SUMMABILITY METHODS ON MATRIX SPACES

JOSEPHINE MITCHELL

§1. Introduction. The matrix spaces under consideration are the four main types of irreducible bounded symmetric domains given by Cartan (5). Let $z=\left(z_{j k}\right)$ be a matrix of complex numbers, z^{\prime} its transpose, z^{*} its conjugate transpose and $I=I^{(n)}$ the identity matrix of order n. Then the first three types are defined by

$$
\begin{equation*}
D=\left[z \mid I-z z^{*}>0\right] \tag{1}
\end{equation*}
$$

where z is an n by matrix $(n \leqslant m$), a symmetric or a skew-symmetric matrix of order n (16). The fourth type is the set of complex spheres satisfying

$$
\left|z^{\prime} z\right|<1,1-2 z^{*} z+\left|z^{\prime} z\right|^{2}>0
$$

where z is an n by 1 matrix. It is known that each of these domains possesses a distinguished boundary B which in the first three cases is given by

$$
\begin{equation*}
B=\left[u \mid u u^{*}=I\right] . \tag{2}
\end{equation*}
$$

(In the case of skew symmetric matrices the distinguished boundary is given by (2) only if n is even.)

In §2 we consider the following problem for the first type of domain with $m=n$, in which case u is a unitary matrix, the (real) dimension of B is n^{2} and of D is $2 n^{2}$. Let $f(u)$ be a real integrable function defined on B and consider the integral operator

$$
\begin{equation*}
I(f, z)=\int_{B} P(z, u) f(u) d V, \tag{3}
\end{equation*}
$$

where $P(z, u)$ is the Poisson kernel (14)

$$
\begin{equation*}
P(z, u)=V^{-1} \operatorname{det}^{n}\left(I-z u^{*}\right)^{-1}\left(I-z z^{*}\right)\left(I-u z^{*}\right)^{-1} \tag{4}
\end{equation*}
$$

V is the Euclidean volume of B, and $d V$ the Euclidean volume element. It is known that $I(f, z)$ is a harmonic function of z if $I-z z^{*}>0$ or $I-z z^{*}<0$. (I proved this fact in (14) for $z \in D$ but the proof is valid for all z and $u \in B$ for which $\operatorname{det}\left(I-z u^{*}\right) \neq 0$. It is easily proved that $\operatorname{det}\left(I-z u^{*}\right) \neq 0$ for $u \in B$ and all z such that $I-z z^{*}>0$ or $I-z z^{*}<0$.) Here a harmonic function is a function of class C^{2}, which satisfies on D the Laplace equation corresponding to the invariant metric of D, that is, the metric invariant with respect to the group of 1 to 1 analytic transformations mapping D onto itself (14). This invariant metric is given by

$$
d s^{2}=\sigma\left[\left(I-z z^{*}\right)^{-1} d z\left(I-z^{*} z\right)^{-1} d z^{*}\right],
$$

[^0]where $\sigma(A)$ is the trace of the matrix A and $d z=\left(d z_{j k}\right)$, and the corresponding Laplace equation is
$$
4 \sigma\left[\bar{\partial}\left(I-z^{*} z\right) \partial^{\prime}\left(I-z z^{*}\right)\right]=0, \quad \partial=\left(\partial / \partial z_{j k}\right)
$$

It has been proved by Hua and Lowdenslager that given a real function f, continuous on B, there exists a function F, harmonic on D, such that $F(z) \rightarrow$ $f\left(u_{0}\right)$ as $z \rightarrow u_{0} \in B$ radially, that is, along the set $\rho u_{0}, 0 \leqslant \rho<1(6 ; 9)$. Further, if F is continuous on the closure \bar{D} of D and satisfies certain other conditions due to Lowdenslager on the boundary of D other than B, then F is unique (8). Now for the particular case of the unit circle, $z \bar{z}=1$, if we merely assume that f is integrable on it, then $I\left(f, \rho u_{0}\right) \rightarrow f\left(u_{0}\right)$ as $\rho \rightarrow 1(0 \leqslant \rho<1)$ (20); this method of approach is known as Abel-Poisson summability of Fourier series. We prove this result for matrix spaces. (See note added in proof).

In §3 we consider for the first type of domain $(n \leqslant m)$ some properties of complete orthonormal systems (CONS) of complex homogeneous polynomials defined on D. The space D is circular with center at $z=0$, that is, if $z \in D$, then $e^{i \theta} z \in D$ for $0 \leqslant \theta<2 \pi$. Hence any two powers

$$
\begin{equation*}
P(z)=\prod_{j, k} z_{j k}^{s_{j k}}, \quad Q(z)=\prod_{j, k} z_{j k}^{t_{j k}}, \tag{5}
\end{equation*}
$$

$s_{j k}, t_{j k}$ non-negative integers, for which

$$
\begin{equation*}
\sum_{j, k} s_{j k} \neq \sum_{j, k} t_{j k}, \tag{6}
\end{equation*}
$$

are orthogonal, that is,

$$
\begin{equation*}
(P, Q)=\int_{D} P(z) \bar{Q}(z) d W=0 \tag{7}
\end{equation*}
$$

($d W$ is Euclidean volume element on D) (6). Also if $f \in$ class L^{2} on D, which means that f is single-valued and analytic on D and has finite norm $\|f\|=$ $[(f, f)]^{\frac{1}{2}}$ (2), then the set $\{P\}$ is complete with respect to functions of class L^{2} (6).

Here we refine conditions (6) to show that $(P, Q) \neq 0$ implies
(8) $\quad \sum_{k} s_{\nu k}=\sum_{k} t_{\nu k}, \quad \sum_{j} s_{j \mu}=\sum_{j} t_{j \mu} \quad(\nu=1, \ldots, n ; \mu=1, \ldots, m)$.

By means of (8) the set of powers $\{P\}$ is subdivided into disjoint subsets whose members need not be orthogonal to each other. The elements of a subset are made into an orthonormal set by the Gram Schmidt formulas, thus giving a CONS of homogeneous polynomials $\{\phi\}$ on D. We note that Hua has constructed a CONS of functions of class L^{2} on D using representation theory (6).

In $\S 4$ applications of the CONS $\left\{\phi_{\nu}\right\}$ are given. First an Abelian theorem is obtained and then a Tauberian theorem for the orthogonal series $\sum a_{\nu} \phi_{\nu}$ as z approaches $[I, 0]$ of B along the matrix $[r, 0]$ where r is the diagonal matrix $\left[r_{1}, \ldots, r_{n}\right], 0 \leqslant r_{j}<1$. Next a Cauchy's inequality is obtained for the Fourier coefficients a_{ν}. Finally two mean value theorems, which generalize analogous theorems for the unit circle, are proved.

§2. Poisson summability.

