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ABSTRACT 
Deep learning methods have been applied to randomly generate images, such as in fashion, furniture 
design. To date, consideration of human aspects which play a vital role in a design process has not been 
given significant attention in deep learning approaches. In this paper, results are reported from a human-
in-the-loop design method where brain EEG signals are used to capture preferable design features. In 
the framework developed, an encoder extracting EEG features from raw signals recorded from subjects 
when viewing images from ImageNet are learned. Secondly, a GAN model is trained conditioned on the 
encoded EEG features to generate design images. Thirdly, the trained model is used to generate design 
images from a person’s EEG measured brain activity in the cognitive process of thinking about a design. 
To verify the proposed method, a case study is presented following the proposed approach. The results 
indicate that the method can generate preferred designs styles guided by the preference related brain 
signals. In addition, this method could also help improve communication between designers and clients 
where clients might not be able to express design requests clearly. 
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1 INTRODUCTION 

Automatically generating a design with preferences has been an on-going challenge in the design 

domain. Many deep learning methods have been proposed to generate designs. For example, image 

style transfer (Gatys et al., 2016)(Efros & Freeman 2001)(Dosovitskiy & Brox 2016)(Isola et al., 2017a) 

composes an image with original content and style features. Generative bionics design (Yu et al., 2018) 

employs an adversarial learning approach to generate images containing both features from the design 

target and biological source. However, these AI image generation methods do not consider human 

aspects, and the randomly generated results have no human cognition input. Consideration of human 

aspects in the design process is vital in design (Vicente 2013; Carroll 2002; Cooley 2000). A person’s 

preference for a design can be intuitive, and sometimes an individual may not precisely know what 

their real preferences are. Therefore, being able to capture human preference in the image generation 

process to produce an image corresponding to a preference may lead to a significant improvement in 

AI-aided generative design. Recent advancements in neuroscience, especially brain decoding 

(Tirupattur et al., 2018; Shen et al., 2017; Palazzo et al., 2017) based on deep learning methods show 

potential for reconstructing a seen or imagined image from brain activities such as by using 

electroencephalogram (EEG), functional magnetic resonance imaging (FMRI) and Near-Infrared 

Spectroscopy (NIRS). This has provided impetus to explore a human-in-the-loop AI design method 

through deep learning as presented in this paper. 

In this study, an attempt has been made to add human cognition into a deep learning based design 

process to generate design images which account for a person’s preference. Human cognition involves 

many factors. In order to limit the scope of attention here, only human preference for potential styles 

has been explored. A human-in-the-loop AI design method is proposed, with a brain signal conditioned 

generative neural networks (GAN) (Goodfellow et al., 2014) framework for design, enabling cognitive 

visual-related styles to be reconstructed. Figure 1 illustrates a diagram of the proposed process. To 

implement this framework, an image presentation experiment is used to explore the relation between 

the brain signal and images presented by training an encoder to extract the features from raw EEG data 

when viewing the image. Secondly, a generator is trained using a GAN framework conditioned by the 

encoded brain signal features to reconstruct the presented image. Such a trained model is then used to 

reconstruct real preferred design images in a preference imagery experiment. Given the brain signal 

related to the imagination of a preferred design as input, the trained model could be used to generate 

images that probably contain the preferences. 

Both qualitative and quantitative experiments were conducted for a case study and it was shown that 

the proposed human-in-the-loop AI design method could generate some design images people 

preferred. The experiment successfully demonstrated that desired design images can be generated 

using the brain activity which was recorded while subjects are imagining a product they prefer. The 

human-in-the-loop design approach could be embedded directly into other design processes with the 

understanding of design cognition incorporated. For example, by using this approach in fashion and 

product design, one could explore the cognition of possible preference on materials, patterns and 

shapes. Such learned design cognition could contribute to better design choices. This approach can 

also provide a new way for personalised design, for example a personalised gift design with 

customisation for the recipient.  

The main contributions of this paper can be summarised as follows. 

1) A human-in-the-loop AI design method to generate designs taking into account the subject’s 

preference by employing EEG measured brain activity.  

