ON SEMIGROUPS OF ENDOMORPHISMS OF GENERALIZED BOOLEAN RINGS

DOUGLAS B. SMITH, JR. and JIANG LUH

(Received 12 February 1973)
Communicated by G. B. Preston

1. Introduction

Magill in [4] first proved that two Boolean rings are isomorphic if and only if their respective endomorphism semigroups are isomorphic. His proof, however, relied on topological techniques. More recently Maxson has published a proof of the above using purely algebraic techniques [5]. In this paper, structure theorems are given which allow us to extend the above result to the p^{k}-rings of Foster [1]. As a special case, the result is shown to apply also to p-rings. An example is given to show that a further extension to J-rings is impossible.

Throughout this paper a p-ring will be a ring R with unity 1_{R} of characteristic p, where p is prime, and having the property that $x^{p}=x$ for all $x \in R$. We will consider two types of p^{k}-rings, the type always being identified by its author's name. Let p be a prime integer and k a positive integer. Then a p^{k}-ring ($M c \operatorname{Coy}$) R is a ring with unity 1_{R} of characteristic p such that $x^{p k}=x$ for all $x \in R$. These were first introduced in [6]. The following more restrictive definition was introduced by Foster in [1]. Again let p be a prime integer and k a positive integer. A ring R is a p^{k}-ring (Foster) if the following hold:
(i) $1_{R} \in R$
(ii) $x^{p k}=x$ for all $x \in R$
(iii) R has at least one subring F which is isomorphic to the Galois field of p^{k} elements, $G F\left(p^{k}\right)$, and
(iv) $1_{R} \in F$.

Any subring F of a p^{k}-ring (Foster) satisfying (iii) and (iv) is called a normal subfield of R.

Note that since $1_{R} \in F$ and F is of characteristic p, R is of characteristic p, and hence a p^{k}-ring (Foster) is a p^{k}-ring (McCoy). The reverse is not true, as illustrated by the ring $G F(2) \oplus G F\left(2^{2}\right)$, which is a p^{k}-ring (McCoy) but not a p^{k}-ring (Foster). Both types of p^{k}-rings are p-rings when $k=1$. We observe also
that if R is a p^{k}-ring (Foster) and F is a normal subfield of R, then R is an algebra over F.

A J-ring is any ring R for which there exists an integer $n>1$ such that $x^{n}=x$ for all $x \in R$.

Each type of ring we have defined is commutative (cf. [3] page 217), so the set of idempotents R^{\prime} of such a ring R is easily seen to be a semigroup under multiplication. The set of ring endomorphisms of R, End R, is a semigroup under composition of functions. Thinking of a p^{k}-ring (Foster) as an algebra over some normal subfield F, the set of algebra endomorphisms of R over F, denoted by $E n d_{F} R$, is also a semigroup under composition of functions.

The mapping $e \rightarrow \phi_{e}$, where $\phi_{e}(r)=e r$ for all $r \in R$, is easily seen to embed R^{\prime} in End R for each of the rings discussed above. If R is a p^{k}-ring (Foster) and F a normal subfield of R, then the same mapping embeds R^{\prime} in $\operatorname{End}_{F} R$.

2. p^{k}-rings

We now present some structure theorems for the p^{k}-rings of McCoy and Foster. McCoy in [7] has shown that if R is a p-ring, then R is isomorphic to a subdirect sum of fields $G F(p)$, and that if R is a p^{k}-ring (McCoy), then R is isomorphic to a subdirect sum of fields of the form $G F\left(p^{k_{i}}\right)$. If R is a p^{k}-ring (McCoy) and S a homomorphic image of R, then S is a p^{k}-ring (McCoy). Further, if S is subdirectly irreductible, then S is isomorphic to $G F\left(p^{t}\right)$, where $t \mid k$.

Theorem 2.1. Any nonzero homomorphic image of a p^{k}-ring (Foster) is a p^{k}-ring (Foster).

Proof. Suppose $\theta: R \rightarrow S$ is an epimorphism, where R is a p^{k}-ring (Foster). If $x \in S$ then obviously $x^{p^{k}}=x$. If F is a normal subfield of R, then necessarily $\theta(F) \simeq F \simeq G F\left(p^{k}\right) .1_{R} \in F$ so $1_{S}=\theta\left(1_{R}\right) \in \theta(F) \subseteq S$ and S is a p^{k}-ring (Foster).

