and with
the trivialisation ρG := ϕB. This gives an R-point of Mb. Finally, define (A, ιA, λA, ηA, φA) as
follows: the abelian scheme A is the unique one in the p-isogeny class of B such that the lift of
ϕB induces an isomorphism φA : A[p∞]→ X̂b

R, and the additional structures are obtained from
those on B as in the discussion before the statement of the lemma.

With the notation introduced in the construction of the map α, the composite β ◦ α sends

(G, ιG , λG ,
⊕
p∈Σp

ρGp ), (A, ιA, λA, ηA, φA)

to

(B[p∞], ιB[p∞], λB[p∞],
⊕
p∈Σp

ρGp ◦ γ̄), (A, ιA, λA, ηA, φA).

The map γ gives an isomorphism, respecting polarisations up to Z×
p on each factor, between

(B[p∞], ιB[p∞], λB[p∞],
⊕

p∈Σp
ρGp ◦ γ̄) and (G, ιG , λG ,

⊕
p∈Σp

ρGp ), hence β ◦ α is the identity
map. Similarly one checks that α ◦ β is the identity. �

5.2 The product formula at infinite level and the Hodge–Tate period map
We now wish to establish an analogue in our situation of [CS17, Lemma 4.3.20].

5.2.1 Generic fibres of formal schemes. We will need to work with the adic generic fibres of
the formal schemes introduced in the previous section. Recall that to a formal scheme M over
Ŏ℘ (locally admitting a finitely generated ideal of definition) one can attach an adic space Mad

as in [SW13, Proposition 2.2.1] over Spa(Ŏ℘, Ŏ℘); one can then take the adic generic fibre

M := Mad ×Spa(Ŏ℘,Ŏ℘) Spa(Ĕ℘, Ŏ℘),

where Ĕ℘ is the fraction field of Ŏ℘. With this notation, the product formula in Lemma 5.1.6
becomes, on the generic fibre:

Igb ×Spa(Ĕ℘,Ŏ℘)M
b ∼−→ X b. (5.2.1.1)

The functors of points on complete affinoid (Ĕ℘, Ŏ℘)-algebras of the adic spaces in the previous
formula can be described using [SW13, Proposition 2.2.2]. It is easier, and sufficient for our
purposes, to give such a description restricted to the category PerfĔ℘

of perfectoid Huber pairs

(R,R+) over (Ĕ℘, Ŏ℘). For example, the functor of points of X b is the sheafification in the
analytic topology of the functor

PerfĔ℘
→ Sets

(R,R+) 
→ lim←−
n

Xb(R+/pn).

In other words, up to sheafification, an (R,R+)-point of X b is a compatible collection of data
(An, ιn, λn, ηn, ϕn) over R+/pn as defined in § 5.1. Note that giving a compatible sequence of
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quasi-isogenies ϕn just amounts to giving ϕ1; on the other hand, we may see the compatible
sequence (An, ιn, λn, ηn) as a formal scheme with extra structure over Spf R+, which as above
can be regarded as an adic space; we will denote it by (A, ι, λ, η). Hence, the compatible sequence
of data (An, ιn, λn, ηn, ϕn) uniquely corresponds to a datum of the form (A, ι, λ, η, ϕ).

A similar description can be given of the functor of points of the other objects appearing in
(5.2.1.1), as well as of the good reduction locus YU (H)◦ inside the analytification YU (H) of the
space YU (H)E℘ ; the space YU (H)◦ is defined as the generic fibre of the completion along the
special fibre of YU,O℘(H). In particular, [SW13, Lemma 2.2.2] applies and yields a description of
the functor of points of YU (H)◦ similar to that discussed above for X b. Note that the inclusion
YU (H)◦ ⊂ YU (H) is an equality if T is non-empty, but it is strict if T is empty.

We will now introduce versions with infinite level at p of the spaces considered so far.

5.2.2 The space Mb∞. We will first define the Rapoport–Zink space at infinite levelMb∞ :=∏
p∈Σp

Mbp∞. Each Mbp∞ is a pro-étale cover of the generic fibre Mbp of the adic space attached
to the formal scheme Mbp .

Fix p ∈ Σp; as recalled above, the functor of points PerfĔ℘
→ Sets ofMbp is the sheafification

of the functor sending (R,R+) to lim←−n Mbp (R+/pn). Giving such a compatible system of (R+/pn)-
points amounts to giving a compatible collection of p-divisible groups with extra structure
(Gn, ιn, λn) as in § 5.1.4 and a quasi-isogeny (respecting extra structures) ρ : G1 → Xbp ×F̄p

R+/p.
Now, by [Mes72, Lemma (4.16)], giving a compatible sequence of p-divisible groups with extra-
structure (Gn, ιn, λn) is equivalent to giving a p-divisible group with extra structure (G, ι, λ)
over R+. For every n ≥ 1, the Tate module functor T (Gn) from R+/pn-algebras to sets send-
ing S to lim←−k Gn[p

k](S) is represented by an affine scheme, flat over Spec(R+/pn), by [SW13,
Proposition 3.3.1]. Taking the limit over n and passing to the adic generic fibre we obtain an
adic space which we denote by T (G).

The space Mbp∞ parametrises trivialisations of the local system on Mbp given by T (G).
More precisely, let Λp =

(OEp OEp

OEp OEp

)
if p ∈ Σp � T and Λp =

(
pOEp OEp

pOEp OEp

)
if p ∈ T (as in [TX16,

p. 2154]). Following [SW13, Definition 6.5.3], we define

Mbp∞ : PerfĔ℘
→ Sets

as the sheafification of the functor sending (R,R+) to the set of isomorphism classes of data
(G, ι, λ, ρ, α), where (G, ι, λ, ρ) is a datum as above, and

α : Λp→ T (G)(R,R+)

is an OD,p-linear map. We require that there is a compatible choice of p-power roots of unity in
R+, yielding a map ε : Zp → T (μp∞)(R,R+), such that the pairing Tr(ψ) : Λp× Λp→ Zp and the
pairing T G(R,R+)× T G(R,R+)→ T (μp∞)(R,R+) induced by the polarisation are identified via
the maps α and ε. Furthermore, we ask that for every map x : Spa(K,K+)→ Spa(R,R+) with
K a perfectoid field, the induced map Λp→ T (G)(K,K+) is an isomorphism.

5.2.3 The space YUp(H)◦. Let YUp(H)/Ĕ℘ be the inverse limit of the diamonds attached
to the analytifications of the varieties YUpUp(H)Ĕ℘

, as the compact open subgroup Up ⊂ H(Qp)
varies (cf. Remark 3.3.2). We denote by YUp(H)◦ ⊂ YUp(H) the preimage of YU (H)◦

Ĕ℘
via the

natural projection map. The same argument used in § 5.2.1 shows that YU (H)◦ : PerfĔp
→ Sets

is the sheafification of the functor sending (R,R+) to the set of isomorphism classes of data
(A, ι, λ, η)/Spf R+. On the other hand YUp(H) is the inverse limit of the analytifications of
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schemes over YU (H)Ĕ℘
relatively representing trivialisations (respecting extra structure) of the

pn-torsion in the universal abelian scheme. It follows that YUp(H)◦ : PerfĔ℘
→ Sets is the sheafi-

fication of the functor sending (R,R+) to the set of isomorphism classes of data (A, ι, λ, η, α),
where α : Λp =

⊕
p∈Σp

Λp→ T (A[p∞])(R,R+) is a trivialisation in the sense of § 5.2.2.
There is a continuous specialisation map YU (H)◦ → YU (H)×Ŏ℘

F̄p; define YUp(H)b ⊂
YUp(H)◦ to be the preimage of the Newton stratum in YU (H)×Ŏ℘

F̄p corresponding to b ∈
B(HQp , μ) via the composition of the specialisation map and the projection map YUp(H)◦ →
YU (H)◦

Ĕ℘
. Hence, YUp(H)b is a locally closed subspace of (the topological space underlying)

YUp(H)◦.

5.2.4 The space X b∞. Finally, we will need the infinite level version of the space X b. This is the
sheafification of the functor sending (R,R+) ∈ PerfĔ℘

to the set of isomorphism classes of data
(A, ι, λ, η, ϕ, α) where (A, ι, λ, η, ϕ) is as in § 5.2.1, and α is a trivialisation of T (A[p∞])(R,R+)
in the sense defined above.

5.2.5 From now on, unless otherwise stated we will regard all our objects as diamonds over
Spd(Ĕ℘, Ŏ℘); in particular, to define maps between them it suffices to give natural transforma-
tions between the functors on PerfĔ℘

described above. We have a map X b∞ →Mb∞, obtained
sending an abelian scheme with extra structure to the associated p-divisible group with extra
structure. This fits into the following cartesian diagram.

Indeed, the above diagram is clearly cartesian on the non-sheafified functors of points, and
sheafification commutes with finite limits. It follows that X b∞ is representable by an adic space.
Furthermore, the product formula (5.2.1.1) is still true at infinite level, as

X b∞ � Igb ×Spd(Ĕ℘,Ŏ℘)M
b
∞. (5.2.5.1)

The diamond X b∞ maps to YUp(H)◦ forgetting the quasi-isogeny ϕ; the underlying map of
topological spaces factors through a map

q : X b∞ → YUp(H)b.

We warn the reader that the subset YUp(H)b ⊂ YUp(H) is not necessarily generalising, hence it
may not be the underlying topological space of a subdiamond of YUp(H). For (R,R+) ∈ PerfĔ℘

,
we will denote by YUp(H)b(R,R+) the set of maps from Spa(R,R+) to YUp(H) whose image is
contained in YUp(H)b.

Finally, we have global and local Hodge–Tate period maps

π◦HT : YUp(H)◦ → F �HQp ,μ
−1

πbHT :Mb
∞ → F �HQp ,μ

−1 .