2) A new framework for communicating the cognitive understanding of customer requirements, 

enabling, for example, designers to have a visual understanding of what their clients want or their 

ideas through pictures not words.  
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Figure 1. Overview of the process of brain signal conditioned design image generation. 

2 RELATED WORK 

Three scientific areas have inspired this research. In this section state-of-the-art machine learning 

technology for generative creativity and problems with the current machine generated design methods 

are described. Secondly current neuroscience inspired design methods are explored. The third area 

considered concerns using deep neural networks to classify, generate and reconstruct visual images 

from brain activities (EEG & fMRI). Taking inspiration from these three areas of study a framework is 

proposed where brain activities are adopted as input to introduce human cognition in a GAN based 

generative design process. 

2.1 Deep learning for design 

Several deep neural network approaches for image generation have been proposed recently, such as 

the neural style transfer model (Gatys et al., 2016) (Johnson et al., 2016; Li & Wand 2016) (Zhu et al., 

2017) which can generate images which contain the content of the given image with style features 

from the artistic images. Isola et al (Isola et al., 2017b) investigate the image-to-image problem which 

generates new images from photos applied to human-drawn sketches. These approaches have enabled 

the development of computer vision applications, for example, Prisma (Anon n.d.), a photo editor 

which turns a photo to an artwork. Dong et al. have synthesised realistic image semantics with natural 

language descriptions (Dong et al., 2017). Yu et al. (Yu et al., 2018) use an approach called DesignGAN 

to generate a shape-oriented bionic design which maintains the shape of the design target and 

combines the features from the biological source domain. These approaches mainly focus on 

automatically generating new art and design images with the features from input images. A problem of 

this type of generative creativity is evaluation since the generation is completely random. How to 

generate a desirable design with the preference from clients is a key question in our research. 

2.2 Current neuroscience-inspired design 

Non-invasive methods for measuring human brain activity include Electroencephalograph (EEG), 

functional magnetic resonance imaging (fMRI) and Near-Infrared Spectroscopy (NIRS). EEG 

measures subcranial electrical signals from electrodes in contact with the scalp. Neuroscience has 

inspired many developments in design, such as understanding cognitive neurofeedback from clients, 

building and developing new products and evaluating advertising. For example, neuroimaging has 

been used in understanding of packaging design to explain how packaging design confuses the 

consumer (Basso et al., 2014). Velasco et al. have presented an experimental research programme on 

evaluating the impact of different orientation of design elements in product packaging (Velasco et al., 

2015). Furthermore, to understand the consumer psychology of a brand, Plassmann et al. have 

reviewed the applications of marketing and also describe issues for future research (Plassmann et al., 

2012). In a review of neuroscience-inspired design (Spence 2016) states one of the problems of 

commercial neuromarketing is that the results provided by neuroimaging are a clear answer to a 

‘black-and-white’ question rather than a discriminating analysis of a ‘shades of grey’ question. 
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Inspired by his review, the potential has been explored of introducing neuroscience into a deep 

learning framework where the machine could not only provide a response to a ‘black-and-white’ 

question but also show other potential visualisations relating to a ‘shade of grey’ intuition.  

2.3 Brain signal conditioned deep learning framework 

Machine learning methods have been introduced to both EEG and fMRI to help understand visual 

images, for example, developing a visual object classifier driven by human brain signal (Spampinato et al., 

2017). Distinct from Spampinato et al. who used EEG data, Horikawa et al. explore object decoding using 

machine learning principles, predicted from fMRI patterns (Horikawa & Kamitani 2017). Both of these 

EEG and fMRI results show the potential of brain-based information retrieval. Furthermore, researchers 

have tried to generate related visual information from decoded information from brain imaging. Palazzo et al. have 

combined generative adversarial networks with a recurrent neural network model to process EEG signals to 

generate viewing images of participants (Palazzo et al., 2017). Recently, Shen et al. have successfully demonstrated 

that visual images can be reconstructed from decoded fMRI signals (Shen et al., 2017; Shen et al., 2018). These 

generative brain decoding methods provide inspiration to explore a new method for design cognitive analysis.  