The following theorem forms the basis for the main result of this paper.
Theorem 2.2. If R is a p^{k}-ring (Foster) and F a normal subfield of R, then each element $r \in R$ can be uniquely expressed in the form

$$
r=\sum_{i} \alpha_{i} x_{i}
$$

where the α_{i} are the nonzero elements of F and the x_{i} are idempotent elements of R such that $x_{m} x_{n}=0$ if $m \neq n$ and $\Sigma_{i} x_{i}=1_{R}$.

The proof of this theorem, in a somewhat more general setting, may be found in [2].

As a result of this structure theorem we have the following theorem.
Theorem 2.3. If R is a subdirect sum of finitely many $p_{i}^{k_{i}}$-rings (Foster) then R is isomorphic to a direct sum of some of these same rings.

Proof. Let R be a subdirect sum of rings $M_{i}(i=1,2, \cdots, n)$, where M_{i} is a
$p_{i}^{k_{i}}$-ring (Foster) containing a normal subfield $F_{i} \simeq G F\left(p_{i}^{k_{i}}\right)$. We prove the theorem by induction on n. Clearly the theorem is true for $n=1$. Suppose now that the theorem holds for all rings that are subdirect sums of $k-1 \geqq 1$ rings, and suppose that R is a subdirect sum of $p_{i}^{k_{i}}$-rings (Foster) $M_{i}(i=1,2, \cdots, k)$. Let $\mu: R \rightarrow \sum_{i=1}^{k} \oplus M_{i}$ be a monomorphism and $\pi_{j}: \sum_{i=1}^{k} \oplus M_{i} \rightarrow M_{j}$ be the projection epimorphism such that $\pi_{j} \mu$ is an epimorphism for each $j=1,2, \cdots, k$. Define $T_{i}=\left\{\mu(x) \mid x \in R\right.$ and $\pi_{j} \mu(x)=0$ for all $\left.j \neq i\right\}$ for each $i=1,2, \cdots, k$. We consider two cases.

CASE 1. For each $i, T_{i} \neq\{0\}$. Then for each i there exists a nonzero $a_{i} \in M_{i}$ such that $\left(0, \cdots, 0, a_{i}, 0, \cdots, 0\right) \in \mu(R)$, where a_{i} is the i th component. Now M_{i} is a $p_{i}^{k_{i}}$-ring (Foster), so by 2.2, $a_{i}=\Sigma_{m} \alpha_{m} x_{m}$, where the α_{m} are the nonzero elements of F_{i} and the x_{m} the appropriate idempotent elements in M_{i}. Since for each $m, \alpha_{m}^{-1} x_{m} \in M_{i}$, there exists an $r \in R$ such that $\pi_{i} \mu(r)=\alpha_{m}^{-1} x_{m}$, and consequently there is an element in $\Sigma_{i=1}^{k} \oplus M_{i}$, say ($b_{1}^{(m)}, b_{2}^{(m)}, \cdots, b_{i}^{(m)}, \cdots, b_{k}^{(m)}$) $=\mu(r)$, where $b_{i}^{(m)}=\alpha_{m}^{-1} x_{m}$. Thus $\left(0, \cdots, 0, x_{m}, 0, \cdots, 0\right)=\left(0, \cdots, 0, a_{i}, 0, \cdots, 0\right)$ $\left(b_{1}^{(m)}, b_{2}^{(m)}, \cdots, b_{i}^{(m)}, \cdots b_{k}^{(m)}\right) \in \mu(R)$, where x_{m} is the i th component. This is true for each m, so the sum of all such elements is in $\mu(R)$. But $\Sigma_{m} x_{m}=1_{R}$, so $\left(0, \cdots, 0,1_{R}, 0, \cdots, 0\right)$, where 1_{R} is the i th component is in $\mu(R)$. Since i was arbitrary we have $\mu(R)=\sum_{i=1}^{k} \oplus M_{i}$, and R is isomorphic to a direct sum of the M_{i}.

Case 2. $T_{i}=\{0\}$ for some i. Without loss of generality, assume $T_{k}=\{0\}$. We define a map ϕ of $\mu(R)$ into the direct sum $\sum_{i=1}^{k} \oplus M_{i}$ by $\phi\left(x_{1}, x_{2}, \cdots, x_{k-1}, x_{k}\right)$ $=\left(x_{1}, x_{2}, \cdots, x_{k-1}\right)$. Since $T_{k}=\{0\}, \phi$ is a monomorphism. Hence $\phi \mu$ is a monomorphism of R into $\sum_{i=1}^{k-1} \oplus M_{i}$ and $\pi_{j} \phi \mu$ is an epimorphism for $j=1,2, \cdots, k-1 . R$ is thus a subdirect sum of M_{1}, \cdots, M_{k-1}, so by the inductive assumption, R is a direct sum of some of the M_{1}, \cdots, M_{k-1}.