We can now state and prove an analogue of [CS17, Lemma 4.3.20].
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Proposition 5.2.6. The following diagram (of functors on PerfĔ℘
) is cartesian.

Proof. As sheafification commutes with finite limits, it is enough to prove the statement at the
level of non-sheafified functors of points.

(i) First we show that the diagram commutes. It is enough to prove this for Spa(K,K+)-points
with K a complete algebraically closed field and K+ ⊂ K an open bounded valuation subring,
and replacing YUp(H)b with YUp(H). Because F �HQp ,μ

−1 is separated (it is even proper), we
are reduced to prove commutativity on Spa(K,OK)-points. In this case, it follows from the
compatibility of the Hodge–Tate filtration for an abelian variety and the associated p-divisible
group [Sch13, Proposition 4.15].

(ii) It remains to prove that the diagram is cartesian. Let (R,R+) ∈ PerfĔ℘
and take two

points
x = (G, ιG , λG , ρG , αG) ∈Mb

∞(R,R+),

y = (A, ιA, λA, ηA, αA) ∈ YUp(H)b(R,R+)

mapping to the same (R,R+)-point of the flag variety. The map αG ◦ α−1
A : Tp(A)(R,R+)→

Tp(G)(R,R+) becomes an isomorphism when pulled back to any geometric rank one point
Spa(K,OK), and it is induced by an isomorphism φ : A[p∞]R

∼→ GR respecting the extra struc-
tures. Furthermore, as x and y map to the same point in the flag variety, the map αG ◦ α−1

A

respects the Hodge–Tate filtrations (on Tate modules tensored by K). Finally, since the image
of y is contained in YUp(H)b, the Newton polygon of A[p∞]×R+ R+/p is constant. Hence, by
[SW13, Theorem B] and [CS17, Lemma 4.2.15], the isomorphism φ extends to an isomorphism,
abusively denoted by the same symbol, φ : A[p∞] ∼→ G. We get a (unique) (R,R+)-point
(A, ιA, λA, ηA, αA, ρG ◦ φ) of X b∞ mapping to x and y. �

5.2.7 We have a natural map from YUp(H) = lim←−Up
YUpUp to the inverse limit ShUp(H) of

the analytifications ShUpUp(H) of the Shimura varieties with level UpUp; this map is a torsor
for the group Δ = lim←−k Δk defined in § 4.2. We let ShUpUp(H)◦ = Y◦

UpUp
/Δ and ShUp(H)◦ =

Y◦
Up(H)/Δ, so that ShUp(H)◦/Up � ShUpUp(H)◦. Similarly, we set ShUp(H)b = YUp(H)b/Δ for

b ∈ B(HQp , μ).

5.3 Fibres of the Hodge–Tate period map
Recall that we have fixed a subset T ⊂ Σp; we have a Hodge–Tate period map

π◦HT : ShUp(H)◦ → F �HQp ,μ
−1

induced by the map (abusively denoted with the same symbol) π◦HT : YUp(H)◦ → F �HQp ,μ
−1

introduced above, which is equivariant with respect to the Δ-action (trivial on the target). Take
an element b ∈ B(HQp , μ), and fix a p-divisible group Xb (with extra structure) corresponding
to it.

Proposition 5.3.1. For every geometric point x̃ of F �bHQp ,μ
−1 and every i ≥ 0 there is a Hecke-

equivariant isomorphism

(Riπ◦HT,∗F�)x̃ � H i(Igb,F�).
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Proof. This follows from Proposition 5.2.6 with the same argument as in [CS17, § 4.4]. More
precisely, we may assume that x̃ = Spa(C,OC) is a rank one point; any rank one point
in the preimage of x̃ in YUp(H)◦ is contained in YUp(H)b. The cartesian diagram in
Proposition 5.2.6, [CS17, Lemma 4.2.18] and the product formula for X b∞ (5.2.5.1) imply that
the fibre of π◦HT : YUp(H)b → F �bHQp ,μ

−1 at x̃ is isomorphic to Igb(C,OC), hence the fibre of

π◦HT : ShUp(H)b → F �bHQp ,μ
−1 is isomorphic to Igb(C,OC). The result now follows as in [CS17,

pp. 728 and 729]. �

6. The structure of the µ-ordinary stratum at infinite level

In this section, we show that the μ-ordinary locus at infinite level is parabolically induced from
the corresponding perfectoid Igusa variety.

6.1 Setup
Fix a prime p and a subset T � Σp as in the previous section; we will mostly omit T from
our notations: for example, we denote HT by H. As explained in § 4.1 we have B(HQp , μ) =∏

p∈Σp
B(Hp, μp), where B(Hp, μp) is a singleton if p ∈ T and has two elements, the basic one

and the μp-ordinary one, if p ∈ Σp � T . Consider the μ-ordinary element bord = (bp)p∈Σp where
bp is the non-basic element for every p ∈ Σp � T . Our aim is to study the structure of the stratum
ShUp(H)b

ord
, proving that it is parabolically induced from the corresponding perfectoid Igusa

variety. This rests on the product formula

X bord∞ � Igbord ×Mbord

∞

we proved in the previous section and on the fact that the relevant Rapoport–Zink spaces are
parabolically induced.

6.1.1 The group J bord. Let J bord =
∏

p∈Σp
J bp be the group of self-quasi-isogenies (respect-

ing extra structure) of Xbord , seen as a functor PerfĔ℘
→ Sets sending (R,R+) to the set

of self-quasi-isogenies of Xbord ×F̄p
R+/p. If p ∈ T , then J bp is just the constant group dia-

mond attached to Hp(Qp), which will be denoted by Hp(Qp). If p ∈ Σp � T then we can write
J bp = Lp(Qp) � J Up where Lp ⊂ Hp is a Levi and J Up is a (positive-dimensional) group dia-

mond (cf. [CS17, Proposition 4.2.11]). On the other hand, we can attach to Xbord an HQp-bundle
Ebord(R,R+) on the Fargues–Fontaine curve X(R�,R�,+) for each (R,R+) ∈ PerfĔ℘

, and look at the

corresponding automorphism group functor Aut(Ebord) : PerfĔ℘
→ Sets.

We claim that Aut(Ebord) � J bord . Indeed, for p ∈ Σp � T , [FS21, Proposition III.5.1]
describes Aut(Ebp ) in terms of Lp(Qp) and of Banach–Colmez spaces. On the other hand, the
computation in the proof of [CS17, Proposition 4.2.11] gives a similar description of J bp , with
the universal cover of suitable p-divisible groups in place of Banach–Colmez spaces. The desired
isomorphism follows from the identification between these two objects, cf. [SW20, § 15.2].

6.1.2 The description of the Igusa variety in Lemma 4.2.2 implies that J bord acts on the
left on Igb

ord

, changing the trivialisation ρ. For the same reason, J bord acts on the left onMbord∞
and X bord∞ . The stratum YUp(H)b

ord ⊂ YUp(H)◦ is open and contained in the preimage via π◦HT
of the μ-ordinary stratum in the flag variety. As the latter is a diamond, the same is true for
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YUp(H)b
ord

. The map X bord∞ → YUp(H)b
ord

is invariant with respect to the action of J bord on the
source.

Lemma 6.1.3.

(i) The map J bord\X bord∞ → YUp(H)b
ord

is an isomorphism.

(ii) The induced map J bord\(Igbord ×Mbord∞ )→ ShUp(H)b
ord

is an isomorphism.

Proof. The second point follows from the first and the product formula: indeed, as the map
in (5.2.1.1) (as well as its counterpart at infinite level (5.2.5.1)) is J bord-equivariant, we get an
isomorphism

J bord\(Igbord ×Mbord

∞ )→ YUp(H)b
ord
.

The above isomorphism is equivariant with respect to the Δ-action on Igbord and on YUp(H)b
ord

;
hence, quotienting by this action we obtain the desired isomorphism.

To prove the first point, we need to show that the map (of pro-étale sheaves) X bord∞ →
YUp(H)b

ord
is surjective. Let (R,R+) ∈ PerfĔ℘

and let G/R+ be the p-divisible group with extra
structure attached to an (R,R+)-point of the target. Then, after base change to any geometric
point of Spa(R,R+), we have a quasi-isogeny respecting extra structures between G ×R+ R+/p

and Xbord ×F̄p
R+/p. Therefore, the isocrystal attached to the p-divisible group with extra struc-

ture G ×R+ R+/p gives rise to an H-bundle EG on the Fargues–Fontaine curve X(R�,R�,+) which

is geometrically fibrewise isomorphic to the H-bundle Ebord corresponding to bord. By [FS21,
Proposition III.5.3], there is, pro-étale locally on Spa(R	, R+,	), an isomorphism EG � Eb

ord
,

yielding, pro-étale locally, a quasi-isogeny respecting extra-structures between G ×R+ R+/p and
Xbord ×F̄p

R+/p. �

6.2 The structure of µ-ordinary Rapoport–Zink spaces
6.2.1 Moduli spaces of shtukas. Given p ∈ Σp, we can attach to (Hp, bp, μp) a diamond

Sht∞(Hp, bp, μp) over Spd(Ĕ℘, Ŏ℘) parametrising Hp-shtukas with infinite level structure, as
in [SW20, § 23]. More precisely, the functor Sht∞(Hp, bp, μp) : Perf F̄p

→ Sets sends (R,R+) to
the set of isomorphism classes of data of the form (S
, E , E ′, φ, ρ, ρ∞), where:

(i) S
/Spa(Ĕ℘, Ŏ℘) is an untilt of S := Spa(R,R+);
(ii) E , E ′ are Hp-bundles over the relative Fargues-Fontaine curve XS ;
(iii) φ is an isomorphism between E and E ′ outside S
, which is a modification of type μp at S
;
(iv) ρ : E ′ → Ebp is an isomorphism, where Ebp is the Hp-bundle on XS coming from (the

isocrystal attached to) Xbp ;
(v) ρ∞ : E1 → E is an isomorphism, where E1 is the trivial Hp-bundle on XS .