1. Reduction of integral (1.3) to.normal form. Rauch outlined this reduction to me. The transformation

$$
\begin{equation*}
w=z u_{0}^{-1}, \quad u_{0} u_{0}^{*}=I, \tag{1}
\end{equation*}
$$

takes $z=u_{0}$ into $w=I$ and also leaves D and B invariant since under it $I-w w^{*}=I-z z^{*}$. Also if $u \rightarrow v$ under (1) $P(z, u) \rightarrow P(w, v)$ and

$$
d V_{u}=\frac{\dot{u}}{\operatorname{det}^{n} u}=\frac{\partial(v)}{\partial(u)} \frac{\dot{v}}{\operatorname{det}^{n} v \operatorname{det}^{n} u_{0}},
$$

where

$$
\dot{u}=(-1)^{-\frac{1}{4} n(n+1)} \prod_{j, k} d u_{j k}
$$

(14). Now $d u=d v u_{0}$, the Jacobian of which is $\partial(u) / \partial(v)=\operatorname{det}^{n} u_{0}$ (3). Thus $d V_{u} \rightarrow d V_{v}$. Also $f(u) \rightarrow f\left(v u_{0}\right)=f_{0}(v)$ so that $I(f, z) \rightarrow I\left(f_{0}, w\right)$.

If $w \rightarrow I$ along the set of points $\rho I(0 \leqslant \rho<1)$, then

$$
\operatorname{det}\left(I-w w^{*}\right)=\left(1-\rho^{2}\right)^{n}
$$

and

$$
\begin{aligned}
Q & =\left(I-w v^{*}\right)\left(I-v w^{*}\right)=I-w v^{*}-v w^{*}+w w^{*} \\
& =I\left(1+\rho^{2}\right)-\rho\left(v+v^{*}\right) .
\end{aligned}
$$

Now v is unitary equivalent to a diagonal matrix v_{D} which is also unitary ($\mathbf{1 0}$, Theorem 41.41), that is,

$$
\begin{equation*}
v=U^{*} v_{D} U \tag{2}
\end{equation*}
$$

Thus if $v_{D}=\left[d_{1}, \ldots, d_{n}\right]$, then $d_{j} \bar{d}_{j}=1$ and we can write $d_{j}=e^{i \theta_{j}}\left(0 \leqslant \theta_{j}<\right.$ $2 \pi)$. Hence

$$
Q=U^{*}\left[I\left(1+\rho^{2}\right)-\rho\left(v_{D}^{*}+v_{D}\right)\right] U
$$

and

$$
\operatorname{det} Q=\operatorname{det}\left[I\left(1+\rho^{2}\right)-\rho\left(v_{D}^{*}+v_{D}\right)\right]=\prod_{j=1}^{n}\left(1-2 \rho \cos \theta_{j}+\rho^{2}\right) .
$$

Let

$$
\begin{equation*}
p\left(\rho, \theta_{j}\right)=\frac{1-\rho^{2}}{1-2 \rho \cos \theta_{j}+\rho^{2}}, \tag{3}
\end{equation*}
$$

which is 2π times the Poisson kernel for the unit circle. Then

$$
\begin{equation*}
P(\rho I, v)=V^{-1} \prod_{j=1}^{n} p^{n}\left(\rho, \theta_{j}\right) \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
I\left(f_{0}, \rho I\right)=V^{-1} \int_{B} \prod_{j} p^{n}\left(\rho, \theta_{j}\right) f_{0}(v) d V_{v} . \tag{5}
\end{equation*}
$$

According to Weyl (19, p. 197) if (2) holds, then

$$
\begin{equation*}
d V_{v}=\left[d V_{U}\right] \Delta \bar{\Delta} d \theta_{1} \ldots d \theta_{n} \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta \bar{\Delta}=\prod_{j<k}\left|e^{i \theta_{j}}-e^{i \theta_{k}}\right|^{2}=4 \prod_{j<k} \sin ^{2} \frac{1}{2}\left(\theta_{j}-\theta_{k}\right) \tag{7}
\end{equation*}
$$

and $d V_{0}=\left[d V_{U}\right]$ is a constant times the Euclidean volume element on ${ }^{\text {r }}$ the other $n^{2}-n$ parameters defining B. Let B_{0} be this part of B. Now $P(\rho I, v)$, considered as a function of v, is independent of the other $n^{2}-n$ parameters and hence

$$
\begin{equation*}
I\left(f_{0}, \rho I\right)=\int_{0}^{2 \pi} \cdots \int_{0}^{2 \pi} P(\rho I, v) F(\theta) \Delta \bar{\Delta} d \theta_{1} \ldots d \theta_{n} \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
F(\theta)=F\left(\theta_{1}, \ldots, \theta_{n}\right)=\int_{B_{0}} f_{0}(v) d V_{0} . \tag{9}
\end{equation*}
$$

2. Convergence theorem for (8). It is sufficient to consider (8) for $n=2$, in which case replacing θ_{1} by s and θ_{2} by t

$$
\begin{equation*}
I\left(f_{0}, \rho I\right)=4 V^{-1} \int_{0}^{2 \pi} \int_{0}^{2 \pi} p^{2}(\rho, s) p^{2}(\rho, t) \sin ^{2} \frac{1}{2}(s-t) F(s, t) d s d t \tag{10}
\end{equation*}
$$

and we consider $\lim _{\rho \rightarrow 1} I\left(f_{0}, \rho I\right)$. Subtracting S from each side we reduce (10) by well-known methods in Fourier series (20) to a consideration of

$$
\begin{equation*}
I=4 V^{-1} \int_{0}^{\pi} \int_{0}^{\pi} p^{2}(\rho, s) p^{2}(\rho, t) \sin ^{2} \frac{1}{2}(s-t) G(s, t) d s d t \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{1}=4 V^{-1} \int_{0}^{\pi} \int_{0}^{\pi} p^{2}(\rho, s) p^{2}(\rho, t) \sin ^{2} \frac{1}{2}(s+t) G(2 \pi-s, t) d s d t \tag{11a}
\end{equation*}
$$

where

$$
\begin{equation*}
G(s, t)=F(s, t)+F(2 \pi-s, 2 \pi-t)-2 V_{0} S, \tag{12}
\end{equation*}
$$

V_{0} being the volume of B_{0}. We show that under certain hypotheses on $G(s, t)$, $I \rightarrow 0$ as $\rho \rightarrow 1$ and the proof is similar for I_{1}. In (11) integrate by parts with respect to s and t. Since

$$
H(s, t)=\iint G(s, t) d s d t
$$

is zero for $s=0$ or $t=0, \sin ^{2} \frac{1}{2}(s-t)=0$ for $s=t=\pi, \sin ^{2} \frac{1}{2}(\pi-\theta)=$ $\cos ^{2} \frac{1}{2} \theta$ and $p(\rho, \pi)=(1-\rho) /(1+\rho)$, we get

$$
\begin{align*}
I= & -\left(\frac{1-\rho}{1+\rho}\right)^{2} \int_{0}^{\pi} \frac{\partial}{\partial t}\left[p^{2}(\rho, t) \cos ^{2} \frac{1}{2} t\right] H(\pi, t) d t \tag{13}\\
& -\left(\frac{1-\rho}{1+\rho}\right)^{2} \int_{0}^{\pi} \frac{\partial}{\partial s}\left[p^{2}(\rho, s) \cos ^{2} \frac{1}{2} s\right] H(s, \pi) d s \\
& +\int_{0}^{\pi} \int_{0}^{\pi} \frac{\partial^{2}}{\partial s \partial t}\left[p^{2}(\rho, s) p^{2}(\rho, t) \sin ^{2} \frac{1}{2}(s-t)\right] H(s, t) d s d t \\
\equiv & I_{1}+I_{2}+I_{3} .
\end{align*}
$$