Corollary 2.4. (Foster) If R is a finite p^{k}-ring (Foster), then R is isomorphic to a direct sum of finitely many copies of $G F\left(p^{k}\right)$.

Proof. This is an immediate consequence of Theorem 2.3 and that of the note which precedes Theorem 2.1.

3. Endomorphisms of p^{k}-rings

Throughout this section let p be a fixed prime integer, k a fixed positive integer, R and $S p^{k}$-rings (Foster) with normal subfields F and G respectively, and R^{\prime} and S^{\prime} the semigroups of idempotents of R and S, respectively. We will show that if $\operatorname{End}_{F} R \simeq \operatorname{End}_{G} S$ as semigroups, then $R^{\prime} \simeq S^{\prime}$ as semigroups.

We will identify R^{\prime} and S^{\prime} with their isomorphic images in $\operatorname{End}_{F} R$ and $E_{G d} S$, respectively. The elements of R^{\prime} will be denoted by ϕ_{r}, where $r=r^{2} \in R$, and those of S^{\prime} by ψ_{s}, where $s=s^{2} \in S$. Specifically the zero and unit el.m nts of R^{\prime} will be ϕ_{0} and ϕ_{1}, while those of S^{\prime} will be ψ_{0} and ψ_{1}.

In some of the proofs that follow, we will refer, for example, to $\phi_{e}+\phi_{r}$, where $e=e^{2}, r=r^{2} \in R$, although addition is not defined in End R. We can legitimately do this if we consider ϕ_{e} and ϕ_{r} as elements of the ring $\operatorname{End}(R,+)$, where we are considering all endomorphisms of the abelian group $(R,+)$.

Let $\pi: \operatorname{End}_{F} R \rightarrow \operatorname{End}_{G} S$ be a semigroup isomorphism.
Lemma 3.1. $\pi\left(\phi_{0}\right)=\psi_{0}$ and $\pi\left(\phi_{1}\right)=\psi_{1}$.
Lemma 3.2. If $\psi_{s} \in S^{\prime}, \phi=\pi^{-1}\left(\psi_{s}\right)$, and $\phi_{e} \in R^{\prime}$, then $\phi \phi_{e}=\phi_{e} \phi$.
Proof. Note that $\phi_{1}-\phi_{e}=\phi_{1-e} \in R^{\prime} \subseteq \operatorname{End}_{F} R$, so $\phi_{e} \phi\left(\phi_{1}-\phi_{e}\right) \in \operatorname{End}_{F} R$ We show now that $\phi_{e} \phi\left(\phi_{1}-\phi_{e}\right)=\phi_{0}$.

$$
\begin{aligned}
{\left[\pi\left(\phi_{e} \phi\left(\phi_{1}-\phi_{e}\right)\right)\right]\left(1_{S}\right) } & =\left[\pi\left(\phi_{e}\right) \psi_{s} \pi\left(\phi_{1}-\phi_{e}\right)\right]\left(1_{S}\right)=\pi\left(\phi_{e}\right)\left\{s \cdot\left[\pi\left(\phi_{1}-\phi_{e}\right)\right]\left(1_{s}\right)\right\} \\
& =\left[\pi\left(\phi_{e}\right)(s)\right]\left[\pi\left(\phi_{e}-\phi_{e}\right)\left(1_{S}\right)\right]=\left[\pi\left(\phi_{e}\right)(s)\right]\left[\psi_{0}\left(1_{S}\right)\right]=0
\end{aligned}
$$

Thus $\pi\left(\phi_{e} \phi\left(\phi_{1}-\phi_{e}\right)\right)=\psi_{0}$ and hence $\phi_{e} \phi\left(\phi_{1}-\phi_{e}\right)=\phi_{0}$, so $\phi_{e} \phi=\phi_{e} \phi \phi_{e}$. Similarly $\phi \phi_{e}=\phi_{e} \phi \phi_{e}$. Thus, $\phi \phi_{e}=\phi_{e} \phi$.