By [SW20, Corollary 24.3.5], the diamond Sht∞(Hp, bp, μp) is isomorphic toMbp∞.
We have a left (respectively, right) action of J bp = Aut(Ebp ) (respectively, Hp(Qp) =

Aut(E1)) on the space Sht∞(Hp, bp, μp), changing the trivialisation ρ (respectively, ρ∞). The
former corresponds to the action of J bp on Mbp∞ recalled above.

6.2.2 The space Mbp∞ for p ∈ T . If p ∈ T , then the cocharacter μp is central, hence the
flag variety F �Hp ,μp is a point. By [SW20, Proposition 19.4.2] and [SW20, proof of
Proposition 23.3.3] the diamond Mbp∞ is isomorphic to the diamond Hp(Qp) attached to

the locally profinite set Hp(Qp). Hence, the product MT,∞ :=
∏

p∈TM
bp∞ is isomorphic to∏

p∈T Hp(Qp).
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6.2.3 The space Mbp∞ for p ∈ Σp � T . Now fix p ∈ Σp � T and let bp ∈ B(Hp, μp) be the
μp-ordinary element. The structure of Sht∞(Hp, bp, μp) is studied in [GI16] (generalis-
ing [Han21]), whose main result we now recall in the situation of interest to us: we warn the reader
that our notation differs from that in [GI16]. We have a forgetful map from Sht∞(Hp, bp, μp)
to the Hecke stack Hecke(Hp, bp, μp) which parametrises data (S
, E , E ′, φ) as above, such
that E ′ (respectively, E) is fibrewise isomorphic to Ebp (respectively, E1). The Grassmannian
Gr(Hp, bp, μp) is the Hp(Qp)-torsor over Hecke(Hp, bp, μp) parametrising trivialisations ρ∞ :
E1 → E . Consider the subfunctor C(Hp, bp, μp) ⊂ Gr(Hp, bp, μp) obtained imposing the condition
that ρ∞ and φ are compatible with the filtrations, in the sense of [GI16, p. 9]. The right action
of Hp(Qp) on Gr(Hp, bp, μp) induces a right action of a parabolic Pp(Qp) ⊃ Lp(Qp) on the sub-
space C(Hp, bp, μp) ⊂ Gr(Hp, bp, μp). The natural map C(Hp, bp, μp)×Hp(Qp)→ Gr(Hp, bp, μp)
is invariant with respect to the left action of Pp(Qp) on the source given by the product of the
inverse of the right action on C(Hp, bp, μp) and the left action by multiplication on Hp(Qp). By
[GI16, Proposition 4.13] the induced map

Pp(Qp)\
(
C(Hp, bp, μp)×Spd(Ĕ℘,Ŏ℘) Hp(Qp)

)
→ Gr(Hp, bp, μp) (6.2.3.1)

is an isomorphism.
Now let us consider the moduli space of shtukas ShtPp (Hp, bp, μp) with ‘parabolic level

structure’, defined as the fibre product as follows.

The isomorphism (6.2.3.1) yields an isomorphism

Pp(Qp)\
(
ShtPp (Hp, bp, μp)×Spd(Ĕ℘,Ŏ℘) Hp(Qp)

)
→ Sht∞(Hp, bp, μp). (6.2.3.2)

6.2.4 The structure of ShtPp (Hp, bp, μp). The data bp, μp are induced by analogous data for
the Levi Lp, which we will abusively denote by the same symbol. In other words, our data are
HN-reducible in the sense of [GI16, Definition 4.5] (note that only one of the elements b, b′

considered in [GI16, Definition 4.5] is non-trivial in our case). We can consider the corresponding
moduli space of shtukas Sht∞(Lp, bp, μp); in fact, as Lp is abelian, the same argument used above
shows that Sht∞(Lp, bp, μp) is just the diamond attached to the locally profinite set Lp(Qp).
Inducing bundles from Lp to Hp we obtain a map Sht∞(Lp, bp, μp)→ ShtPp (Hp, bp, μp). Finally,
the group object J Up acts on the left on ShtPp (Hp, bp, μp), hence we obtain a map

Sht∞(Lp, bp, μp)×Spd(Ĕ℘,Ŏ℘) J
U
p → ShtPp (Hp, bp, μp).

By [GI16, Proposition 4.21] the above map is an isomorphism. Joining this with (6.2.3.2) we
obtain the following isomorphism, where fibre products are taken over Spd(Ĕ℘, Ŏ℘), which is
omitted from the notation:

Sht∞(Hp, bp, μp) � Pp(Qp)\
((
Sht∞(Lp, bp, μp)× J Up

)
×Hp(Qp)

)
.

Define Sht∞(LT , bT , μT ) :=
∏

p∈Σp�T Sht∞(Lp, bp, μp); similarly, we denote by P T (Qp),J U,T
and HT (Qp) the product of the objects Pp(Qp),J Up and Hp(Qp) for p ∈ Σp � T . With this
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notation, the spaceMbord∞ can be written as

Mbord∞ =MT,∞ × P T (Qp)\
((
Sht∞(LT , bT , μT )× J U,T

)
×HT (Qp)

)
.

6.3 The almost product formula on the µ-ordinary stratum
6.3.1 We can now join Lemma 6.1.3 and the above description of Mbord∞ . Let J T :=∏

p∈Σp�T J bp . Since for p ∈ T we haveMbp∞ � J bp � Hp(Qp) we obtain the following description

of the ordinary stratum ShUp(H)b
ord

:

ShUp(H)b
ord

= J T \
(
Igbord × P T (Qp)\

((
Sht∞(LT , bT , μT )× J U,T

)
×HT (Qp)

))
.

We will now show that the space on the right-hand side is isomorphic to

P T (Qp)\
(
Igbord ×HT (Qp)

)
, (6.3.1.1)

where P T (Qp) acts on the left on Igbord via the natural inclusion in J T and on HT (Qp) via left
multiplication.

Sending (the equivalence class of) a point (i, g) to (the equivalence class of) (i, ((1, 1), g))
gives a well-defined map from the space in (6.3.1.1) to ShUp(H)b

ord
. This map is surjective

because J T acts transitively on Sht∞(LT , bT , μT )× J U,T ; injectivity can be checked directly.
Hence, we obtain an isomorphism

ShUp(H)b
ord � P T (Qp)\

(
Igbord ×HT (Qp)

)
,

which is equivariant with respect to the right action of H(Qp) on the source and the target (here
HT (Qp) acts on the target via right multiplication on itself).

Notation 6.3.2. In the next theorem and its proof we will use the following notation. We
set P (Qp) :=

∏
p∈T Hp(Qp)×

∏
p∈Σp�T Pp(Qp) ⊂ H(Qp); similarly, let P (Zp) :=

∏
p∈T Hp(Zp)×∏

p∈Σp�T Pp(Zp) ⊂ H(Zp). We will denote by Ind smooth induction.

Theorem 6.3.3.

(i) There is an H(Qp)-equivariant isomorphism

ShUp(H)b
ord � P T (Qp)\

(
Igbord ×HT (Qp)

)
.

(ii) Let us turn the left action of P (Qp) on Igbord into a right action taking the inverse. Then the

cohomology of Igbord (respectively, ShUp(H)b
ord

) carries a left action of P (Qp) (respectively,
H(Qp)). For each i ≥ 0, we have an isomorphism of smooth H(Qp)-representations

H i(ShUp(H)b
ord
,F�) � IndH(Qp)

P (Qp)

(
H i(Igbord ,F�)

)
.

Proof. The first point was established before the statement of the theorem; let us prove the
second point. Fix i ≥ 0 and let I := Igbord and V := H i(I,F�). The subgroup P (Zp) ⊂ P (Qp)
acts freely on Igbord . On the other hand, for u ∈ O×

E ∩ Up, the action of NE/F (u) (changing

polarisation) on Igbord agrees with the action of u−1 ∈ P (Zp). The induced action of P (Zp) on I
hence factors through a free action of P (Zp)/C, where C := lim←−k(O

×
E ∩ Up/{u ∈ O

×
E ∩ Up | u ≡ 1

(mod pk)}).
The action of P (Qp) on I induces a map ρ : P (Qp)→ Aut(V ). The map ι : I → P (Qp)\I ×

H(Qp) sending x to (x, 1) is equivariant with respect to the right P (Qp)-action on source and
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target, hence it induces a P (Qp)-equivariant map

ι∗ : H i(P (Qp)\I ×H(Qp),F�)→ V.

We therefore have an H(Qp)-equivariant map

aι∗ : H i(P (Qp)\I ×H(Qp),F�)→ IndH(Qp)
P (Qp) (V )

induced by ι∗ via Frobenius reciprocity, which sends a cohomology class c to the function
H(Qp)→ V sending h to ι∗ ◦ h∗(c). For every compact open subgroup K ⊂ H(Qp) we have
the space IK := P (Qp)\(I ×H(Qp)/K) and the natural map qK : P (Qp)\(I ×H(Qp))→ IK .
On the other hand, let

SK := {f : H(Qp)→ V | ∀p ∈ P (Qp), h ∈ H(Qp), k ∈ K, f(ph) = ρ(p)f(h), f(hk) = f(h)},

so that IndH(Qp)
P (Qp) (ρ) = lim−→K

SK . We may, and will, restrict to pro-p compact open subgroups K ⊂
H(Zp); to complete the proof, we will show that the composite aι∗ ◦ q∗K induces an isomorphism
H i(IK ,F�) � SK .