The following inequalities are used in considering I_{1}, I_{2}, and I_{3} (20):
(i)

$$
\begin{equation*}
0 \leqslant p(\rho, \theta) \leqslant \frac{1+\rho}{1-\rho} \tag{14}
\end{equation*}
$$

(ii) $\quad 0 \leqslant p(\rho, \theta) \leqslant \frac{1-\rho^{2}}{4 \sin ^{2} \frac{1}{2} \theta}$
(iii) $\lim _{\theta \rightarrow 0} \frac{\theta}{\sin \theta}=1$
(iv) $\quad \int_{0}^{\pi} p(\rho, \theta) d \theta=\pi$

$$
\begin{equation*}
\int_{\delta}^{\pi} p(\rho, \theta) d \theta=o(1) \quad \text { as } \quad \rho \rightarrow 1 \quad \text { for } \quad 0<\delta \leqslant \pi \tag{v}
\end{equation*}
$$

Also

$$
\frac{\partial}{\partial \theta} p(\rho, \theta)=2 \rho\left(1-\rho^{2}\right) \sin \theta d^{-2}(\rho, \theta)
$$

where

$$
d(\rho, \theta)=1-2 \rho \cos \theta+\rho^{2}=\frac{1-\rho^{2}}{p(\rho, \theta)}
$$

and

$$
\begin{aligned}
& \frac{\partial^{2}}{\partial s \partial t}\left[p^{2}(\rho, s) p^{2}(\rho, t) \sin ^{2} \frac{1}{2}(s-t)\right]=p(\rho, s) p(\rho, t) . \\
& \quad\left[16 \rho^{2}\left(1-\rho^{2}\right)^{2} \sin s \sin t \sin ^{2} \frac{1}{2}(s-t) d^{-2}(\rho, s) d^{-2}(\rho, t)-\frac{1}{2} p(\rho, s) p(\rho, t)\right. \\
& \quad . \cos (s-t)-2 \rho\left(1-\rho^{2}\right) \sin s \sin (s-t) p(\rho, t) d^{-2}(\rho, s) \\
& \left.\quad+2 \rho\left(1-\rho^{2}\right) \sin t \sin (s-t) p(\rho, s) d^{-2}(\rho, t)\right] .
\end{aligned}
$$

Concerning the function $G(s, t)$ we assume that

$$
\begin{align*}
& \lim _{h . k \rightarrow 0} \frac{1}{h k} \int_{0}^{h} \int_{0}^{k}|G(s, t)| d s d t=0 \tag{15}\\
& \int_{0}^{h} \int_{0}^{k}|G(s, t)||d s d t| \leqslant C|h k|, \quad(0<|h|,|k| \leqslant \pi),
\end{align*}
$$

C an absolute constant. (See (11) where these conditions were used in a similar connection.) Then using (15) we find

$$
\begin{aligned}
\left|I_{1}\right| \leqslant \pi\left(1-\rho^{2}\right) C \int_{0}^{\pi}\left|2 p(\rho, t) \cos ^{2} \frac{1}{2} t \partial p(\rho, t) / \partial \mathrm{t}-p^{2}(\rho, t) \sin \frac{1}{2} t \cos \frac{1}{2} t\right| t d t
\end{aligned} \quad \begin{aligned}
& =0\left((1-\rho) \int_{0}^{\pi} p(\rho, t) d t\right)=0(1-\rho)
\end{aligned}
$$

and similarly for I_{2}. Now

$$
I_{3}=\int_{0}^{\delta} \int_{0}^{\delta}+\left\{\int_{0}^{\delta} \int_{\delta}^{\pi}+\int_{\delta}^{\pi} \int_{0}^{\delta}+\int_{\delta}^{\pi} \int_{\delta}^{\pi}\right\} \equiv I_{31}+I_{32}
$$

By (15) it is found that

$$
\left|I_{31}\right| \leqslant \epsilon \int_{0}^{\pi} \int_{0}^{\pi} p(\rho, s) p(\rho, t) d s d t
$$

where ϵ is an arbitrary positive number, and

$$
I_{32}=0\left(\frac{1-\rho}{\sin ^{2} \frac{\rho}{2} \delta}\right)
$$

Consequently given $\epsilon>0$ choose $\delta>0$ so that

$$
\left|\int_{0}^{s} \int_{0}^{t} G(s, t) d s d t\right|<\epsilon|s t|,
$$

if $|s|<\delta$ and $|t|<\delta$. With fixed δ choose $1-\rho$ sufficiently small. Then $I=0(\epsilon)$ for ρ sufficiently close to 1 . Consequently we have proved

Theorem 2.1. Let $F(s, t)$ be an integrable function. If $G(s, t)=F(s, t)+$ $F(2 \pi-s, 2 \pi-t)-2 V_{0} S$ satisfies conditions (15), then

$$
\lim _{\rho \rightarrow 1^{-}} 4 V^{-1} \int_{0}^{2 \pi} \int_{0}^{2 \pi} p^{2}(\rho, s) p^{2}(\rho, t) \sin ^{2} \frac{1}{2}(s-t) F(s, t) d s d t=S .
$$

For $n>2$ it would be sufficient to assume that

$$
\begin{align*}
& \lim _{\theta_{j} \rightarrow 0} \frac{1}{\theta_{1} \ldots \theta_{n}} \int_{0}^{\theta_{n}} \ldots \int_{0}^{\rho_{n}}|G(\theta)| d \theta_{1} \ldots d \theta_{n}=0 \tag{16}\\
& \int_{0}^{\theta_{1}} \ldots \int_{0}^{\theta_{n}}|G(\theta)|\left|d \theta_{1} \ldots d \theta_{n}\right| \leqslant C\left|\theta_{1} \ldots \theta_{n}\right|,\left(0<\left|\theta_{j}\right| \leqslant \pi, j=1, \ldots, n\right),
\end{align*}
$$

where $G(\theta)$ is defined similarly to $G(s, t)$. We obtain
Theorem 2.2. Let f be an integrable function on the unitary group B such that the function $F(\theta)$ defined by (9), where f_{0} is the transform of f under (1), satisfies (16). Then the Poisson integral (1.3) has a limit if z approaches the point u_{0} on B radially.

§3. Complete orthonormal systems on D. Orthogonal developments.