3 METHOD: HUMAN-IN-THE-LOOP DESIGN WITH MACHINE LEARNING 

FRAMEWORK 

How to involve human cognition into a random AI design process to generate a design with people’s 

preference is the research focus presented here. Human cognition is captured by measuring EEG 

signals. The process includes two phases: a training phase to learn a generating function :
BD

G B D 

which maps the EEG measured brain activity B  to the corresponding design image D , and a design 

phase to utilise the learned generating function and particular brain signal to generate a product 

involving the human preference. 

 

Figure 2. Training an EEG conditioned generative model. 

In the training stage, EEG signals were recorded when subjects were viewing the ‘ground-truth’ 

images of a design. Subsequently the brain signals 
i

B  are encoded into the EEG features related to the 

design semantic of the seen image by a LSTM-based EEG encoder. The EEG features are embedded 

into the GAN-based generator as the generation condition, which forces the generative model to 

reconstruct images 
i

D  that contain the same design semantic of the original seen image. In the design 

stage, the subjects are asked to imagine an example of a product or a design they prefer, and the 

measured EEG signal which may contain favoured design features of the subject’s will then be 

encoded as the input to the trained generator. The sampled design containing the design features that 

correspond to the subject’s imagination will then be created by the generator. Figure 2 illustrates how 

the EEG encoder and image generator can be trained. Details about how this framework is 

implemented will be introduced in the following sections.  
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4 EXPERIMENT IMPLEMENTATION 

Details of the experiments for the model training process are presented in this section. 

4.1 Participants and equipment 

The EEG study included 6 right-handed student volunteers (3 females and 3 males) aged between 17-

30 years old, with normal or corrected-to-normal vision. All participants gave informed consent to 

take part in the EEG experiment and had considerable training in EEG experiments. Our EEG 

recordings were performed using an electrode cap with 64 Ag/AgCI electrodes which were mounted 

according to the extended international 10/20 system. An online 50 Hz notch filter was added to avoid 

power line signal contamination. 

Signals were recorded by using a Neuroscan Synamp2 Amplifier (Scan 4.3.1; Neurosoft Labs Inc., 

Sterling, Virginia, USA) and sampled at 1000 Hz. Eye blinks were recorded from left supra-orbital 

and infra-orbital electrodes, whereas the horizontal eye movement EEG was recorded from electrodes 

placed 15 mm laterally to the left and right external canthi. The forehead (AFZ) was used for the 

ground electrode, and the reference electrode was attached to the left mastoid. All electrode’s 

impedances were maintained below 5 kΩ. 

4.2 Visual stimuli 

In this experiment, the stimuli consisted of 5 different categories of product images (handbag, headset, 

mug, watch and guitar) from ImageNet (Fei-Fei et al., 2010); each category included 50 images. The 

size of the pictures was resized to 500x500 pixels and cropped to the centre of the screen. The 

participants were required to view more images for brain signal decoding to capture more features 

from visual images.  

4.3 Experiment design 

 

Figure 3. Image presentation experiment. 

 

Figure 4. Preference imagery experiment. 

Two separate data collection sessions were conducted consisting of an image presentation experiment 

and the preference imagery session. In order to ensure the quality of the data, an electrode connection 

checking session was added before each run. During the experiment the subject was accommodated in 

a sound attenuated and electrically shielded room and seated comfortably. The stimuli images were 

presented in the centre on the screen and at a fixed distance. In addition, a press button pad was 

provided for the subjects to give feedback during the experiment. Subjects were able to stop the 

experiment at any time.  

In the image presentation session, 5 categories of images were presented in 5 runs, each run consisting 

of 1 category of 50 images and separated in 5 blocks, each block with 10 different images and 1 

repeated image. The subjects were required to view the images and press the button on the board when 
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they sew the repeated images to maintain their attention. At the beginning of each block, a fixation red 

cross was presented in the central of the screen for 1000 ms. At the end of each run, 3000 ms were 

added as a rest time. In the preference imagery experiment, the subjects were required to visually 

imagine their preferred products follow the instructions appears on the screen. This session consisted 

of 5 runs and each run contained 10 blocks. Firstly, a fixation red cross was shown in the centre of the 

screen for 1000 ms. After this, an instruction was presented in the middle of the screen, and the 

subjects were asked to visualize the preferred visual look of the product. Following an audible beep, 

they were asked to close their eyes for an 8 s imagination period. After this, the subjects were required 

to evaluate the correctness and vividness of their mental imagery on a five-point scale by pressing the 

button of the box. 3000 ms refreshing time was added before and after each run.  