Choose a set of representatives R = {h1, . . . , hr} of the (finite) double coset P (Qp)\H(Qp)/K
such that each hj belongs to H(Zp) (this is possible because of the Iwasawa decomposition of
H(Qp)). Evaluation at elements of R yields an injection SK ↪→ V R; an explicit computation
shows that the image is

⊕
R V

Γj , where Γj := P (Qp) ∩ hjKh−1
j . Consider the composite of the

map aι∗ ◦ q∗K and of the injection SK ↪→ V R, and let φj be its hjth component. Then φj sends
c ∈ H i(IK ,F�) to ι∗ ◦ h∗j ◦ q∗K(c).

We can write

IK =
∐
R

P (Qp)\(I × P (Qp)hjK/K) �
∐
R

Γj\I. (6.3.3.1)

The isomorphism is induced on the hjth component by the composite of the map

P (Qp)\(I × P (Qp)hjKh−1
j /hjKh

−1
j )→ P (Qp)\(I × P (Qp)hjK/K)

given by right multiplication by hj and the map

Γj\I → P (Qp)\(I × P (Qp)hjKh−1
j /hjKh

−1
j )

sending everything to the identity on the second component. Therefore, via the isomorphism in
(6.3.3.1), the map φj is identified with the pullback H i(Γj\I,F�)→ H i(I,F�).

It remains to show that each of the pullback maps above induces an isomorphism
H i(Γj\I,F�)

∼−→ V Γj . Each group Γj is contained in P (Zp), hence the action of Γj/(Γj ∩ C)
on I is free. Therefore, as K is a pro-p group and p �= �, the desired isomorphism follows from
[Wei17, Proposition 4.3.2] and [CGH+20, Theorem 2.2.7]. �

7. The structure of the cohomology in the non-Eisenstein case

The aim of this section is to prove our main results on the cohomology of Hilbert modular varieties
after localisation at a non-Eisenstein maximal ideal. These are Theorems 7.1.1 and 7.1.6 stated
below. We also establish analogous results for quaternionic Shimura varieties: see Theorem 7.5.2.

7.1 Main results: statements
Theorem 7.1.1. Let � > 2 be a prime, K ⊂ G(Af ) a neat compact open and m ⊂ T a maxi-
mal ideal in the support of H i(ShK(G),F�). Let ρ̄m be the Galois representation attached to
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m by Theorem 2.2.1. Assume that the image of ρ̄m is not solvable. Then H i(ShK(G),F�)m =
H i
c(ShK(G),F�)m is non-zero only for i = g.

Corollary 7.1.2. With the same notation and assumptions as in Theorem 7.1.1, we have
H i(ShK(G),Z�)m �= 0 if and only if i = g, and Hg(ShK(G),Z�)m is torsion-free. The same is
true for compactly supported cohomology.

Proof. Looking at the long exact sequence in Betti cohomology coming from the short
exact sequence 0→ Z� → Z� → F� → 0 we see that multiplication by � is surjective on
H i(ShK(G),Z�)m if i �= g, hence H i(ShK(G),Z�)m = 0 for i �= g. On the other hand, we have

. . . Hg−1(ShK(G),F�)m→ Hg(ShK(G),Z�)m→ Hg(ShK(G),Z�)m . . . ;

as the first term vanishes, we deduce thatHg(ShK(G),Z�)m is torsion-free, hence free. Finally, the
cokernel of the mapHg(ShK(G),Z�)m→ Hg(ShK(G),F�)m injects intoHg+1(ShK(G),Z�)m = 0,
hence Hg(ShK(G),Z�)m �= 0. The result for H∗

c (ShK(G),Z�)m follows as in Lemma 2.3.1. �

To proceed, we make the following definition.

Definition 7.1.3.

(i) Let v be a place of F above a prime p �= � which splits completely in F . We say that ρ̄m is
generic at v if it is unramified at v and the eigenvalues of Frobenius at v have ratio different
from p±1.

(ii) Let p �= � be a prime. We say that p is a decomposed generic prime for ρ̄m if p splits
completely in F and ρ̄m is generic at v for every place v of F above p.

(iii) We say that ρ̄m is decomposed generic if there exists a prime p �= � which is decomposed
generic for ρ̄m.

7.1.4 Assume that ρ̄m is generic at some place v of F . Then any characteristic zero lift of
the restriction of ρ̄m to ΓFv cannot be associated via the local Langlands correspondence to an
irreducible smooth representation of GL2(Fv) which transfers to the non-split quaternion algebra
over Fv.

Notation 7.1.5. Let p �= � be a prime which splits completely in F and such that ρ̄m is unramified
at every place of F above p. We will denote by δp(m) the number of places above p at which ρ̄m

is not generic.

Theorem 7.1.6. Let � > 2 be a prime. Let p �= � be an odd prime which splits completely in F
and such that K = KpKp with Kp hyperspecial. Let m ⊂ T be a non-Eisenstein maximal ideal.
Then H∗

c (ShK(G),F�)m = H∗(ShK(G),F�)m vanishes outside the interval [g − δp(m), g + δp(m)].

Remark 7.1.7. For a maximal ideal m ⊂ T in the support of H i(ShK(G),F�), the projective
image I of the Galois representation ρ̄m is a finite subgroup of PGL2(F̄�). By Dickson’s theorem,
cf. [DDT97, Theorem 2.47 (b)], the group I is either conjugate to a subgroup of the upper
triangular matrices, or to PGL2(F�k) or PSL2(F�k), for some k ≥ 1, or it is isomorphic to one of
D2n, for some n ∈ Z>1 prime to �, A4, S4 or A5. It follows that the image of ρ̄m is not solvable
if and only if the following holds:

(i) if � = 3, then I is isomorphic to A5 or it contains a conjugate of PSL2(F9);
(ii) if � > 3, then I is isomorphic to A5 or it contains a conjugate of PSL2(F�).
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Theorem 7.1.1 follows from Theorem 7.1.6 in view of the following lemma (more precisely, observe
that the proof of the lemma allows to produce p as in Definition 7.1.3(iii) satisfying the conditions
of Theorem 7.1.6).

Lemma 7.1.8. Assume that � > 2 and that the image of ρ̄m is not solvable. Then ρ̄m is
decomposed generic in the sense of Definition 7.1.3.

Proof. This is a variation of [AN20, Lemma 2.3]; following [AN20, Lemma 2.3], we prove that
there are infinitely many primes p ≡ 1 (mod �), totally split in F , and such that ρ̄m is generic
at every place above p. This is deduced from our large image assumption using the Chebotarev
density theorem.

We first make some preliminary reductions. Let F̃ be the normal closure of F in C; notice that
F̃ is also a totally real field. Let pr : GL2(F̄�)→ PGL2(F̄�) be the projection map. As observed
before the statement of the theorem, the image I of

pr ◦ ρ̄m : ΓF → PGL2(F̄�)

is isomorphic to A5, or conjugate to one of PGL2(F�k) or PSL2(F�k), where k ≥ 2 if � = 3 and
k ≥ 1 if � > 3. We claim that the same is true for the image Ĩ of pr ◦ ρ̄m|ΓF̃

: ΓF̃ → PGL2(F̄�).
Since F̃ /F is Galois, the group Ĩ is a normal subgroup of I.

(i) Assume first that the group I is isomorphic to A5. Since A5 is simple and Ĩ is a normal
subgroup of I, it is enough to show that Ĩ is non-trivial. This is true because Ĩ contains the
image under pr ◦ ρ̄m|ΓF̃

of any complex conjugation in ΓF̃ , which is conjugate to the matrix
( 1 0

0 −1 ) because ρ̄m is totally odd.
(ii) Assume now that the group I is conjugate to PGL2(F�k) or PSL2(F�k). We conjugate every-

thing so that I is identified with PGL2(F�k) or PSL2(F�k) inside PGL2(F̄�). It is enough
to prove that Ĩ ⊇ PSL2(F�k). As the representation ρ̄m is totally odd, the image via ρ̄m|ΓF̃

of any complex conjugation c ∈ ΓF̃ is a non-scalar semisimple element. As a normal sub-
group of I, the group Ĩ contains the projective image of every SL2(F�k)-conjugate of ρ̄m(c).
In particular, Ĩ ∩ PSL2(F�k) contains the ratio of any two distinct such conjugates and is,
therefore, a non-trivial normal subgroup of PSL2(F�k). Finally, the groups PSL2(F�k), with
k ≥ 2 if � = 3 and k ≥ 1 if � > 3, are simple. Therefore, Ĩ ⊇ PSL2(F�k).

This proves the claim. Up to replacing F̃ by a finite abelian extension F ′ and conjugating ρ̄m,
we may ensure that the image I ′ of pr ◦ ρ̄m|ΓF ′ equals either A5 or PSL2(F�k), with k ≥ 2 if � = 3
and k ≥ 1 if � > 3. As A5 and PSL2(F�k) are both simple, I ′ is unchanged if we replace F ′ by its
normal closure. For the same reason we may adjoin ζ� to F ′ without changing I ′.