1. Integration over D. Let z be an n by m matrix $(n \leqslant m), z_{p}$ its p th row and Z_{p} the submatrix consisting of the first p rows $(p=1, \ldots, n)$. The inner product (f, g) defined by (1.7) may be transformed into an iterated integral over the product of n hyperspheres by a procedure due to Hua (12), giving

$$
\begin{equation*}
(f, g)=\left(\frac{1}{2 i}\right)^{m n} \int_{w_{1} w_{1}^{*}<1}\left(1-w_{1} w_{1}^{*}\right)^{n-1} \dot{w}_{1} \ldots \int_{w_{n} w_{n}^{*}<1} f \bar{g} \dot{w}_{n} \tag{1}
\end{equation*}
$$

where

$$
\begin{align*}
& \dot{w}_{p}=\prod_{k=1}^{m} d w_{p k} d \bar{w}_{p k} \tag{2}\\
& w_{p}=z_{p} \Gamma_{p-1} \\
& z_{p}=w_{p} \Gamma_{p-1}^{-1} \quad\left(p=1, \ldots, n, \Gamma_{0}=1\right)
\end{align*}
$$

and Γ_{p-1} is a unique positive definite matrix such that

$$
\begin{equation*}
\Gamma_{p-1} \Gamma_{p-1}^{*}=\left(I-Z_{p-1}^{*} Z_{p-1}\right)^{-1} \tag{3}
\end{equation*}
$$

2. Construction of the matrix $\Gamma_{p-1}^{-1}(2 \leqslant p \leqslant n)$. Let $U_{p}(q)=U(q)$ be the minor formed from the first q rows and columns of

$$
\begin{equation*}
U_{p}=U=\left(u_{j k}\right)=I-Z_{p-1}^{*} Z_{p-1} \tag{4}
\end{equation*}
$$

$\mathscr{U}_{p}(q)=\mathscr{U}(q)$ the corresponding submatrix and $u_{m-j}=\left(u_{m-j, 1}, \ldots, u_{m-j, m-j-1}\right)$. Since $I-Z_{p-1} Z^{*}{ }_{p-1}$ is the leading $(p-1)$ th principal submatrix of $I-z z^{*}$, it is positive definite, hence U is positive definite and $U(q)$ are positive. Thus the hermitian matrix U may be reduced to diagonal form by the well-known Kronecker reduction (1) whose ($j+1$)th step is

$$
V_{j+1} \ldots V_{1} U V_{1}^{*} \ldots V_{j+1}^{*}=\left(\begin{array}{ccc}
\mathscr{U}(m-j-1) & 0 \\
& & X_{m, m-j} \\
0 & \ddots & \\
& & \\
& & X_{m m}
\end{array}\right)
$$

$(0 \leqslant j \leqslant m-2)$, where

$$
\begin{aligned}
V_{j+1} & =\left(\begin{array}{ll}
I^{(m-j-1)} & 0 \\
-u_{m-j} \mathscr{U}^{-1}(m-j-1) I^{(j+1)} \\
0
\end{array}\right), \\
X_{m, m-j} & =U(m-j) U^{-1}(m-j-1) \\
X_{m 1} & =U(1)
\end{aligned}
$$

Also

$$
\begin{aligned}
& u_{m-j} \mathscr{U}^{-1}(m-j-1)=U^{-1}(m-j-1) \\
& \quad\left((-1)^{k+m-j+1} U\binom{1, \ldots,[k], \ldots, m-j}{1, \ldots, m-j-1}\right),(1 \leqslant k \leqslant m-j-1),
\end{aligned}
$$

where

$$
U\binom{1, \ldots,[k], \ldots, m-j}{1, \ldots, m-j-1}
$$

is the minor of U formed from rows $1, \ldots, m-j$ with row k omitted and columns $1, \ldots, m-j-1$.

Now V_{j+1}^{-1} equals V_{j+1} with the sign of the matrix $-u_{m-j} \mathscr{U}^{-1}(m-j-1)$ changed. Also $X_{m k}$ is real. Hence we can take

$$
\begin{equation*}
\Gamma_{p-1}^{*-1}=V_{1}^{-1} \ldots V_{m-1}^{-1}\left[X_{m}^{\frac{1}{2}}, \ldots, X_{m m}^{\frac{1}{2}}\right] \tag{5}
\end{equation*}
$$

By an inductive proof we may show that

$$
\begin{equation*}
V_{1}^{-1} \ldots V_{m-1}^{-1}=\left(\frac{U\binom{j}{1}}{U(1)} \frac{U\binom{1, j}{1,2}}{U(2)} \ldots \frac{U\binom{1,2, \ldots,[j-1], j}{1,2, \ldots, j-1}}{U(j-1)} 10 \ldots 0\right) \tag{6}
\end{equation*}
$$

$(1 \leqslant j \leqslant m)$. (For details of the proof cf. (15).) From (4) it follows that

$$
\begin{align*}
U\binom{1, \ldots,[i], r}{1, \ldots, i} & =U_{p}\binom{1, \ldots,[i], r}{1, \ldots, i} \tag{7}\\
& =\operatorname{det}\left(\delta_{j k}-\sum_{l=1}^{p-1} \bar{z}_{l j} z_{l k}\right) \\
& (j=1, \ldots, i-1, r ; k=1, \ldots, i ; i+1 \leqslant r \leqslant m, 1 \leqslant i \leqslant m-1)
\end{align*}
$$

3. Formula for $z_{p r}$. From (2), (5), and (6) follows

$$
\begin{align*}
& z_{p r}=\sum_{i=1}^{r-1} c_{p i} \bar{U}_{p}\binom{1, \ldots,[i], r}{1, \ldots, i} w_{p i}+c_{p r r} w_{p r}(p \geqslant 2) \tag{8}\\
& z_{1 r}=w_{1 r}\left(1 \leqslant r \leqslant m ; \sum_{i=1}^{0}=0\right),
\end{align*}
$$

where

$$
\begin{align*}
c_{p i} & =\left[U_{p}(i) U_{p}(i-1)\right]^{-\frac{1}{2}}(1 \leqslant i \leqslant r-1) \tag{9}\\
c_{p r r} & =\left[U_{p}(r) / U_{p}(r-1)\right]^{\frac{1}{2}} \\
c_{1 i} & =c_{1 r r}=1 .
\end{align*}
$$

The formula

$$
\begin{equation*}
U_{p}(q)=\prod_{k=1}^{p-1}\left(1-\sum_{j=1}^{q} w_{k j} \bar{w}_{k j}\right) \quad(p \geqslant 2) \tag{10}
\end{equation*}
$$

holds.
We prove (10) by induction on p. Since by (8)

$$
U_{2}(q)=\operatorname{det}\left(I-z_{1}^{*} z_{1}\right)=\operatorname{det}\left(I-z_{1} z_{1}^{*}\right)=1-\sum_{j=1}^{q} w_{1 j} \bar{w}_{1 j},
$$

where $z_{1}=\left(z_{11}, \ldots, z_{1 q}\right),(10)$ is true for $p=2$. Assume (10) holds for $U_{p}(q)$ and prove for $U_{p+1}(q)$. Since $U_{p}(q) \neq 0$, there exists a unimodular matrix A such that the matrix $\mathscr{V}_{p+1}(q)=\left(\delta_{j k}-\sum_{l=1}^{q} z_{j l} \bar{z}_{k l}\right)(1 \leqslant j, k \leqslant p)$ is equal to

$$
A\left[\mathscr{V}_{p}(q), 1-z_{p} \mathscr{U}_{p}^{-1}(q) z_{p}^{*}\right] A^{*},
$$

