SUMMABILITY METHODS ON MATRIX SPACES

JOSEPHINE MITCHELL

§1. Introduction. The matrix spaces under consideration are the four main types of irreducible bounded symmetric domains given by Cartan (5). Let $z = (z_{jk})$ be a matrix of complex numbers, z' its transpose, z^* its conjugate transpose and $I = I^{(n)}$ the identity matrix of order n. Then the first three types are defined by

(1) $D = [z|I - zz^* > 0],$

where z is an n by m matrix $(n \le m)$, a symmetric or a skew-symmetric matrix of order n (16). The fourth type is the set of complex spheres satisfying

$$|z'z| < 1, 1 - 2z^*z + |z'z|^2 > 0,$$

where z is an n by 1 matrix. It is known that each of these domains possesses a distinguished boundary B which in the first three cases is given by

$$B = [u|uu^* = I].$$

(In the case of skew symmetric matrices the distinguished boundary is given by (2) only if n is even.)

In § 2 we consider the following problem for the first type of domain with m = n, in which case u is a unitary matrix, the (real) dimension of B is n^2 and of D is $2n^2$. Let f(u) be a real integrable function defined on B and consider the integral operator

(3)
$$I(f,z) = \int_{B} P(z,u)f(u) \, dV,$$

where P(z, u) is the Poisson kernel (14)

(4)
$$P(z, u) = V^{-1} \det^{n} (I - zu^{*})^{-1} (I - zz^{*}) (I - uz^{*})^{-1},$$

V is the Euclidean volume of B, and dV the Euclidean volume element. It is known that I(f, z) is a harmonic function of z if $I - zz^* > 0$ or $I - zz^* < 0$. (I proved this fact in **(14)** for $z \in D$ but the proof is valid for all z and $u \in B$ for which det $(I - zu^*) \neq 0$. It is easily proved that det $(I - zu^*) \neq 0$ for $u \in B$ and all z such that $I - zz^* > 0$ or $I - zz^* < 0$.) Here a harmonic function is a function of class C^2 , which satisfies on D the Laplace equation corresponding to the invariant metric of D, that is, the metric invariant with respect to the group of 1 to 1 analytic transformations mapping D onto itself **(14)**. This invariant metric is given by

$$ds^{2} = \sigma[(I - zz^{*})^{-1}dz(I - z^{*}z)^{-1}dz^{*}],$$

Received November 30, 1959. Presented to meetings of American Mathematical Society on January 29, 1960 and January 24, 1961.

where $\sigma(A)$ is the trace of the matrix A and $dz = (dz_{jk})$, and the corresponding Laplace equation is

$$4\sigma[\overline{\partial}(I-z^*z)\partial'(I-zz^*)]=0, \qquad \partial=(\partial/\partial z_{jk}).$$

It has been proved by Hua and Lowdenslager that given a real function f, continuous on B, there exists a function F, harmonic on D, such that $F(z) \rightarrow f(u_0)$ as $z \rightarrow u_0 \in B$ radially, that is, along the set ρu_0 , $0 \leq \rho < 1$ (6; 9). Further, if F is continuous on the closure \overline{D} of D and satisfies certain other conditions due to Lowdenslager on the boundary of D other than B, then F is unique (8). Now for the particular case of the unit circle, $z\overline{z} = 1$, if we merely assume that f is integrable on it, then $I(f, \rho u_0) \rightarrow f(u_0)$ as $\rho \rightarrow 1 (0 \leq \rho < 1)$ (20); this method of approach is known as Abel-Poisson summability of Fourier series. We prove this result for matrix spaces. (See note added in proof).

In § 3 we consider for the first type of domain $(n \leq m)$ some properties of complete orthonormal systems (CONS) of complex homogeneous polynomials defined on D. The space D is circular with center at z = 0, that is, if $z \in D$, then $e^{i\theta}z \in D$ for $0 \leq \theta < 2\pi$. Hence any two powers

(5)
$$P(z) = \prod_{j,k} z_{jk}^{s_{jk}}, \qquad Q(z) = \prod_{j,k} z_{jk}^{t_{jk}},$$

 s_{jk} , t_{jk} non-negative integers, for which

(6)
$$\sum_{j,k} s_{jk} \neq \sum_{j,k} t_{jk},$$

are orthogonal, that is,

(7)
$$(P, Q) = \int_D P(z)\bar{Q}(z)dW = 0$$

(dW is Euclidean volume element on D) (6). Also if $f \in \text{class } L^2$ on D, which means that f is single-valued and analytic on D and has finite norm $||f|| = [(f,f)]^{\frac{1}{2}}$ (2), then the set $\{P\}$ is complete with respect to functions of class L^2 (6).