Let Γ denote either one of the finite simple groups A5 or PSL2(F�k). Let L be the normal
closure of the extension of F ′ cut out by I ′. Since Γ is simple, Goursat’s lemma implies that
Gal(L/F ′) � Γt for some t ≥ 1. We claim that we can choose an element 1 �= g ∈ Γ which is
semisimple when viewed as an element of PGL2(F̄�). In the case Γ = PSL2(F�k), this is clear. In
the case Γ = A5, choose any element of order 2; since � �= 2, such an element must be semisimple.
The Chebotarev density theorem ensures the existence of a place p of F ′ with residue field Fp with
p �= � unramified in F and such that FrobL/F

′
p is conjugate to (g, g, . . . , g). Since F ′/Q is Galois,

p is totally split in F ′. We claim that, for every place p′ of F ′ above p, the element ρ̄m(Frobp′) is
semisimple and different from the identity in PGL2(F̄�). In the case Γ = PSL2(F�k), this follows
as in [AN20, Lemma 2.3]. In the case Γ = A5, the argument in [AN20, Lemma 2.3] shows that
each such element has order 2 in PGL2(F̄�), which implies that it must also be semisimple and
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different from the identity. As ζ� ∈ F ′ we have p ≡ 1 (mod �), hence the eigenvalues of each
ρ̄m(Frobp′) cannot have ratio p±1. �

7.2 Proof of Theorem 7.1.6
7.2.1 Step 1: setup and choice of the auxiliary data. Note that the quantity δp(m) = δp(m∨).

By Lemma 2.3.1 it suffices to show the following implication:

i < g − δp(m)⇒ H i
c(ShK(G),F�)m = 0. (7.2.1.1)

Choose an auxiliary CM extension E of F such that every p ∈ Σp is inert in E, and choose
KE = (OE ⊗ Zp)×K

p
E ⊂ TE(Af ) sufficiently small with respect toK. With the notation of § 3.1.3,

consider the unitary group H := H∅ and let U ⊂ H(Af ) be the image of K ×KE . Recall that
the Hecke algebra T (defined in § 3.2.6) acts on the cohomology of ShU (H), and Corollary 3.2.9
ensures that, for i ≥ 0,

H i(ShK(G),F�)m �= 0⇔ H i(ShU (H),F�)m �= 0.

Therefore, for the sake of proving Theorem 7.1.6, we may (and will) work with ShU (H). Let
ShU (H) be the base change to F̄p of its integral model. We have isomorphisms, for i ≥ 0,

H i
c(ShU (H),F�) � H i

c(ShU (H), RΨF�) � H i
c(ShU (H),F�).

The first is obtained as in [LS18, Corollary 5.20]; the second follows from the fact that the
complex of nearby cycles RΨF� is quasi-isomorphic to the constant sheaf F� as the integral
model is smooth. Hence, it suffices to show the implication

i < g − δp(m)⇒ H i
c(ShU (H),F�)m = 0. (7.2.1.2)

7.2.2 Step 2: the Newton stratification. We have a Newton stratification on ShU (H) indexed
by elements b = (b1, . . . , bg) with bj ∈ B(Hpj , μpj ). Recall that each B(Hpj , μpj ) consists of one
μ-ordinary and one basic element. We denote by ShU (H)b ⊂ ShU (H) the stratum corresponding
to b. More generally, for each 0 ≤ k ≤ g and every c ∈

∏
j≤k B(Hpj , μpj ) we let ShU (H)c ⊂

ShU (H) be the union of the Newton strata corresponding to elements b = (b1, . . . , bg) such that
(b1, . . . , bk) = c. In particular, for k = 0 we obtain ShU (H) and for k = g we recover Newton
strata.

As we are excluding from T the Hecke operators at places above p, the Hecke algebra acts
on the cohomology of each stratum. The first (elementary) observation is that it suffices to show
(7.2.1.2) for each Newton stratum.

Lemma 7.2.3. Assume that H i
c(ShU (H)b,F�)m = 0 for every i < g − δp(m) and every b ∈

B(HQp , μ). Then H i
c(ShU (H),F�)m = 0 for i < g − δp(m).

Proof. This follows from additivity of compactly supported cohomology. To be precise, we show
by descending induction on 0 ≤ k ≤ g that

∀ c ∈
∏
j≤k

B(Hpj , μpj ), ∀ i < g − δp(m), H i
c(ShU (H)c,F�)m = 0.

By hypothesis the statement is true for k = g. Now take k < g and assume that the statement is
true for k + 1. Take c ∈

∏
j≤k B(Hpj , μpj ). Let o (respectively, b) be the non-basic (respectively,

basic) element in B(Hpk+1
, μpk+1

) and consider (c, o), (c, b) ∈
∏
j≤k+1B(Hpj , μpj ). We have

ShU (H)(c,o) ⊂ ShU (H)c ⊃ ShU (H)(c,b);

2313

https://doi.org/10.1112/S0010437X23007431 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X23007431


A. Caraiani and M. Tamiozzo

furthermore, ShU (H)(c,o) is open in ShU (H)c and ShU (H)(c,b) is the closed complement. By
induction, we know that H i

c(ShU (H)(c,o),F�)m = H i
c(ShU (H)(c,b),F�)m = 0 for i < g − δp(m).

The exact sequence

. . . H i
c(ShU (H)(c,o),F�)m→ H i

c(ShU (H)c,F�)m→ H i
c(ShU (H)(c,b),F�)m . . .

implies that H i
c(ShU (H)c,F�)m = 0 for i < g − δp(m). �

We need to show that the assumption of the lemma holds true in our situation. The first key
ingredient is the following.

Lemma 7.2.4. Let b ∈ B(HQp , μ).

(i) If b is not the μ-ordinary element, then the stratum ShU (H)b is smooth, affine and of
dimension the number of non-basic coordinates of b.

(ii) If b is the μ-ordinary element, then ShU (H)b is smooth of dimension g, and the partial min-
imal compactification of ShU (H)b (i.e. the union of ShU (H)b and the cusps in the minimal
compactification of ShU (H)) is affine.

Proof. The dimension of strata can be obtained from [TX16, Proposition 4.7]. As p splits com-
pletely in F Newton strata coincide with Ekedahl–Oort strata. Each of them is smooth by [SZ22,
Theorem 3.4.7]. Furthermore, recall that ShU (H) is a finite union of quotients of connected com-
ponents of integral models of Hodge-type Shimura varieties by finite groups. Each Ekedahl–Oort
stratum in ShU (H) decomposes accordingly, hence its partial minimal compactification is affine
by [GK19, Proposition 6.3.1] (see also [Box15]). Finally, the μ-ordinary stratum is the only one
intersecting the boundary, hence the lemma follows. �

Corollary 7.2.5. Let b ∈ B(HQp , μ) be such that dimShU (H)b ≥ g − δp(m). Then for every

i < g − δp(m) we have H i
c(ShU (H)b,F�)m = 0.

Proof. Let us first assume that b is not the μ-ordinary element and let us set db := dimShU (H)b.
By Artin vanishing H i(ShU (H)b,F�) = 0 for i > db, and by Poincaré duality H i

c(ShU (H)b,F�) =
0 for i < db. In particular, H i

c(ShU (H)b,F�)m = 0 for i < g − δp(m).
Now let us consider the ordinary stratum ShU (H)b and its partial minimal compactifica-

tion ShU (H)b,∗, with boundary ∂. Let jb : ShU (H)b → ShU (H)b,∗ and ib : ∂ → ShU (H)b,∗ be
the inclusions. By Artin vanishing H i(ShU (H)b,∗, jb! F�) = 0 for i > g, and by Verdier duality
H i
c(ShU (H)b,∗, Rjb∗F�) = 0 for i < g. Finally, we have an exact sequence

· · · → H i
c(ShU (H)b,F�)→ H i

c(ShU (H)b,∗, Rjb∗F�)→ H i
c(∂, i

b,∗Rjb∗F�)→ · · · .

To end the proof it suffices to show that H∗
c (∂, i

b,∗Rjb∗F�)m = 0. Denoting by j : ShU (H)→
ShU (H)∗ and i : ∂ → ShU (H)∗ the inclusions we have ib,∗Rjb∗F� � i∗Rj∗F�. It follows that it
suffices to prove that, after localisation at m, the maps H∗

c (ShU (H),F�)→ H∗
c (ShU (H)∗, Rj∗F�)

are bijective. In other words, we have to show that the natural maps

H∗
c (ShU (H),F�)m→ H∗(ShU (H),F�)m

are isomorphisms. Using [LS18, Corollary 5.20] we see that we can replace ShU (H) by ShU (H);
since m is non-Eisenstein, the conclusion then follows from Lemma 2.3.1 and Corollary 3.2.9. �

To show Theorem 7.1.6 it remains to prove the following result.

Proposition 7.2.6. Let b ∈ B(HQp , μ) and let m ⊂ T be a non-Eisenstein maximal ideal. If

dimShU (H)b < g − δp(m), then for every i ≥ 0 we have H i(ShU (H)b,F�)m = 0.
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Indeed, applying the above proposition to m∨ and using Corollary 7.2.5 we obtain that
H i
c(ShU (H)b,F�)m = 0 for i < g − δp(m) and for every b ∈ B(HQp , μ). By Lemma 7.2.3 we

conclude that H i
c(ShU (H),F�)m = 0 for i < g − δp(m).

Finally, we will deduce Proposition 7.2.6 from the following result, whose proof will be given
below.

Proposition 7.2.7. If dimShU (H)b < g − δp(m), then H i(Igb,F�)m = 0 for every i.

7.2.8 Assuming Proposition 7.2.7, let us prove Proposition 7.2.6. Observe that the stratum
ShU (H)b consists of a unique leaf; let Xb be the p-divisible group attached to a geometric point
in the leaf, and Γb the automorphism group of Xb (respecting extra structures). Let YU (H)b,perf

F̄p

be the perfection of YU (H)b
F̄p

; the forgetful map Igb → YU (H)b
F̄p

factors through a map Igb →
YU (H)b,perf

F̄p
, which is a Γb-torsor (cf. [CS19, Proposition 2.2.6]). For u ∈ O×

E ∩ Up, the action of

NE/F (u) on Igb changing the polarisation agrees with the action of u−1 on Igb via the inclusion
O×
E ↪→ Γb. Hence, the induced map Igb → ShU (H)b,perf is a torsor for the group Γb/ lim←−k(O

×
E ∩

U/{u ∈ O×
E ∩ U | u ≡ 1 (mod pk)}). Therefore, there is a Hecke-equivariant Hochschild–Serre

spectral sequence relating the cohomology of Igb and the cohomology of ShU (H)b,perf . The latter
agrees with étale cohomology of ShU (H)b by topological invariance of the étale site; hence, if
H i(Igb,F�)m = 0 for every i, then the same is true for H i(ShU (H)b,F�)m.