Lemma 3.3. If $\psi_{s} \in S^{\prime}$ and $\phi=\pi^{-1}\left(\psi_{s}\right)$ then $\phi\left(e e^{\prime}\right)=e \phi\left(e^{\prime}\right)$ for all $e=e^{2}$, $e^{\prime}=\left(e^{\prime}\right)^{2} \in R$.

Proof. $\phi\left(e e^{\prime}\right)=\phi \phi_{e}\left(e^{\prime}\right)=\phi_{e} \phi\left(e^{\prime}\right)=e \phi\left(e^{\prime}\right)$ by 3.2 since $\phi_{e} \in R^{\prime}$.
LEMMA 3.4. If $\psi_{s} \in S^{\prime}$ and $\phi=\pi^{-1}\left(\psi_{s}\right)$, then $\phi\left(r r^{\prime}\right)=\phi(r) r^{\prime}$, for all r, $r^{\prime} \in R$.

Proof. By 2.2 we may uniquely write r and r^{\prime} as $r=\Sigma_{i} x_{i} x_{i}, r^{\prime}=\Sigma_{k} \beta_{j} x^{\prime}{ }_{j}$, where $\alpha_{i}, \beta_{j} \in F$ and $x_{i}=\left(x_{i}\right)^{2}, x_{j}^{\prime}=\left(x_{j}^{\prime}\right)^{2} \in R$ are such that $x_{m} x_{n}=x_{m}^{\prime} x_{n}^{\prime}=0$ if $m \neq n$ and $\sum_{i} x_{i}=\sum_{j} x_{j}=1_{R}$.
Thus

$$
\begin{aligned}
\phi\left(r r^{\prime}\right) & =\phi\left(\sum_{i} \alpha_{i} x_{i} \sum_{j} \beta_{j} x_{j}^{\prime}\right)=\phi\left(\sum_{i, j} \alpha_{i} \beta_{j} x_{i} x_{j}^{\prime}\right) \\
& =\sum_{i, j} \phi\left(\alpha_{i} \beta_{j}\right) \phi\left(x_{i} x_{j}^{\prime}\right) \text { since } \phi \in \operatorname{End}_{F} R \\
& =\sum_{i, j} \phi\left(\alpha_{i}\right) \beta_{j} \phi\left(x_{i}\right) x_{j}^{\prime} \text { since } \phi \in \operatorname{End}_{F} R \text { and by } 3.3 \\
& =\sum_{i} \phi\left(\alpha_{i} x_{i}\right) \sum_{j} \beta_{j} x_{j}^{\prime}=\phi(r) r^{\prime} .
\end{aligned}
$$

Lemma 3.5. If $\psi_{s} \in S^{\prime}$ and $\phi=\pi^{-1}\left(\psi_{s}\right)$, then $\phi \in R^{\prime}$.
Proof. If $r \in R$ then $\phi(r)=\phi\left(1_{R} \cdot r\right)=\phi\left(1_{R}\right) \cdot r$ by 3.4. Thus if $e=\phi\left(1_{R}\right)$ then $e=e^{2}$ and $\phi=\phi_{\epsilon} \in R^{\prime}$.

Theorem 3.6. If $E n d_{F} R \simeq E n d_{G} S$ then $R^{\prime} \simeq S^{\prime}$.

Proof. By $3.5, \pi^{-1}\left(S^{\prime}\right) \subseteq R^{\prime}$ so $S^{\prime} \subseteq \pi\left(R^{\prime}\right)$. By a similar argument we can show that $\pi\left(R^{\prime}\right) \subseteq S^{\prime}$, giving $S^{\prime} \subseteq \pi\left(R^{\prime}\right) \subseteq S^{\prime}$, so $\pi\left(R^{\prime}\right)=S^{\prime}$. Since π preserves multiplication and is one-one, the theorem is proved.

4. The main theorem

Let p be a fixed prime integer, k a fixed positive integer, and R and $S p^{k}$-rings (Foster) with normal subfields F and G, respectively. Let R^{\prime} and S^{\prime} be the semigroups of idempotents of R and S, respectively, and let $\pi: R^{\prime} \rightarrow S^{\prime}$ be a semigroup isomorphism. Since $F \simeq G F\left(p^{k}\right) \simeq G$, let $\sigma: F \rightarrow G$ be a field isomorphism. We will use the next two lemmas freely, without specific reference to them.