Here we refine conditions (6) to show that $(P, Q) \neq 0$ implies

(8)
$$\sum_{k} s_{\nu k} = \sum_{k} t_{\nu k}, \qquad \sum_{j} s_{j \mu} = \sum_{j} t_{j \mu} \quad (\nu = 1, \ldots, n; \mu = 1, \ldots, m).$$

By means of (8) the set of powers $\{P\}$ is subdivided into disjoint subsets whose members need not be orthogonal to each other. The elements of a subset are made into an orthonormal set by the Gram Schmidt formulas, thus giving a CONS of homogeneous polynomials $\{\phi\}$ on D. We note that Hua has constructed a CONS of functions of class L^2 on D using representation theory (6).

In § 4 applications of the CONS $\{\phi_r\}$ are given. First an Abelian theorem is obtained and then a Tauberian theorem for the orthogonal series $\sum a_r \phi_r$ as z approaches [I, 0] of B along the matrix [r, 0] where r is the diagonal matrix $[r_1, \ldots, r_n]$, $0 \leq r_j < 1$. Next a Cauchy's inequality is obtained for the Fourier coefficients a_r . Finally two mean value theorems, which generalize analogous theorems for the unit circle, are proved.

§2. Poisson summability.

1. Reduction of integral (1.3) to normal form. Rauch outlined this reduction to me. The transformation

(1)
$$w = z u_0^{-1}, \quad u_0 u_0^* = I,$$

takes $z = u_0$ into w = I and also leaves D and B invariant since under it $I - ww^* = I - zz^*$. Also if $u \to v$ under (1) $P(z, u) \to P(w, v)$ and

$$dV_u = \frac{\dot{u}}{\det^n u} = \frac{\partial(v)}{\partial(u)} \frac{\dot{v}}{\det^n v \det^n u_0},$$

where

$$\dot{u} = (-1)^{-\frac{1}{4}n(n+1)} \prod_{j,k} du_{jk}$$

(14). Now $du = dv u_0$, the Jacobian of which is $\partial(u)/\partial(v) = \det^n u_0$ (3). Thus $dV_u \to dV_v$. Also $f(u) \to f(vu_0) = f_0(v)$ so that $I(f, z) \to I(f_0, w)$.

If $w \to I$ along the set of points ρI ($0 \leq \rho < 1$), then

$$\det(I - ww^*) = (1 - \rho^2)^n$$

and

$$Q = (I - wv^*)(I - vw^*) = I - wv^* - vw^* + ww^*$$

= $I(1 + \rho^2) - \rho(v + v^*).$

Now v is unitary equivalent to a diagonal matrix v_D which is also unitary (10, Theorem 41.41), that is,

(2)

$$v = U^* v_D U.$$

Thus if $v_D = [d_1, \ldots, d_n]$, then $d_j \bar{d}_j = 1$ and we can write $d_j = e^{i\theta_j} (0 \le \theta_j < 2\pi)$. Hence

$$Q = U^*[I(1 + \rho^2) - \rho(v_D^* + v_D)]U$$

and

det
$$Q = \det[I(1 + \rho^2) - \rho(v_D^* + v_D)] = \prod_{j=1}^n (1 - 2\rho \cos \theta_j + \rho^2).$$