(12), and thus

$$
U_{p+1}(q)=\operatorname{det} \mathscr{V}_{p+1}(q)=\operatorname{det} \mathscr{V}_{p}(q)\left(1-z_{p} \mathscr{U}_{p}^{1}(q) z_{p}^{*}\right) .
$$

Since det $\mathscr{V}_{p}(q)=U_{p}(q)$, using (10) we need only consider the last factor on the right, which equals

$$
E=1-\sum_{j, k=1}^{q} z_{p j} U_{k j} \bar{z}_{p k} / U_{p}(q),
$$

where $U_{k^{j}}$ is the cofactor of the element $u_{k j}$ in the matrix $\mathscr{U}_{p}(q)$. Substitute (8) for $z_{p j}$ and $\bar{z}_{p k}$. The term $w_{p r}$ occurs when $j=r$ or when $i=r$ and $j=r+1$, \ldots, q and $\bar{w}_{p \lambda}$ occurs when $k=\lambda$ or $i=\lambda$ and $k=\lambda+1, \ldots, q$. Thus the coefficient, $C_{r \lambda}$, of $w_{p r} \bar{w}_{p \lambda}(1 \leqslant r, \lambda \leqslant q)$ is

$$
C_{r \lambda}=U_{p}^{-1}(q)\left[c_{p r} \sum_{j=r+1}^{q} \bar{U}_{p}\binom{1, \ldots,[r], j}{1, \ldots, r} D_{j \lambda}+c_{p r r} D_{r \lambda}\right]
$$

where

$$
D_{j \lambda}=c_{p \lambda} \sum_{k=\lambda+1}^{q} U_{k j} U_{p}\binom{1, \ldots,[\lambda], k}{1, \ldots, \lambda}+U_{\lambda j} c_{p \lambda \lambda .}
$$

By means of elementary properties of determinants it is not difficult to prove in case $\lambda \leqslant r$ that $D_{j \lambda}=0$ for $j=r, \lambda<r$ and $j=r+1, \ldots, q, \lambda \leqslant r$. Hence $C_{r \lambda}=0$ for $\lambda \neq r$. Also $C_{r r}=1$. A similar proof holds for $r<\lambda$. Thus

$$
E=1-\sum_{j=1}^{q} w_{p j} \bar{w}_{p j}
$$

and $U_{p+1}(q)$ has the desired form, which proves (10).
4. Structure of the CONS on D.

Theorem 3.1. (P, Q) $\neq 0$ implies equations (1.8).
Proof. We first show that

$$
\begin{equation*}
z_{p r}=w_{p r} \sum B_{i} w_{p i} \bar{w}_{p r} \Pi\left(w_{\lambda_{1} \alpha_{1}} \bar{w}_{\lambda_{1} \beta_{1}} \ldots w_{\lambda_{l \alpha} l} \bar{w}_{\lambda_{l \beta} \beta_{l}} w_{\lambda_{i} r} \bar{w}_{\lambda_{i} \beta_{i}}\right), \tag{11}
\end{equation*}
$$

where B_{i} is a function of $w_{j k} \bar{w}_{j k}(1 \leqslant j \leqslant p-1) ; \lambda_{1}, \ldots, \lambda_{l}, \lambda_{i}$ take on values in the set $1,2, \ldots, p-1 ; \alpha_{1}, \ldots, \alpha_{l}$ is a subset of $1, \ldots, i-1$ and $\left(\beta_{1}, \ldots\right.$, $\left.\beta_{l}, \beta_{i}\right)$ is a permutation of $\left(\alpha_{1}, \ldots, \alpha_{l}, i\right)(i=1, \ldots, r-1)$. (Notice that each term of (11) can be grouped into pairs $w_{\alpha \beta} \bar{w}_{\gamma \delta}$ in two ways: (i) each pair belongs to the same row, (ii) each pair belongs to the same column.) Since $z_{1 r}=w_{1 r}$, (11) holds for $p=1$. Now assume (11) for $p-1,1 \leqslant r \leqslant m$, and prove for p. Upon expanding

$$
\bar{U}_{p}\binom{1, \ldots,[i], r}{1, \ldots, i}
$$

(given by (7)) and multiplying out the resulting factors, we find that its general term is

$$
z_{\lambda_{1} \alpha_{1}} \bar{z}_{\lambda_{1} \beta_{1}} \ldots z_{\lambda_{s} \alpha_{s}} \bar{z}_{\lambda_{s} \beta_{\alpha_{s}}} z_{\lambda_{s+1} r}{\overline{\overline{ }} \lambda_{s+1} \beta_{i}}
$$

where $\lambda_{\alpha}(\alpha=1, \ldots, s+1)$ takes on values from $1,2, \ldots, p-1 ; \alpha_{1}, \ldots, \alpha_{s}$ is a subset of $1, \ldots, i-1$ and

$$
\beta_{\alpha_{1}}, \ldots, \beta_{\alpha_{s}}, \beta_{i}{ }^{\prime}
$$

is a permutation of $\alpha_{1}, \ldots, \alpha_{s}, i$. Thus the general term of $z_{p r}$ would be $w_{p r}$ times

$$
\begin{gathered}
c_{p i}^{\prime} z_{\lambda_{1} \alpha_{1}}{\overline{\lambda_{1} \beta \alpha_{1}}} \ldots z_{\lambda_{s} \alpha_{s}}{\overline{z_{\lambda} s \alpha_{s}}}^{z_{\lambda_{s}+1}} \overline{\bar{z}}_{\lambda_{s}+1 \beta_{i}} w_{p i} \bar{w}_{p r}, \\
c_{p i}{ }^{\prime}=c_{p i} / w_{p r} \bar{w}_{p r} . \text { Replace } \\
z_{\lambda_{1} \alpha_{1} \lambda} \bar{z}_{\lambda_{1} \beta \alpha_{1}} \ldots \text { by } w_{\lambda_{1} \alpha_{1}} \bar{w}_{\lambda_{1} \beta \alpha_{1}} \ldots
\end{gathered}
$$

times a factor which by induction already has the required form and (11) follows.