Lemma 4.1. $\pi(0)=0$ and $\pi\left(1_{R}\right)=1_{S}$.
Proof. The proof is basically the same as that of 3.1 .
Lemma 4.2. If $x \in R^{\prime}$ then $\pi\left(1_{R}-x\right)=1_{S}-\pi(x)$.
Proof. Trivially $1_{R}-x \in R^{\prime}$ if $x \in R^{\prime}$. Suppose $\pi\left(1_{R}-x\right)=1_{S}-s$ for some $s \in S$. Then since $\pi\left(1_{R}-x\right) \in S^{\prime}, s=1_{S}-\pi\left(1_{R}-x\right) \in S^{\prime}$. Hence $s=\pi(y)$ for some $y \in R^{\prime}$, i.e.,

$$
\begin{equation*}
\pi\left(1_{R}-x\right)=\pi\left(1_{R}\right)-\pi(y) \tag{1}
\end{equation*}
$$

so that by multiplying by $\pi(x)$ we have $0=\pi(x)-\pi(x y)$. Since π is one-one, $x=x y$. Multiplying (1) by $\pi(y)$ gives $y=x y$, so $x=y$.

Lemma 4.3. Suppose that $\alpha \in F, x \in R^{\prime}$, and $\alpha x \in R^{\prime}$. Then $\pi(\alpha x)=\sigma(\alpha) \pi(x)$.
Proof. If $x=0$ the conclusion is obvious. Suppose $x \neq 0$. Then since $\alpha x, x \in R^{\prime}, \alpha x=(\alpha x)^{2}=\alpha^{2} x$, so

$$
\begin{equation*}
\left(\alpha^{2}-\alpha\right) x=0 \tag{2}
\end{equation*}
$$

Now since $\alpha^{2}-\alpha \in F, \alpha^{2}-\alpha=0$, else we could multiply (2) by $\left(\alpha^{2}-\alpha\right)^{-1}$ and obtain $x=0$. But $\alpha(\alpha-1)=0$ implies $\alpha=0$ or $\alpha=1$ because F is a field. Since σ is a field isomorphism, $\sigma(0)=0$ and $\sigma(1)=1$, the conclusion following immediately.

Lemma 4.4. Let $x_{1}, x_{2}, \cdots, x_{n} \in R^{\prime}$ and $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n} \in F$. If

$$
\sum_{i=1}^{n} \alpha_{i}\left(x_{1} x_{i}\right) \in R^{\prime} \text { then } \pi\left[\sum_{i=1}^{n} \alpha_{i}\left(x_{1} x_{i}\right)\right]=\sum_{i=1}^{n} \sigma\left(\alpha_{i}\right) \pi\left(x_{1} x_{i}\right) .
$$

Proof. We proceed by induction. By 4.3 the conclusion holds for $n=1$. Suppose the lemma is true for $n=k$. Then

$$
\begin{aligned}
\pi\left[\sum_{i=1}^{k+1} \alpha_{i}\left(x_{1} x_{i}\right)\right]= & \pi\left[\sum_{i=1}^{k+1} \alpha_{i}\left(x_{1} x_{i}\right)\right]\left[\pi\left(x_{1} x_{k+1}\right)+\pi\left(1_{R}\right)-\pi\left(x_{1} x_{k+1}\right)\right] \\
= & \pi\left[\left(\sum_{i=1}^{k+1} \alpha_{i} x_{1} x_{i}\right)\left(x_{1} x_{k+1}\right)\right]+\pi\left[\left(\sum_{i=1}^{k+1} \alpha_{i} x_{1} x_{i}\right)\left(1_{R}-x_{1} x_{k+1}\right)\right] \\
= & \pi\left[\sum_{i=1}^{k+1} \alpha_{i} x_{1} x_{i} x_{k+1}\right]+\pi\left[\sum_{i=1}^{k+1} \alpha_{i} x_{1} x_{i}-\sum_{i=1}^{k+1} \alpha_{i} x_{1} x_{i} x_{k+1}\right] \\
= & \pi\left[\left(\alpha_{1}+\alpha_{k+1}\right) x_{1} x_{k+1}+\sum_{i=2}^{k} \alpha_{i} x_{1} x_{i} x_{k+1}\right] \\
& +\pi\left[\sum_{i=1}^{k} \alpha_{i} x_{1} x_{i}\left(1_{R}-x_{k+1}\right)\right] .
\end{aligned}
$$