4.4 Generative model 

4.4.1  EEG feature encoder 

The objective of this work is to map the stimulated brain signals into the correct latent representation 

of seen images, and thus to build a model to extract EEG features as correlated to the image features as 

possible. 

 
Figure 5. EEG feature encoder. 

A recurrent neural network using Long Short-Term Memory (LSTM) (Hochreiter and Schmidhuber 

1997) cell was employed to track the temporal dynamics in the EEG data which contains fundamental 

information for EEG activity comprehension. LSTM is a special recurrent neural network which is 

able to learn long-term dependencies. Figure 5 illustrates the architecture of our EEG feature encoder. 

This is made up of a standard LSTM layer and two fully-connected layers (linear combinations of 

input, followed by ReLU nonlinearity). At each time step t , the data of all EEG channels at time t  is 

fed into the LSTM layer; The output of the LSTM layer at the last time step is used as the input of the 

fully-connected layers, ReLU nonlinearity is appended after the first fully-connected layer and a 

Softmax layer is appended after the last fully-connected layer. The learning rate is initialized to 0.0001 

and gradient descent is used to learn the model’s parameters end-to-end. The dataset is split into 3 sets: 

80% EEG data for training, 10% EEG data for validation, 10% EEG data for testing. Table 1 

illustrates the classification rate among five classes, with a total of 1500 EEG data points (300 per 

class), which includes 1200 data points for training, 150 data points for validation and 150 data points 

for testing.  The overall classification rate on the test set which contains 5 classes is 71.5%. 

Table 1. Classification rate for each class. 

Class name Classification rate 

Headphone 84.2% 

Bag 79.2% 

Mug 70.8% 

Guitar 67.5% 

Watch 55.8% 

Total 71.5% 
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4.4.2  Generator network 

The foundation of the generator framework is ACGAN (Odena et al., 2016) . This generates images 

based on the input feature vector and also has the ability to generate images from the specific category.  

Generator      

The generator consists of 5 upsampling layers. Firstly, inputs of the EEG representation which is the 

element-wise product of the 64-dimensional EEG features and a random Gaussian noise have been 

made. The input vector is then spatially upsampled by four times by the first transposed convolutional 

layers and output 512 feature maps. After that, the number of feature map halves and the feature map 

size doubles after each remaining transposed convolutional layer. Finally, the final output has been 

obtained as the 64 x 64 pixel images with three colour channels. Batch normalisation (Ioffe and 

Szegedy 2015) and LeakyReLU (Maas et al., 2013) nonlinearities have been appended after each 

transposed convolutional layer.  

Discriminator 

The discriminator consists of two modules: a convolutional module used to extract the image feature 

and a classification module used to distinguish generated image and identify the image category as 

well.  

Convolutional module. The convolutional part of the discriminator is made up of 10 convolutional 

layers. It takes as input coloured 64 x 64 images. We have 64 feature maps after the first layer and the 

number of feature maps reaches 512 after being doubled at layer 3, 5 and 8 respectively. The feature 

map size starts at 64 x 64 and is halved after each max pooling layer appended after the 2, 4, 7, 10 

layers and become 4 x 4 after the final layer. Batch normalisation and LeakyReLU nonlinearities are 

appended after each convolutional layer. 

Classification module. After the convolutional module, a 4 × 4 × 512 sized data sample is obtained. 

The data is flattened and fed into two classifiers, a binary classifier to distinguish generated images 

from the real image and a multi-class classifier to identify the image category. The binary classifier 

consists of two fully connected layers. After the first layer, the output size is 1024 and 1 after the 

second layer. ReLU activation function is appended after the first fully-connected layer, and a sigmoid 

layer is added after the second fully-connected layer. The multi-class classifier consists of three fully-

connected layers. The first layer reduces the number of features to 1024 and the features number 

remain unchanged after the second layer. Then, the data is fed into the last layer where the number of 

features is reduced to the number of image categories. ReLU activation function is appended after the 

first and the second layer and a Softmax layer is added after the last fully-connected layer.  