Let

(3)
$$p(\rho, \theta_j) = \frac{1-\rho^2}{1-2\rho\cos\theta_j+\rho^2},$$

which is 2π times the Poisson kernel for the unit circle. Then

(4)
$$P(\rho I, v) = V^{-1} \prod_{j=1}^{n} p^{n}(\rho, \theta_{j})$$

and

(5)
$$I(f_0, \rho I) = V^{-1} \int_B \prod_j p^n(\rho, \theta_j) f_0(v) dV_v.$$

According to Weyl (19, p. 197) if (2) holds, then

(6)
$$dV_v = [dV_U]\Delta\bar{\Delta}d\theta_1\dots d\theta_n,$$

where

(7)
$$\Delta \overline{\Delta} = \prod_{j \le k} |e^{i\theta_j} - e^{i\theta_k}|^2 = 4 \prod_{j \le k} \sin^2 \frac{1}{2} (\theta_j - \theta_k)$$

and $dV_0 = [dV_U]$ is a constant times the Euclidean volume element on the other $n^2 - n$ parameters defining *B*. Let B_0 be this part of *B*. Now $P(\rho I, v)$, considered as a function of *v*, is independent of the other $n^2 - n$ parameters and hence

(8)
$$I(f_0, \rho I) = \int_0^{2\pi} \dots \int_0^{2\pi} P(\rho I, v) F(\theta) \Delta \overline{\Delta} d\theta_1 \dots d\theta_n$$

where

(9)
$$F(\theta) = F(\theta_1, \ldots, \theta_n) = \int_{B_0} f_0(v) dV_0.$$

2. Convergence theorem for (8). It is sufficient to consider (8) for n = 2, in which case replacing θ_1 by s and θ_2 by t

(10)
$$I(f_0, \rho I) = 4 V^{-1} \int_0^{2\pi} \int_0^{2\pi} \int_0^{2\pi} p^2(\rho, s) p^2(\rho, t) \sin^2 \frac{1}{2} (s - t) F(s, t) ds dt$$

and we consider $\lim_{\rho \to 1} I(f_0, \rho I)$. Subtracting S from each side we reduce (10) by well-known methods in Fourier series (20) to a consideration of

(11)
$$I = 4V^{-1} \int_0^{\pi} \int_0^{\pi} p^2(\rho, s) p^2(\rho, t) \sin^2 \frac{1}{2} (s - t) G(s, t) ds dt$$

and

(11a)
$$I_1 = 4V^{-1} \int_0^{\pi} \int_0^{\pi} p^2(\rho, s) p^2(\rho, t) \sin^2 \frac{1}{2} (s+t) G(2\pi - s, t) ds dt,$$

where

(12)
$$G(s, t) = F(s, t) + F(2\pi - s, 2\pi - t) - 2V_0S,$$

 V_0 being the volume of B_0 . We show that under certain hypotheses on G(s, t), $I \rightarrow 0$ as $\rho \rightarrow 1$ and the proof is similar for I_1 . In (11) integrate by parts with respect to s and t. Since

$$H(s, t) = \iint G(s, t) ds dt$$

is zero for s = 0 or t = 0, $\sin^2 \frac{1}{2}(s - t) = 0$ for $s = t = \pi$, $\sin^2 \frac{1}{2}(\pi - \theta) = \cos^2 \frac{1}{2}\theta$ and $p(\rho, \pi) = (1 - \rho)/(1 + \rho)$, we get

(13)
$$I = -\left(\frac{1-\rho}{1+\rho}\right)^2 \int_0^{\pi} \frac{\partial}{\partial t} \left[p^2(\rho, t)\cos^2\frac{1}{2}t\right] H(\pi, t) dt$$
$$-\left(\frac{1-\rho}{1+\rho}\right)^2 \int_0^{\pi} \frac{\partial}{\partial s} \left[p^2(\rho, s)\cos^2\frac{1}{2}s\right] H(s, \pi) ds$$
$$+ \int_0^{\pi} \int_0^{\pi} \frac{\partial^2}{\partial s \partial t} \left[p^2(\rho, s)p^2(\rho, t)\sin^2\frac{1}{2}(s-t)\right] H(s, t) ds dt$$
$$\equiv I_1 + I_2 + I_3.$$

https://doi.org/10.4153/CJM-1961-006-9 Published online by Cambridge University Press

66

The following inequalities are used in considering I_1 , I_2 , and I_3 (20):

(14) (i)
$$0 \le p(\rho, \theta) \le \frac{1+\rho}{1-\rho}$$

(ii)
$$0 \leq p(\rho, \theta) \leq \frac{1-\rho^2}{4\sin^2\frac{1}{2}\theta}$$

(iii)
$$\lim_{\theta \to 0} \frac{\theta}{\sin \theta} = 1$$

(iv)
$$\int_{0}^{\pi} p(\rho, \theta) d\theta = \pi$$

(v)
$$\int_{\delta}^{\pi} p(\rho, \theta) d\theta = o(1) \text{ as } \rho \to 1 \text{ for } 0 < \delta \leqslant \pi$$