7.3 The excision triangle for diamonds
In the proof of Proposition 7.2.7, given in the next section, we will make use of the
long exact sequence relating, under suitable assumptions, sheaves on a diamond to their
restriction to an open subdiamond and its closed complement. The existence of such an
exact sequence is well-known; for the reader’s convenience, we will briefly explain how to
obtain it.

7.3.1 Fix a locally spatial diamond X; let Xét be the étale site of X, defined in
[Sch17, Definition 14.1], and |X| the underlying topological space of X, defined in [Sch17,
Definition 11.14]. One can attach to each x ∈ |X| a quasi-pro-étale map x̄ = Spa(C(x),
C(x)+)→ X, with C(x) an algebraically closed perfectoid field, mapping the closed point of
Spa(C(x), C(x)+) to x (see [Sch17, Proposition 14.3] and [CGH+20, Lemma 2.2.2]). We call x̄
a geometric point of X (with the important caveat that as a set x̄ may not be a singleton), and
we denote by Fx̄ the stalk of a sheaf F at x̄. By [Sch17, Proposition 14.3] we may check if a
sequence of étale sheaves on X is exact looking at stalks at each geometric point.

7.3.2 Fix an open subspace of |X|, corresponding, by [Sch17, Proposition 11.15], to a sub-
diamond j : U → X; assume that the closed complement |X|� |U | is generalising, so that, by
[AGLR22, Lemma 2.7] and [Sch17, Proposition 11.20], it is the underlying topological space of
a canonical locally spatial subdiamond i : Z → X.6 Since |Z| is generalising, geometric points
of X are a disjoint union of geometric points of U and of Z. We have the extension by zero
functor j! : Ab(Uét)→ Ab(Xét), defined as for schemes (cf. the discussion before [CGH+20,
Lemma 2.2.6]), which is exact and left-adjoint to j∗. The stalk of j!F at x ∈ |U | (respectively,
x ∈ |Z|) is isomorphic to Fx̄ (respectively, is zero).

6 Recall that, unlike for schemes, it is not always the case that a closed subset of |X| underlies a subdiamond of
X, the issue being that maps of analytic adic spaces are generalising.
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Lemma 7.3.3. Let x ∈ |X| and let x̄ be the associated geometric point; let F be an étale sheaf
(of abelian groups) on Z. If x �∈ |Z|, then (i∗F )x̄ = 0; if x ∈ |Z|, then (i∗F )x̄ = Fx̄.

Proof. If x �∈ |Z|, then x ∈ |U |, hence there is a cofinal systems of étale neighbourhoods V → X
of x factoring through U ; therefore, i∗F (V ) = 0 and (i∗F )x̄ = 0. Now take x ∈ |Z|; then (i∗F )x̄ =
lim−→V

F (V ×X Z), where V runs over the objects V → X ∈ Xét through which x̄ factors. We may
restrict to V spatial and such that V → X factors through a fixed spatial open subdiamond of
X. Using [Sch17, Proposition 14.9], the description of x̄ before [CGH+20, Lemma 2.2.2], and the
fact that x̄→ X factors through Z, we have

lim−→
V

F (V ×X Z) = H0
(

lim←−
V

(V ×X Z), F
)

= H0(x̄×X Z,F ) = Fx̄. �

Proposition 7.3.4. Let X be a locally spatial diamond, and j : U → X an open subdiamond
with generalising closed complement underlying a subdiamond i : Z → X. For every étale sheaf
F of abelian groups on X the sequence

0→ j!j
∗F → F → i∗i∗F → 0

is exact.

Proof. It suffices to check this on stalks at each geometric point x̄→ X. If x̄ factors through
U we get 0→ Fx̄

Id−→ Fx̄ → 0→ 0. If it factors through Z, then (j!j∗F )x̄ = 0. On the other
hand, setting G = i∗F we have (i∗G)x̄ = Gx̄ by the previous lemma, and Gx̄ = Fx̄. Hence we get
0→ 0→ Fx̄

Id−→ Fx̄ → 0. �

7.4 Proof of Proposition 7.2.7
7.4.1 Let b = (bp)p∈Σp ∈ B(HQp , μ) be an element such that RΓ(Igb,F�)m is non-trivial and

such that the dimension dmin of ShU (H)b is as small as possible. Let ε be the cardinality of the
set T ⊂ Σp consisting of places p such that bp is basic. Then dmin = g − ε, so we need to prove
that

ε ≤ δp(m).

If ε = 0 there is nothing to prove; hence let us assume ε > 0, so that T is non-empty. Let HT be
the unitary group attached to T , defined in § 3.1.3, and Igord

T the associated μT -ordinary Igusa
variety. Consider the Hodge–Tate period map

πTHT : ShUp(HT )→ F �HT ,μ
−1
T
.

Our assumption and Theorem 4.2.4 imply that RΓ(Igord
T ,F�)m is non-trivial. Because of

Proposition 5.3.1 we deduce that (RπTHT,∗F�)m has non-trivial cohomology on the μT -ordinary
stratum. Better, we have the following.

Lemma 7.4.2. The μT -ordinary stratum is the only one where (RπTHT,∗F�)m has non-zero
cohomology.

Proof. Assume the contrary. Then using Proposition 5.3.1 we find that there is a non-ordinary
element b′T ∈ B(HT,Qp , μT ) such that H∗(Igb

′
T
T ,F�)m is non-zero. Consider the element b′ ∈

B(HQp , μ) which is basic precisely at places in T and at places outside T where b′T is basic. By
Theorem 4.2.4 the cohomology H∗(Igb

′
,F�)m is not identically zero; however the dimension of

ShU (H)b
′
is strictly smaller than the dimension of ShU (H)b, hence we obtain a contradiction. �
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7.4.3 We now come back to the proof of Proposition 7.2.7. Perversity of the complex
RπTHT,∗F�[g − ε] and the fact that it is concentrated on one stratum after localisation at m

imply that H i(Igord
T ,F�)m is non-zero only in middle degree g − ε (cf. [CS17, Corollary 6.1.4]).

Theorem 6.3.3 (together with the fact that smooth parabolic induction of a non-zero represen-
tation is non-zero) implies that

H i(ShUp(HT )b
ord
,F�)m �= 0⇔ i = g − ε. (7.4.3.1)

Let Z ⊂ F �HT ,μT
be the μT -ordinary locus, and V := F �HT ,μ

−1
T

� Z. We have an inclusion

ShUp(HT )b
ord ⊂ (πTHT)−1(Z) (7.4.3.2)

which induces a bijection on rank one points. The ordinary locus ShUp(HT )b
ord

is open and
quasi-compact, as it is the preimage of a quasi-compact open subspace in the special fibre via
the specialisation map, which is continuous and spectral. By [CS17, Lemma 4.4.2] the map
induced in cohomology by (7.4.3.2) is an isomorphism, hence the equivalence in (7.4.3.1) holds
true for the cohomology of (πTHT)−1(Z) as well. Let iZ : Z → F �HT ,μ

−1
T

and iV : V → F �HT ,μT

be the inclusion maps. The assumptions of Proposition 7.3.4 are satisfied, hence for every j ≥ 0
we have an exact sequence

0→ iV,!i
∗
V (RjπTHT,∗F�)→ RjπTHT,∗F� → iZ,∗i∗Z(RjπTHT,∗F�)→ 0.

Lemma 7.4.2 ensures that the first term vanishes after localisation at m; therefore, we deduce
that H i(F �HT ,μ

−1
T
, RjπTHT,∗F�)m = H i(Z,RjπTHT,∗F�)m. The outcome of our discussion is that

cohomology of ShUp(HT ) coincides with cohomology of its ordinary locus, after localisation at
m; hence H i(ShUp(HT ),F�)m �= 0 if and only if i = g − ε.

Now ShUp(HT ) is the inverse limit (as a diamond) of the spaces ShUpUT,p
(HT ) for UT,p ⊂

HT (Qp) running over compact open subgroups. There is a cofinal system of subgroups UT,p which
are images in HT (Qp) of subgroups of the form KT,p ×KE,p ⊂ GT (Qp)× TE(Qp), where KE,p is
such that KE,pK

p
E is sufficiently small with respect to KT,pK

p, in the sense of Definition 3.2.2.
For UT,p of this form and small enough, we must have

H i(ShUpUT,p
(HT ),F�)m = 0 for i �= g − ε, Hg−ε(ShUpUT,p

(HT ),F�)m �= 0,

where the first equality holds because a small enough subgroup UT,p is a pro-p group, hence the
map from the cohomology of ShUpUT,p

(HT ) to the cohomology of ShUp(HT ) is injective. The
argument in the proof of Corollary 7.1.2 shows that Hg−ε(ShUpUT,p

(HT ),Z�)m is non-zero and
torsion free, therefore we deduce that

Hg−ε(ShUpUT,p
(HT ),Q�)m �= 0.

Applying Corollary 3.2.9 once more we obtain that Hg−ε(ShKpKT,p
(GT ),Q�)m �= 0. We claim

that this implies that ρ̄m cannot be generic at places in T ; this yields the desired inequality
ε ≤ δp(m) and ends the proof of Proposition 7.2.7.