Since each of the quantities enclosed by brackets is in R^{\prime} and in a form which allows us to use our inductive assumption, we do to obtain

$$
\begin{aligned}
\sigma\left(\alpha_{1}\right. & \left.+\alpha_{k+1}\right) \pi\left(x_{1} x_{k+1}\right)+\sum_{i=2}^{k} \sigma\left(\alpha_{i}\right) \pi\left(x_{1} x_{i} x_{k+1}\right)+\sum_{i=1}^{k} \sigma\left(\alpha_{i}\right) \pi\left(x_{1} x_{i}\right)\left(1_{S}-\pi\left(x_{k+1}\right)\right) \\
& =\sum_{i=1}^{k+1} \sigma\left(\alpha_{i}\right) \pi\left(x_{1} x_{i}\right)
\end{aligned}
$$

after cancellation, using 4.2 and the additivity of σ.
Lemma 4.5. If $x_{1}, x_{2}, \cdots, x_{n} \in R^{\prime}, \alpha_{1}, \alpha_{2}, \cdots, \alpha_{n} \in F$, and $\Sigma_{i=1} \alpha_{i} x_{i} \in R^{\prime}$, then $\pi\left[\sum_{i=1}^{n} \alpha_{i} x_{i}\right]=\sum_{i=1}^{n} \sigma\left(\alpha_{i}\right) \pi\left(x_{i}\right)$.

Proof. Again we proceed by induction. The lemma is true for $n=1$ by 4.3 . We now suppose the lemma to be true for $n=k$. Then following a technique similar to the proof of 4.4 we have

$$
\begin{aligned}
& \pi\left[\sum_{i=1}^{k+1} \alpha_{i} x_{i}\right]= {\left[\pi\left(\sum_{i=1}^{k+1} \alpha_{i} x_{i}\right)\right]\left[\pi\left(x_{1}\right)+\pi\left(1_{R}\right)-\pi\left(x_{1}\right)\right]=\pi\left[\sum_{i=1}^{k+1} \alpha_{i} x_{i} x_{1}\right] } \\
&+\pi\left[\sum_{i=1}^{k+1} \alpha_{i} x_{i}\left(1_{R}-x_{1}\right)\right] \\
&= \sum_{i=1}^{k+1} \sigma\left(\alpha_{i}\right) \pi\left(x_{i} x_{1}\right)+\pi\left[\sum_{i=2}^{k+1} \alpha_{i} x_{i}\left(1_{R}-x_{1}\right)\right] \\
& \text { by } 4.4 \text { and cancellations } \\
&= \sum_{i=1}^{k+1} \sigma\left(\alpha_{i}\right) \pi\left(x_{i} x_{1}\right)+\sum_{i=2}^{k+1} \sigma\left(\alpha_{i}\right) \pi\left[x_{i}\left(1_{R}-x_{1}\right)\right] \\
& \text { by the inductive hypothesis } \\
&= \sum_{i=1}^{k+1} \sigma\left(\alpha_{i}\right) \pi\left(x_{i}\right) \text { after cancellations. }
\end{aligned}
$$

THEOREM 4.6. If R^{\prime} and S^{\prime} are isomorphic as semigroups, then R and S are isomorphic as rings.

Proof. We define a function $\pi^{*}: R \rightarrow S$ as follows: If $r \in R$ has as its unique representation $r=\Sigma_{i} \alpha_{i} x_{i}$ guaranteed by 2.2, let

$$
\pi^{*}(r)=\sum_{i} \sigma\left(\alpha_{i}\right) \pi\left(x_{i}\right)
$$

Note that the image of r is indeed a legitimate representation of an element of S-in particular $\Sigma_{i} \pi\left(x_{i}\right)=1_{S}$ by 4.1 and 4.5. By the uniqueness of the representation of r, π^{*} is a one-one function and obviously onto.