Now consider $z_{p r}{ }^{s_{p r}}$. From (11) we see that except for the first factor $w_{p r}{ }^{s_{p r}}$ if $w_{\nu j}{ }^{\sigma}$ occurs, then a factor $\bar{w}_{\nu k}{ }^{\sigma}$ also occurs and if $w_{i \mu}{ }^{\tau}$ appears, then $\bar{w}_{l \mu}{ }^{\tau}$ also appears. Consequently in the expression for $z_{p r}{ }^{s_{p r}}$ for each $\nu(\nu=1, \ldots, p-1)$ the sum of the exponents of the factors $w_{\nu j}(j=1, \ldots, m)$ equals the sum of the exponents of the $\bar{w}_{\nu k}(k=1, \ldots, m)$ and the sum of the exponents of $w_{p j}$ equals the sum of the exponents of $\bar{w}_{p k}$ increased by $s_{p r}$. Similarly for the columns. Thus P can be expressed in the form

$$
\begin{equation*}
P(z)=P_{0}(w \bar{w}) \prod w_{j k}^{s_{j k}}=P_{0}(w \bar{w}) P(w), \tag{12}
\end{equation*}
$$

where $P_{0}(w \bar{w})$ contributes the same exponents to the sum of the elements in the ν th row of w and of \bar{w} and similarly for the columns of w and \bar{w}. An analogous expression holds for Q.

In (P, Q) replace P and Q by (12). Since $\left\{w_{\nu_{k}}{ }^{s_{\nu k}}\right\}(k=1, \ldots, m)$ forms an orthogonal set on $w_{\nu} w^{*}{ }_{\nu}<1$ (2), $(P, Q) \neq 0$ if and only if for each k the exponent of $w_{\nu k}$ equals the exponent of $\bar{w}_{\nu k}$. Consequently if we sum the exponents of the ν th row, owing to the form of $P_{0}(w \bar{w}), Q_{0}(w \bar{w})$ we obtain the first of equations (1.8) and summing the exponents of the μ th column the second of equations (1.8). Thus the theorem is proved.
5. CONS. Orthogonal development. A CONS is constructed from the set of powers $\{P(z)\}$ as follows. Let $\alpha=\left(\alpha_{1}, \ldots, \alpha_{m+n}\right)$ be a set of non-negative integers with $\sum_{j=1}^{n} \alpha_{j}=\sum_{k=1}^{m} \alpha_{k+n}=p$. The powers of the set $S(\alpha)=$ $S\left(\alpha_{1}, \ldots, \alpha_{m+n}\right)$ such that

$$
\sum_{k} s_{\nu k}=\alpha_{\nu}, \quad \sum_{j} s_{j \mu}=\alpha_{\mu+n}
$$

need not be orthogonal to each other. (There exist sets $S(\alpha)$ whose members are not all orthogonal to each other-for example, in the 2 by 2 case the elements $z_{11} z_{22}, z_{12} z_{21}$ are not orthogonal (12).) However if $P \in S(\alpha), Q \in S(\beta)$, where $\alpha_{j} \neq \beta_{j}$ for some j, then by Theorem $3.1(P, Q)=0$. We order the elements of the set $S(\alpha)$ in some convenient manner into a sequence P_{0}, P_{1}, \ldots, $P_{p(\alpha)}$. An ONS is constructed from these elements by the Gram-Schmidt formulas

$$
\phi_{\nu}^{(p)}(z)=\operatorname{det}\left(\begin{array}{c}
P_{0} \ldots P_{\nu} \tag{13}\\
a_{00} \ldots a_{\nu 0} \\
\ldots \\
a_{0, \nu-1} \ldots a_{\nu, \nu-1}
\end{array}\right) /\left(D_{\nu-1} D_{\nu}\right)^{\frac{1}{2}},
$$

where

$$
\begin{aligned}
& D_{\mu}=\operatorname{det}\left(a_{\alpha \beta}\right) \quad(0 \leqslant \alpha, \beta \leqslant \mu ; \mu=\nu-1 \text { or } \nu, \nu \neq 0), D_{-1}=1 . \\
& a_{i j}=\left(P_{i}, P_{j}\right),(0 \leqslant i, j \leqslant \nu) .
\end{aligned}
$$

Now order the system $\left\{\phi_{\nu}{ }^{(p)}\right\}$ into a sequence $\phi_{1}, \phi_{2}, \ldots$ The orthogonal development of any $f \in L^{2}$ with respect to the ONS is

$$
\begin{equation*}
\sum a_{q} \phi_{q}, \tag{14}
\end{equation*}
$$

where a_{q} are the Fourier coefficients, $\left(f, \phi_{q}\right)$, of f. From Bergman's theory (2) it is known that (14) converges absolutely and continuously to f on D (continuous convergence means that the series converges uniformly on any compact set contained in D).

§4. Applications of the CONS.

1. Abelian and Tauberian theorems. Let $\left\{a_{q}\right\}$ be an arbitrary sequence of numbers and consider the behaviour of (3.14) as $z \in D$ approaches a point $u_{0} \in B$. In particular let $u_{0}=[I, 0], I=I^{(n)}$, and $z \rightarrow u_{0}$ along the set of points $[r, 0]$ where r is the diagonal matrix $\left[r_{1}, \ldots, r_{n}\right], 0 \leqslant r_{j}<1$. When $z=[r, 0]$ it is seen that P_{ν} of the set $S(\alpha)$ is either equal to 0 or to

$$
\Pi r r^{p}
$$

in case $\alpha_{j}=\alpha_{j+n}=p_{j}$ for $j=1, \ldots, n$ and $\alpha_{j+n}=0$ for $j>n$. Consequently for a fixed set α either all P_{ν} are zero or there is one P_{ν} different from zero in case $\alpha_{j}=\alpha_{j+n}$ for $j=1, \ldots, n$ and $\alpha_{j+n}=0$ for $j>n$. Order the elements of the set $S(\alpha)$ so that the non-zero term is the last term of the set. Then in (3.13) only $\phi_{t}{ }^{(p)}(z), t=p(\alpha)$, is different from zero when $z=[r, 0]$ and

$$
\phi_{t}^{(p)}(z)=\left[D_{t-1} / D_{t}\right]^{\frac{1}{2}} P_{t}(z)=\left[D_{t-1} / D_{t}\right]^{\frac{1}{2}} r_{1}^{p_{1}} \ldots r_{n}^{p_{n}}
$$

Thus (3.14) reduces to a multiple power series. Let this series be summed by the usual method for power series. Then

$$
\begin{align*}
S(r) & =\sum_{p_{1}=0}^{\infty} \ldots \sum_{p_{n}=0}^{\infty} c_{p_{1} \ldots p_{n}} r_{1}^{p_{1}} \ldots r_{n}^{p_{n}}, \tag{1}\\
c_{p_{1} \ldots p_{n}} & =a_{q} /\left(D_{t-1} / D_{t}\right)^{\frac{1}{2}},
\end{align*}
$$

where $\phi_{t}{ }^{(p)}=\phi_{q}$ is the ordering of the ONS $\left\{\phi_{t}{ }^{(p)}\right\}$ into a simple sequence. Let

$$
S_{q_{1} \ldots q_{n}}
$$

be the partial sum of $S(r)$:

$$
S_{q_{1} \ldots q_{n}}=\sum_{p_{1}=0}^{q_{1}} \ldots \sum_{p_{n}=0}^{q_{n}} c_{p_{1} \ldots p_{n}} r_{1}^{p_{1}} \ldots r_{n}^{p_{n}} .
$$

The following Abelian theorem is valid:
Theorem 4.1. If $S(I)$ exists and

$$
\left|S_{q_{1}} \cdots q_{n}\right|<C,
$$

where C is an absolute constant, then $S(r)$ is uniformly convergent for $0 \leqslant r_{j}<1$ and $\lim _{r \rightarrow I} S(r)=S(I)$. ($r \rightarrow I$ means $[r, 0] \rightarrow[I, 0]$.) See (4) for a proof.