To justify our claim, recall that Hg−ε(ShKpKT,p
(GT ), Q̄�) can be described in terms of auto-

morphic representations ofGT as in [Nek18, (5.9)–(5.11)]. The Hecke algebra acts on the universal
part of cohomology (corresponding to one-dimensional automorphic representations, and called
case (A) in [Nek18]) via the degree character. Hence, this part of cohomology vanishes after
localisation at m, since m is non-Eisenstein. Therefore, as in [Nek18, (5.11)(B)], there is an auto-
morphic representation πT of GT which transfers to an automorphic representation π of GL2,F

attached to a (holomorphic) cuspidal Hilbert newform f such that almost all the Hecke eigenval-
ues of f modulo � are given by the image of the map T→ T/m. Letting ρπ : ΓF → GL2(Q̄�) be
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the Galois representation attached to π, we deduce that the reduction modulo � of (a lattice in)
ρπ is isomorphic to ρ̄m. Let v be a place in T ; by [Car86, Theorem A] the Galois representation
attached to πv lifts ρ̄m|ΓFv

. As πv is the Jacquet–Langlands transfer of a representation of the
non-split quaternion algebra over Fv, we deduce using § 7.1.4 that ρ̄m is not generic at v.

Remark 7.4.4. In the above proof, we used the parabolically induced structure of the ordinary
locus to deduce that H∗(ShUp(HT )b

ord
,F�)m is non-zero and concentrated in one degree from

the analogous properties of cohomology of the Igusa variety. One could also argue computing
cohomology of ShUp(HT )b

ord
via the Leray spectral sequence, and using the fact that the ordinary

locus in the flag variety is a profinite set (hence, a sheaf on it with a non-zero stalk has non-zero
global sections and vanishing higher cohomology).

7.5 Cohomology of quaternionic Shimura varieties
7.5.1 Let � be a prime number. In this section, we explain how the arguments used in this

paper can be extended to study the cohomology with F�-coefficients of quaternionic Shimura
varieties attached to non-split quaternion algebras. In a nutshell, the strategy we used for Hilbert
modular varieties can be applied in this generality, with the difference that we do not need to
restrict to non-Eisenstein maximal ideals, as Shimura varieties attached to non-split quaternion
algebras have no boundary. The construction of Galois representations is also simpler in this
case, therefore some results also apply to the case � = 2.

We fix a non-split quaternion algebra B over a totally real number field F of degree g.
Let R (respectively, R∞) be the set of places (respectively, infinite places) of F where B is
ramified. In this section, we will denote by G the group ResF/QB×; we fix a neat compact
open subgroup K ⊂ G(Af ) and we denote by ShK(G) the corresponding Shimura variety, of
dimension d := g − |R∞|. Let T be the Hecke algebra generated by operators at places of residue
characteristic different from � where B is unramified and K is hyperspecial. Given a prime p
totally split in F , fix an isomorphism Q̄p � C, inducing a bijection between the set Σ∞ of infinite
places and the set Σp of p-adic places of F . We denote by Rp the set of p-adic places corresponding
to R∞. The cocharacter of GQ̄p

induced by the cocharacter coming from the Shimura datum
attached to G is central at places in Rp. In the rest of the section we will discuss the proof of
the following result.

Theorem 7.5.2. Let � be a prime number and m ⊂ T a maximal ideal in the support of
H∗(ShK(G),F�).

(i) There exists a unique Galois representation ρ̄m : ΓF → GL2(F̄�) attached to m, in the sense
of Theorem 2.2.1.

(ii) Let p �= � be an odd prime number which splits completely in F and such that B is unram-
ified at every place above p and K = KpKp with Kp ⊂ G(Qp) hyperspecial. Let δp(m) be
the cardinality of the set of places v ∈ Σp �Rp such that ρ̄m is not generic at v. Then

i �∈ [d− δp(m), d+ δp(m)]⇒ H i(ShK(G),F�)m = 0.

(iii) If � > 2 and the image of ρ̄m is not solvable, then

i �= d⇒ H i(ShK(G),F�)m = 0.

7.5.3 Take a prime p as in point (ii) of the theorem. We choose an auxiliary CM extension
E/F such that every finite place in R is inert in E, and a place of F above p is split (respectively,
inert) in E if it belongs (respectively, does not belong) to Rp. We consider the auxiliary unitary
group H∅ constructed as in § 3.1.3; we will denote H∅ by H for simplicity. We can write the
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Kottwitz set B(HQp , μ) as a product B(HQp , μ) =
∏

Σp
B(Hp, μp), where B(Hp, μp) has one ele-

ment (respectively, two elements, the basic and the μp-ordinary element) if p ∈ Rp (respectively,
if p ∈ Σp �Rp). We fix a compact open subgroup KE = (OE ⊗ Zp)×K

p
E sufficiently small with

respect to K, and we let U ⊂ H(Af ) be the image of KE ×K. Given b = (bp)p∈Σp ∈ B(HQp , μ)

we have the corresponding Newton stratum Sh
b
U (H) which is affine and smooth, of dimension

d− εb, where εb denotes the number of places p ∈ Σp �Rp such that bp is basic.
Given a set T ⊂ Σp �Rp, let BT be the quaternion algebra over F ramified at places in

R as well as at places in T and at the corresponding infinite places. We let GT := ResF/QB
×
T ;

fix an isomorphism G(A(p)
f ) � GT (A(p)

f ), allowing us to see Kp as a subgroup of GT (A(p)
f ). The

arguments in §§ 3.2 and 3.3 go through in this setting; in particular, one can define moduli
problems giving rise to integral models of the Shimura varieties attached to the groups H and
HT ; this makes it possible to define Igusa varieties, and Theorem 4.2.4 has an analogue in this
setting. Similarly, we have a description of the fibres of the relevant Hodge–Tate period maps
in terms of Igusa varieties, and of the μ-ordinary locus at infinite level as being parabolically
induced from the corresponding Igusa variety.

Theorem 7.5.2 will follow from the following proposition.

Proposition 7.5.4. Take b = (bp)p∈Σp ∈ B(HQp , μ) corresponding to a Newton stratum with

smallest possible dimension such that H∗(ShbU (H),F�)m �= 0. Let T ⊂ Σp �Rp be the set of
places p such that bp is basic. Then there is a compact open subgroup KT,p ⊂ GT (Qp) such that

H∗(ShKpKT,p
(GT ),Q�)m �= 0.

Proof. As H∗(ShbU (H),F�)m �= 0 we deduce that H∗(Igb,F�)m �= 0, hence by Theorem 4.2.4 we
get H∗(Igord

T ,F�)m �= 0. Denoting by πTHT the Hodge–Tate period map for ShUp(HT ), we deduce
as in Lemma 7.4.2 that (RπTHT,∗F�)m is supported only on the μT -ordinary locus. Perversity
(up to shift) of RπTHT,∗F� implies that H∗(Igord

T ,F�)m is non-zero only in middle degree; the
same argument as in § 7.4.3 then shows that H∗(ShUp(HT ),F�)m is concentrated in middle
degree. We can finally descend to an appropriate finite level and apply Corollary 3.2.9 to
deduce that H∗(ShKpKT,p

(GT ),F�)m is concentrated in middle degree, hence H∗(ShKpKT,p
(GT ),

Q�)m �= 0. �

7.5.5 Proof of Theorem 7.5.2. The existence of ρ̄m follows combining Proposition 7.5.4, the
description of the cohomology of ShKpKT,p

(GT ) with characteristic zero coefficients in terms of
automorphic forms and the existence of Galois representations attached to quaternionic auto-
morphic forms. The second point is proved adapting the argument in §§ 7.2 and 7.4.3. The third
point follows from the second and from Lemma 7.1.8.

8. Compatibility with the p-adic local Langlands correspondence

Fix a prime p throughout this section, which will play the role of the prime denoted by � above.
The aim of this section is to relate the completed homology of Hilbert modular varieties and the
p-adic Langlands correspondence, building on [GN22].

8.1 Completed homology
8.1.1 Following [GN22] we work with locally symmetric spaces attached to PGL2,F rather

than GL2,F . Let G := ResF/Q GL2 and Ḡ := ResF/Q PGL2. Given a compact open subgroup
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K̄ ⊂ Ḡ(Af ) we have the locally symmetric space

XK̄(Ḡ) := Ḡ(Q)\(C � R)g × Ḡ(Af )/K̄.

Fix a compact open subgroup K̄pK̄0 which is good in the sense of [GN22, § 2.1], with K̄0 =∏
v|p PGL2(OFv). Consider the completed homology groups

H̃∗(K̄p,Zp) := lim←−̄
Kp

H∗(XK̄pK̄p ,Zp).

Let T(K̄p) be the big Hecke algebra defined in [GN22, Definition 2.1.11] (beware that our notation
differs from that used there). It maps to the Hecke algebra T(K̄pK̄p,Z/p

sZ) acting on homology
with Z/psZ-coefficients of the locally symmetric space of level K̄pK̄p for each K̄p and each
s ≥ 1. Completed homology H̃∗(K̄p,Zp) carries an action of T(K̄p) as well as of Ḡ(Qp); we fix a
maximal ideal m ⊂ T(K̄p). For K̄p small enough, the ideal m is the preimage of a maximal ideal
in T(K̄pK̄p,Z/pZ), which we will abusively denote by the same symbol (in fact any pro-p group
K̄p does the job, cf. the proof of [GN22, Lemma 2.1.14]). Hence, setting K̄ = K̄pK̄p, we have
H∗(XK̄(Ḡ),Fp)m � H∗(XK̄(Ḡ),Fp)m �= 0.