To show that π^{*} is additive, let $r=\sum_{i} \alpha_{i} x_{i}, r^{\prime}=\sum_{i} \alpha_{i} x_{i}^{\prime}$, and $r+r^{\prime}$ $=\sum_{i} \alpha_{i} x_{i}^{\prime \prime}$ be the unique representations. Then

$$
\sum_{i} \alpha_{i} x_{i}^{\prime \prime}=\sum_{i} \alpha_{i} x_{i}+\sum_{i} \alpha_{i} x_{i}^{\prime}
$$

Multiplying by $\alpha_{k}^{-1} x_{k}^{\prime \prime}$ we have

$$
x_{k}^{\prime \prime}=\sum_{i} \alpha_{k}^{-1} \alpha_{i} x_{i} x_{k}^{\prime \prime}+\sum_{i} \alpha_{k}^{-1} \alpha_{i} x_{i}^{\prime} x_{k}^{\prime \prime} \in R^{\prime}
$$

Thus by 4.5

$$
\pi\left(x_{k}^{\prime \prime}\right)=\sum_{i} \sigma\left(\alpha_{k}^{-1}\right) \sigma\left(\alpha_{i}\right) \pi\left(x_{i}\right) \pi\left(x_{k}^{\prime \prime}\right)+\sum_{i} \sigma\left(\alpha_{k}^{-1}\right) \sigma\left(\alpha_{i}\right) \pi\left(x_{i}^{\prime}\right) \pi\left(x_{k}^{\prime \prime}\right)
$$

and since σ is a field isomorphism,

$$
\sigma\left(\alpha_{k}\right) \pi\left(x_{k}^{\prime \prime}\right)=\pi\left(x_{k}^{\prime \prime}\right)\left[\sum_{i} \sigma\left(\alpha_{i}\right) \pi\left(x_{i}\right)+\sum_{i} \sigma\left(\alpha_{i}\right) \pi\left(x_{i}^{\prime}\right)\right] .
$$

Summing over all k and using the fact that $\Sigma_{k} \pi\left(x_{k}^{\prime \prime}\right)=1_{s}$, we have

$$
\begin{aligned}
\pi^{*}\left(r+r^{\prime}\right)=\sum_{k} \sigma\left(\alpha_{k}\right) \pi\left(x_{k}^{\prime \prime}\right) & =\sum_{i} \sigma\left(\alpha_{i}\right) \pi\left(x_{i}\right)+\sum_{i} \sigma\left(\alpha_{i}\right) \pi\left(x_{i}^{\prime}\right) \\
& =\pi^{*}(r)+\pi^{*}\left(r^{\prime}\right)
\end{aligned}
$$

A similar technique shows π^{*} to be multiplicative, and thus an isomorphism.
Corollary 4.7. If $E n d_{F} R \simeq E n d_{G} S$ then $R \simeq S$.
Proof. This follows immediately from 3.6 and 4.6.
Note that each p-ring R is a p^{k}-ring in the sense of Foster, the normal subfield F being isomorphic to $G F(p)$. Further R is an algebra over F and $\operatorname{End}_{F} R=\operatorname{End} R$. With this in mind we have

Corollary 4.8. Let p be a fixed prime integer. If R and S are p-rings such that End $R \simeq$ End S, then $R \simeq S$.

5. Remarks

It is not known whether the Corollary 4.8 can be extended to the p^{k}-rings of Foster, wherein the entire semigroups of ring endomorphisms are used, to the
p^{k}-rings of McCoy, or to direct sums of $p^{k_{i}}$ rings in both senses. It does not extend to direct sums of p-rings, where p takes on at least two distinct values, or to J-rings as illustrated by the following example.

Let $R=G F(2) \oplus G F(2) \oplus G F(3)$ and $S=G F(3) \oplus G F(3) \oplus G F(2)$. Each of these rings has the property that $x^{6}=x$ for each x in the ring and End $R \simeq$ End S, but R is not isomorphic to S.

References

[1] A. L. Foster, ' p^{k}-rings and ring-logics', Ann. Scu. Norm. Pisa 5 (1951) 279-300.
[2] A. L. Foster, 'Generalized 'Boolean' theory of universal algebras, Part I', Math. Z. 58 (1953) 306-336.
[3] N. Jacobson, Structure of Rings. (Amer. Math. Soc. Colloquium, Vol. 36, revised edition (1964)).
[4] K. D. Magill, Jr., 'The Semigroup of endomorphisms of a Boolean ring', J. Austral. Math. Soc. 11 (1970) 411-416.
[5] C. J. Maxson, 'On semigroups of Boolean ring endomorphisms', Semigroup Forum 4, (1972) 78-82.
[6] N. H. McCoy, 'Subrings of Direct Sums', Amer. J. Math. 60 (1938) 374-382.
[7] N. H. McCoy, Rings and Ideals. (Carus Math. Monographs (MAA) Vol. 8 (1948)).

USAF Academy, Colorado 80840
U. S. A.
and
North Carolina State University at Raleigh 27607
U. S. A.