Also a Tauberian theorem proved by Knopp (7) for double series may be extended to multiple series.

Theorem 4.2 (Tauberian theorem). Let the series $S(r)$ converge for each $[r, 0] \in D, r=\left[r_{1}, \ldots, r_{n}\right]$, and for these r let $|S(r)| \leqslant K$, where K is an absolute constant. If

$$
\begin{equation*}
\left|c_{p_{1} \ldots p_{n}}\right|\left(p_{1}^{2}+\ldots+p_{n}^{2}\right)^{\frac{1}{2} n}<M<\infty, \tag{2}
\end{equation*}
$$

then $\lim _{r \rightarrow I} S(r)=S$ implies $S(I)=S$, that is,

$$
\begin{equation*}
\sum_{p_{1}=0}^{\infty} \ldots \sum_{p_{n}=0}^{\infty} c_{p_{1} \ldots p_{n}}=S \tag{3}
\end{equation*}
$$

In order to prove Theorem 4.2, Theorems 3 of $\S 3$ and the proofs in $\S 4$ of Knopp's paper must be proved for n-fold series ($n \geqslant 3$). Using condition (2) Theorem 3 has been extended to multiple series in (18). Also by means of (2) the proofs in $\S 4$ follow for multiple series. In addition see (13) where a similar condition is utilized for multiple series summed spherically.

On the other hand if we let $z \rightarrow[I, 0]$ along the set $[\rho I, 0], 0 \leqslant \rho<1$, and sum series (3.14) by diagonals:

$$
\begin{equation*}
S_{0}(\rho)=\sum_{p=0}^{\infty} b_{p} \rho^{p} \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
b_{p}=\sum_{p_{1}+\ldots+p_{n}=p} c_{p_{1} \ldots p_{n}}, \tag{4a}
\end{equation*}
$$

then (4) is a simple series and the boundedness conditions on $S_{q_{1}} \ldots q_{n}$ and $S(r)$ can be omitted in Theorems 4.1 and 4.2 (17). Abel's theorem reads if $S_{0}(I)$ exists, then $S_{0}(\rho I)$ is uniformly convergent for $0 \leqslant \rho<1$ and $\lim _{\rho \rightarrow 1} S_{0}(\rho I)$ $=S_{0}(I)$ and Theorem 4.2 becomes

Let the series $S_{0}(\rho I)$ converge for each $[\rho I, 0] \in D,(0 \leqslant \rho<1)$. If $b_{p}=0(1 / p)$, then $\lim _{\rho \rightarrow 1} S_{0}(\rho I)=S_{0}$ implies $S_{0}(I)=S_{0}$.
2. Cauchy's inequality and mean value theorem. In the next paragraphs it is convenient to group the elements of the CONS $\left\{\phi_{\nu}\right\}$ of same degree, hence, let

$$
\phi_{1}^{(p)}, \ldots, \phi_{M_{p}}^{(p)}
$$

be the terms of degree p. Then for any $f \in L^{2}$ on D

$$
\begin{equation*}
f(z)=\sum_{p=0}^{\infty} \sum_{j=1}^{M_{p}} a_{j}^{(p)} \phi_{j}^{(p)}(z), \tag{5}
\end{equation*}
$$

where the convergence is continuous and absolute for $z \in D$. Multiply (5) by \bar{f} and integrate over the domain

$$
\begin{equation*}
D_{\rho}=\left[z \mid \rho^{2} I-z z^{*}>0,0<\rho<1\right] . \tag{6}
\end{equation*}
$$

Clearly $D_{\rho} \nsubseteq D$ for $0<\rho<1$. Since the convergence of (5) is uniform and absolute on \bar{D}_{ρ}
(7) $I(\rho)=V_{\rho}^{-1} \int_{D p}|f|^{2} d W_{z}=V_{\rho}^{-1} \sum_{p=0}^{\infty} \sum_{j=1}^{M_{p}} \sum_{q=0}^{\infty} \sum_{k=1}^{M q} a_{j}^{(p)} \bar{a}_{k}^{(q)} \int_{D_{p}} \phi_{j}^{(p)} \bar{\phi}_{k}^{(q)} d W_{z}$
(V_{ρ} being the volume of D). In the integral

$$
I=\int_{D p} \phi_{j}^{(p)} \bar{\phi}_{k}^{(q)} d W_{z}
$$

set $z=\rho w$. Then $D_{\rho} \rightarrow D, d W_{z} \rightarrow \rho^{2 m n} d W_{w}$ (cf. §3.1) and

$$
\phi_{j}^{(p)}(z)=\sum \Sigma \alpha_{j k=p} \text { constant } \prod z_{j k}^{\alpha_{j k}} \rightarrow \rho^{p} \phi_{j}^{(p)}(w) .
$$

Hence

$$
I=\rho^{2 m n+p+q}\left(\phi_{j}^{(p)}, \phi_{k}^{(q)}\right)=\rho^{2 m n+p+q} \delta_{p q} \delta_{j k} .
$$

Also $V_{\rho}=\rho^{2 m n} V_{0}$ where V_{0} is the volume of D. Thus (7) becomes

$$
\begin{equation*}
I(\rho)=\frac{1}{V_{\rho}} \int_{D p}|f|^{2} d W=\frac{1}{V_{0}} \sum_{p=0}^{\infty} \rho^{2 p} \sum_{j=0}^{M_{p}}\left|a_{j}^{(p)}\right|^{2} . \tag{8}
\end{equation*}
$$

From (8)

$$
\frac{1}{V_{0}} \sum_{j=0}^{M_{p}}\left|a_{j}^{(p)}\right|^{2} \leqslant\left(1 / \rho^{2 p}\right) \max _{z \in D p}|f(z)|^{2}
$$

Now according to a theorem proved by Hua (6) if f is analytic on the closed circular domain \bar{D}_{ρ}, then f attains its maximum modulus on the circular manifold

$$
\begin{equation*}
B_{\rho}=\left[z \mid z z^{*}=\rho^{2} I\right] . \tag{9}
\end{equation*}
$$

Hence we get the Cauchy inequality:

$$
\begin{equation*}
\frac{1}{V} \sum_{j=0}^{M_{p}}\left|a_{j}^{(p)}\right|^{2} \leqslant\left(1 / \rho^{2 p}\right) \max _{z \in B p}|f(z)|^{2} \tag{10}
\end{equation*}
$$

Theorem 4.3 (mean value theorem). $I(\rho)$ defined by (7) is a monotone increasing function of $\rho(0<\rho<1)$ and $\log I(\rho)$ is a convex function of $\log \rho$.

Proof. The monotonicity of $I(\rho)$ is obvious from (8). The proof of convexity is the same as the proof in ($\mathbf{1 7}, \mathrm{p} .174$) for the one variable case.
3. A mean value theorem over B_{ρ}.