The Inception score (Salimans et al., 2016) is applied as the main method to evaluate the quality of the 

images generated by the GAN. A score of 4.85 was obtained on the generated image in this study.  

4.5 Evaluation experiment  

A questionnaire survey was conducted in order to provide some evaluation of the method. In this 

human study survey,subjects were required to choose images they like from 100 images (5 classes, 20 

images per class) which were randomly chosen from the generated results. 6 subjects who had 

participated in the brain signal recording experiments evaluated these images. For each trial of the 

experiment, the participants viewed a printing of a set of generated images and were required to pick 

the images they like. 
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5 RESULTS AND ANALYSIS 

5.1 Results 

 

Figure 6. Seen image reconstruction results in the grey frame (left) and imagery preference 
design image in red frame (right) reconstruction results. 

Results from both the image presentation experiment and the preference imagery experiment are 

shown in Figure 6. The as seen image results from the image presentation experiment are shown in the 

grey frame in Figure 6, as a baseline of the work to allow for subsequent evaluation of the 

performance of the visual image reconstruction model. After reconstructing the seen image from the 

image presentation experiment, the well-trained model is used to reconstruct the imagery image from 

the preference imagery experiment, which is shown in the red frame in Figure 6.  

Qualitative and quantitative evaluations 

To evaluate the brain signal conditioned generative design results, both qualitative and quantitative 

evaluations were performed. In the qualitative evaluation, it can be seen from the generated results 

demonstrated that the proposed approach successfully generates different designs with multiple colour 

and shape features. As mentioned in section 4.4.1, the overall classification rate of the encoder is 

78.5% and in section 4.4.2 the inception score of the generator is 4.85. The quantitative evaluation 

result is from the questionnaire survey. Figure 7 shows there are 73% bag images, 60% headphone 

images, 61% mug images, 51% watch images and 43% guitar images that have been selected by the 

participants as the designs they like. In total, there were 57.6% images chosen from the generated 

image as preferred images.  

 

Figure 7. Human evaluation results of the case study. 

The evaluation results indicate that these generated design images which are conditioned by brain 

activities could include human preferred design styles. The reconstructed imagined images have a 

larger variety of colour and shape features than the reconstructed seen image. The preference imagery 

experiment results also shows that these preferred products generated by deep learning method 

through brain activities have combined multiple design features from various kinds of products which 

learned from previous designs. Therefore, it may be inferred that these generated designs contain the 

mixed colour and shape features which have been filtered by human cognition by inputting brain 

signal into a deep generative model. Designers could have a prejudgment based on these generated 

images. For example, one of the generated bags has multiple colours, from which we could predict 
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that the user actually wants a very lively bag. Similarly with the grey bag, we could predict an office 

style bag is what they might prefer. Such a discriminating analysis of a ‘shades of grey’ design 

question could be applied to different design processes. Product designs dominated by the shape are 

more accepted than the designs dominated by function such as a guitar. This may reflect that the 

preference of shape is better captured by EEG signal. Further study of this hypothesis could provide 

additional evidence and insights into this finding. 

6 CONCLUSION 

In this paper, a Human-in-the-loop design method has been proposed with machine learning to 

automatically generate a design taking into account a person’s preference. The case study results have 

indicated that designs can be generated with preferred design styles by using the image reconstruction 

model conditioned by mental imagery EEG features. Although the proposed approach has only been 

applied for five product design cases, it could potentially be used in other design cases and for 

different design tasks such as design evaluation and branding strategy. In the research work to date, 

due to the limited data in the model training process, the case study only contains the design semantics 

from these five categories. Data in additional categories can be collected in order to contain more 

features. The results may help designers think beyond user cases by having direct visualistion of what 

the user may like. The experiment indicates a new way of communicating human cognitive content. 

Embedding the proposed Human-in-the-loop design method into different design processes could help 

designers understand users’ requirements and preferences more accurately. A new approach to design 

cognition analysis has been demonstrated.  
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