8.1.2 Let us now assume that p > 3; we take K̄ as above, and assume in addition that
it is the image of a compact open subgroup K ⊂ G(Af ). The natural map ShK(G)→ XK̄(Ḡ)
is a finite étale Galois cover, hence H∗(ShK(G),Fp)m �= 0. By Theorem 2.2.1 there is a Galois
representation ρ̄m : ΓF → GL2(F̄p) attached to m. Let us suppose that the projective image of
ρ̄m contains a conjugate of PSL2(Fp) or is isomorphic to A5; then Theorem 7.1.1 implies that,
for every K ′

p ⊂ Kp, we have

H i(ShKpK′
p
(G),Fp)m = H i

c(ShKpK′
p
(G),Fp)m = 0

for i < g; the Hochschild–Serre spectral sequence attached to the Galois cover ShKpK′
p
(G)→

XKpK′
p
(Ḡ) implies that the same property holds true for the cohomology of XKpK′

p
(Ḡ), hence

H∗(XKpK′
p
(Ḡ),Fp)m � H∗(XKpK′

p
(Ḡ),Fp)m is concentrated in degree g. Therefore, assumptions

(a) and (b) of [GN22, Proposition 4.2.1] are satisfied (note that assumption (b) trivially
holds since, with the notation of [GN22, Proposition 4.2.1], we have l0 = 0 in our situ-
ation). Thanks to [GN22, Proposition 4.2.1] we obtain that H̃i(K̄p,Zp)m = 0 if i �= g and
H̃g(K̄p,Zp)m is a projective, p-torsion-free Zp[[K̄0]]-module. Furthermore, there is a Galois
representation

ρm : ΓF → GL2(T(K̄p)m)

lifting ρ̄m, as in [GN22, Conjecture 3.3.3(2)]. It can be constructed as in [Sch18, § 5]: the argument
in [Sch18, § 5], glueing representations valued in Hecke algebras at increasing finite level, can
be applied in our situation as (co)homology with Zp-coefficients is concentrated in one degree
and torsion-free after localisation at m, and cohomology with Qp-coefficients localised at m is
described in terms of Hilbert cusp forms.

8.2 p-adic local Langlands
Assume from now on that p is totally split in F . We want to describe the relation between
completed homology of Hilbert modular varieties and the p-adic Langlands correspondence for
GL2(Qp), using the machinery of [GN22]. As remarked in [GN22, § 5.4], assumption (a) of [GN22,
Proposition 4.2.1], which we established above, is the key input needed to apply the results
in [GN22].
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8.2.1 We first need to introduce some notation. We replace Zp by the ring of integers O of a
finite extension of Qp, with residue field k, so that ρ̄m takes values in GL2(k). Furthermore, up to
further extending O, we may, and will, assume that k contains all the eigenvalues of the elements
in the image of ρ̄m (as in [GN22, § 3.2]). We denote by L the fraction field of O. For a place v | p,
under suitable assumptions on ρ̄m|ΓFv

(for example, if it is absolutely irreducible) we have the uni-

versal local deformation ring Rdef
v of ρ̄m|ΓFv

. We denote by πv the k-representation of PGL2(Fv)
attached to ρ̄m|ΓFv

, and we let Pv be the projective envelope of π∨v in the Pontryagin dual of the
category of locally admissible O-representations of PGL2(Fv). We set Rloc

p := ⊗̂v|p,ORdef
v ; then

P := ⊗̂v|p,OPv has an Rloc
p -module structure, cf. [Paš13, Proposition 6.3, Corollary 8.7] (see also

[GN22, § 5.1]). Finally, the representation ρm gives rise to a map Rloc
p → T(K̄p)m. Let N(ρ̄m) be

the prime-to-p-conductor of ρ̄m and let K̄1(N(ρ̄m)) be the image of {M ∈ GL2(ÔF ) |M ≡ ( ∗ ∗
0 1 )

(mod N(ρ̄m))} (more precisely, if this group is not good, we make it smaller at places where ρ̄m

admits no ramified deformations).

Theorem 8.2.2. Let p > 3 be a prime which splits completely in F . Assume that the following
assertions hold true.

(i) The projective image of the Galois representation ρ̄m attached to m contains a conjugate of
PSL2(Fp) or is isomorphic to A5.

(ii) If ρ̄m is ramified at some place v not lying above p, then v is not a vexing prime.
(iii) For each place v | p, the restriction of ρ̄m to ΓFv is absolutely irreducible.

Then there is an isomorphism of T(K̄1(N(ρ̄m))p)m[Ḡ(Qp)]-modules

H̃g(K̄1(N(ρ̄m))p,O)m � T(K̄1(N(ρ̄m))p)m⊗̂Rloc
p
P⊕m

for some m ≥ 1.

Proof. This is [GN22, Proposition 5.1.4], which follows from [GN22, Conjecture 5.1.2]. Let us
explain why this and other conjectures formulated in [GN22] hold true in our setting, and the
various assumptions made in [GN22] are satisfied.

(i) In [GN22, § 4.1] the authors assume that the image of restriction of ρ̄m to ΓF (ζp) is enor-
mous. This is needed for the construction of Taylor–Wiles data, as in [GN22, Lemma 3.3.1].
Our large image assumption and [GN22, Lemma 3.2.3] imply that the group ρ̄m(ΓF (ζp)) is
enormous if p > 5. If p = 5, our assumption does not guarantee that ρ̄m(ΓF (ζp)) is enormous.
However, in this case, one can work under the assumption [Sch18, Hypothesis 9.1], which
originates in [Kis09, Theorem 3.5.5] and which is satisfied in our situation. Indeed, if the
image of pr ◦ ρ̄m : ΓF → PGL2(F̄5) is conjugate to PGL2(F5) and its kernel fixes F (ζ5) then
[F (ζ5) : F ] = 2, which cannot happen if p = 5 is unramified in F .

(ii) The assumption that ρ̄m �= ρ̄m⊗ ε̄, where ε̄ is the mod p cyclotomic character (see [GN22,
p. 18]) holds. Indeed because p is unramified F , the fields F and Q(ζp) are linearly disjoint
over Q; hence ε̄ : ΓF → (Z/pZ)× is surjective. In particular, there is γ ∈ ΓF such that ε̄(γ)2 �=
1, hence det ρ̄m(γ) �= det(ε̄⊗ ρ̄m)(γ). For the same reason the first assumption in [GN22,
Hypothesis 4.1.3] is satisfied.

(iii) Conjecture 3.3.7 of [GN22] holds: the representation denoted by ρm,Q in [GN22] can be
constructed as explained before the statement of the theorem, and the desired local–global
compatibility follows from the analogous statement for Hilbert modular forms.

(iv) The second assumption in [GN22, Hypothesis 4.1.3] holds in view of the hypothesis that
there are no vexing primes.
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The upshot of the above discussion is that all the assumptions made at the beginning of
[GN22, § 5] are verified. Therefore, by [GN22, Corollary 5.3.2], Conjecture 5.1.2 follows from
Conjecture 5.1.12 in [GN22].

It remains to justify why Conjecture 5.1.12 holds. Let Q be a set of Taylor–Wiles primes and
σ = (σv)v|p an irreducible L-representation of K̄0, with K̄0-stable O lattice σ◦ as in [GN22, p. 34].
Let XK̄1(Q)(Ḡ) be the space with level K̄0 at p and K̄1(Q)v at each place v ∈ Q. We need to
show that the action of Rloc

p on H∗(XK̄1(Q)(Ḡ), σ◦)mQ,1 factors through Rloc
p (σ), where the ideal

mQ,1 is defined in [GN22, Proposition 3.3.6]. Let T(K̄1(Q), σ)mQ,1 be the image of the Hecke
algebra in the endomorphism ring of Hg(XK̄1(Q)(Ḡ), σ◦)mQ,1 . By assumption (i) the homology
H∗(XK̄1(Q)(Ḡ), σ◦)mQ,1 is concentrated in middle degree, and Hg(XK̄1(Q)(Ḡ), σ◦)mQ,1 is torsion-
free; furthermore T(K̄1(Q), σ)mQ,1 is reduced. As in the proof of the first part of [CEG+16,
Lemma 4.17], it suffices to show that, for any Q̄p-point of T(K̄1(Q), σ)mQ,1 , the restriction to ΓFv

(for v | p) of the associated Galois representation with Q̄p-coefficients is crystalline of type σv.
The space H∗(XK̄1(Q)(Ḡ), σ)mQ,1 can be described in terms of Hilbert cusp forms with algebraic
weight, hence the desired result follows from local–global compatibility at places above p (see
[Kis08, Theorem 4.3]). This establishes the first assertion in [GN22, Conjecture 5.1.12]; the second
one can be proved similarly, following the strategy in the second part of the proof of [CEG+16,
Lemma 4.17]. �
Remark 8.2.3. In fact, one should be able to prove a version of compatibility with the p-adic local
Langlands correspondence without any assumptions on the tame level, for example the analogue
to this setting of [Pan22b, Corollary 6.3.6]. That this would follow from Theorem A and the
machinery developed by Paškūnas is more or less known to experts. We sketch the argument in
this remark.

One can consider the completed cohomology of a Hilbert modular variety with Zp-coefficients.
After localisation at a maximal ideal m whose associated residual Galois representation is
non-solvable, Theorem A implies that this is concentrated in one degree. As in [Pan22b,
Corollary 6.3.6], the key point is to prove the analogue of [Pan22b, Theorem 6.3.5] that
compares two actions of the local pseudo-deformation ring with fixed determinant on completed
cohomology localised at m. (See [Pan22a, Theorem 3.5.5] for the statement in the case when there
are multiple split places above p, which relies on [Pan22a, Corollary 3.4.12].)

The comparison of the two pseudo-deformation ring actions can be done using the method
of [Paš22, Corollary 5.6]. The key facts that would need checking are: density of those locally
algebraic vectors for which the smooth part is a specific principal series representation, and
semi-simplicity of the usual Hecke action on the non-Eisenstein cohomology of Hilbert modular
varieties. The latter can be deduced from the Eichler–Shimura isomorphism and the existence of
the Petersson inner product on Hilbert cusp forms. Density of locally algebraic vectors follows
from [DPS20, Corollary 7.8] and the fact that completed cohomology localised at m with fixed
central character is a direct summand of a space of continuous functions with fixed central char-
acter as in the proof of [DPS20, Theorem 9.24]. Finally, the latter fact follows from projectivity
of completed homology localised at m (cf. [DPS20, Lemma 9.16(i)]). As in § 8.1.2, to establish
this last property one crucially uses Theorem A.
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