Theorem 4.4. In the case $n=m$ the integral

$$
\begin{equation*}
I_{1}(\rho)=\int_{B p}|f|^{2} d V \tag{11}
\end{equation*}
$$

is a monotone increasing function of ρ and $\log I_{1}(\rho)$ is a convex function of $\log \rho$.
Proof. Hua (6) has shown how to construct a set $\left\{\psi_{\nu}\right\}$ orthonormalized with respect to the inner product

$$
\left(\psi_{\nu}, \psi_{\mu}\right)_{B}=\int_{B} \psi_{\nu} \bar{\psi}_{\mu} d V
$$

from the CONS $\left\{\phi_{\nu}\right\}$ as follows. Since B is a circular space $\left(\phi_{j}{ }^{(p)}, \phi_{k}{ }^{(q)}\right)_{B}=0$ if $p \neq q$. Define the vector

$$
z_{p}=\left(\phi_{1}^{(p)}, \ldots, \phi_{M p_{p}}^{(p)}\right)
$$

Then

$$
\left(z_{p}^{\prime}, z_{p}\right)_{B}=\left(\left(\phi_{j}^{(p)}, \phi_{k}^{(p)}\right)_{B}\right)=K_{p}
$$

is a matrix of constants. Since $z_{p}{ }^{\prime} \bar{z}_{p}>0$ if

$$
z_{p} z_{p}^{*}=\left|\phi_{1}^{(p)}\right|^{2}+\ldots+\left|\phi_{M_{p}}^{(p)}\right|^{2}
$$

is positive, $K_{p}>0$ and there exists a unitary matrix U such that $U^{*} K_{p} U=\Lambda$, where Λ is a diagonal matrix with positive elements on the diagonal. Now $\left\{y_{p}\right\}$, defined by

$$
y_{p}=z_{p} \bar{U}=\left(\theta_{1}^{(p)}, \ldots, \theta_{M_{p}}^{(p)}\right),
$$

is a CONS on D if $\left\{z_{p}\right\}$ is, since

$$
\left(\left(z_{p} \bar{U}\right)^{\prime}, z_{p} U\right)=U^{*}\left(z_{p}^{\prime}, z_{p}\right) U=U^{*}\left(\left(\phi_{j}^{(p)}, \phi_{k}^{(p)}\right)\right) U=U^{*} I U=I
$$

Let

$$
\psi_{j}^{(p)}=\theta_{j}^{(p)} /\left\|\theta_{j}^{(p)}\right\|_{B}
$$

Then $\left\{\psi_{j}{ }^{(p)}\right\}$ is an ONS with respect to integration over B and the orthogonal development (5) of $f \in L^{2}$ can be written as

$$
\begin{equation*}
f(z)=\sum_{p=0}^{\infty} \sum_{j=1}^{M_{p}} b_{j}^{(p)} \psi_{j}^{(p)} \tag{12}
\end{equation*}
$$

where

$$
b_{j}^{(p)}=\left(f, \psi_{j}^{(p)}\right) /\left\|\psi_{j}^{(p)}\right\|^{2} .
$$

Multiply (12) by \bar{f} and integrate over B_{ρ}. By a procedure similar to that in paragraph 3 we obtain the formula

$$
\begin{equation*}
I_{1}(\rho)=\int_{B_{\rho}}|f|^{2} d V=\sum_{p=0}^{\infty} \rho^{2 p} \sum_{j=1}^{M_{p}}\left|b_{j}^{(p)}\right|^{2} \tag{13}
\end{equation*}
$$

from which the conclusions of the theorem follow.
Note added in Proof. Recently it has come to my attention that Hua and Look (21) have proved that $F(z) \rightarrow f\left(u_{o}\right)$ as $z \rightarrow u_{o}$ in any manner. Further for continuous f on B, the solution F given by (3) is unique. They also consider Abel summability for continuous functions of the unitary group.

References

1. A. A. Albert, Modern higher algebra (Chicago, 1937).
2. S. Bergman, The kernel function and conformal mapping, Math. Surveys, No. V (1950).
3. S. Bochner, Group invariance of Cauchy's formula in several variables, Ann. Math., 45 (1944), 686-707.
4. T. J. I'A Bromwich and G. H. Hardy, Some extensions to multiple series of Abel's theorem on continuity of power series, Proc. London Math. Soc., 2 (1905), 161-189.
5. E. Cartan, Sur les domains bornés homogènes de l'espace de n variables complexes, Abh. Math. Sem. Univ. Hamburg, 11 (1936), 116-162.
6. L. K. Hua, On the theory of functions of several complex variables, I-III, Acta Math. Sinica, 2 (1953), 288-323; 5 (1955), 1-25, 205-242; (in Chinese), M.R., 17 (1956), p. 191. Also Harmonic analysis of the classical domain in the study of analytic functions of several complex variables, mimeographed notes (about 1956).
7. K. Knopp, Limitierungs-Umkehrsätze für Doppelfolgen, Math. Z., 45 (1939), 573-589.
8. D. B. Lowdenslager, Potential theory and a generalized Jensen-Nevalinna formula for functions of several complex variables, Jn. Math. Mech., 7 (1958), 207-218.
9. -_ Potential theory in bounded symmetric homogeneous complex domains, Ann. Math., 67 (1958), 467-484.
10. C. C. Macduffee, The theory of matrices (Ergebnisse der Mat. und ihrer Grenzgebiete [Chelsea, 1946]).
11. J. Mitchell, On double Sturm-Liouville series, Amer. J. Math., 65 (1943), 616-636.
12. - An example of a complete orthonormal system and the kernel function in the geometry of matrices, Proceedings of the Second Canadian Mathematical Congress (Vancouver, 1949), 155-163.
13. - On the spherical summability of multiple orthogonal series, Trans. Amer. Math. Soc., 71 (1951), 136-151.
14. - Potential theory in the geometry of matrices, Trans. Amer. Math. Soc., 79 (1955), 401-422.
15. - Orthogonal systems on matric spaces, West. Research Lab. Pub., Scientific Paper 60-94801-1-P2 (1956).
16. K. Morita, On the kernel functions of symmetric domains, Sci. Reports of Tokyo Kyoiku Daigaku Sec. A, 5 (1956), 190-212.
17. E. C. Titchmarsh, The theory of functions (2nd ed., Oxford University Press, 1939).
18. S. H. Tung, Tauberian theorems for multiple series, unpublished Master's thesis (The Pennsylvania State University).
19. H. Weyl, The classical groups (Princeton University Press, 1946).
20. A. Zygmund, Trigonometrical series, Monog. Mat., Tom V (Warsaw, 1935).
21. L. K. Hua and K. H. Look, Theory of harmonic functions in classical domains, Sci. Sinicd, 8, No. 10 (1959), 1032-1094.

The Pennsylvania State University

[^0]: Received November 30, 1959. Presented to meetings of American Mathematical Society on January 29, 1960 and January 24, 1961.