Also

$$\frac{\partial}{\partial \theta} p(\rho, \theta) = 2\rho(1-\rho^2) \sin \theta d^{-2}(\rho, \theta)$$

where

$$d(\rho,\theta) = 1 - 2\rho\cos\theta + \rho^2 = \frac{1-\rho^2}{p(\rho,\theta)}$$

and

$$\begin{aligned} \frac{\partial^2}{\partial s \partial t} \left[p^2(\rho, s) p^2(\rho, t) \sin^2 \frac{1}{2} (s - t) \right] &= p(\rho, s) p(\rho, t) \ . \\ \left[16\rho^2 (1 - \rho^2)^2 \sin s \sin t \sin^2 \frac{1}{2} (s - t) d^{-2}(\rho, s) d^{-2}(\rho, t) - \frac{1}{2} p(\rho, s) p(\rho, t) \right] \\ \cdot \cos(s - t) - 2\rho (1 - \rho^2) \sin s \sin(s - t) p(\rho, t) d^{-2}(\rho, s) \\ &+ 2\rho (1 - \rho^2) \sin t \sin(s - t) p(\rho, s) d^{-2}(\rho, t) \right]. \end{aligned}$$

Concerning the function G(s, t) we assume that

(15)
$$\lim_{h,k\to 0} \frac{1}{hk} \int_0^h \int_0^k |G(s,t)| ds dt = 0$$
$$\int_0^h \int_0^k |G(s,t)| |ds dt| \leq C |hk|, \qquad (0 < |h|, |k| \leq \pi),$$

C an absolute constant. (See (11) where these conditions were used in a similar connection.) Then using (15) we find

$$|I_1| \leq \pi (1 - \rho^2) C \int_0^{\pi} |2p(\rho, t) \cos^2 \frac{1}{2} t \partial p(\rho, t) / \partial t - p^2(\rho, t) \sin \frac{1}{2} t \cos \frac{1}{2} t |tdt$$

= $0((1 - \rho) \int_0^{\pi} p(\rho, t) dt) = 0(1 - \rho)$

and similarly for I_2 . Now

$$I_{3} = \int_{0}^{\delta} \int_{0}^{\delta} + \left\{ \int_{0}^{\delta} \int_{\delta}^{\pi} + \int_{\delta}^{\pi} \int_{0}^{\delta} + \int_{\delta}^{\pi} \int_{\delta}^{\pi} \right\} \equiv I_{31} + I_{32}.$$

By (15) it is found that

$$|I_{31}| \leqslant \epsilon \int_0^{\pi} \int_0^{\pi} p(\rho, s) p(\rho, t) ds dt,$$

where ϵ is an arbitrary positive number, and

$$I_{32} = 0 \left(\frac{1-\rho}{\sin^2 \frac{1}{2} \delta} \right).$$

Consequently given $\epsilon > 0$ choose $\delta > 0$ so that

$$\left|\int_0^s\int_0^t G(s,t)dsdt\right|<\epsilon|st|,$$

if $|s| < \delta$ and $|t| < \delta$. With fixed δ choose $1 - \rho$ sufficiently small. Then $I = 0(\epsilon)$ for ρ sufficiently close to 1. Consequently we have proved

THEOREM 2.1. Let F(s, t) be an integrable function. If $G(s, t) = F(s, t) + F(2\pi - s, 2\pi - t) - 2V_0S$ satisfies conditions (15), then

$$\lim_{\rho \to 1^{-}} 4V^{-1} \int_{0}^{2\pi} \int_{0}^{2\pi} p^{2}(\rho, s) p^{2}(\rho, t) \sin^{2} \frac{1}{2}(s-t) F(s, t) ds dt = S.$$

For n > 2 it would be sufficient to assume that

(16)
$$\lim_{\theta_{j\to 0}} \frac{1}{\theta_1 \dots \theta_n} \int_0^{\theta_n} \dots \int_0^{\theta_n} |G(\theta)| d\theta_1 \dots d\theta_n = 0,$$
$$\int_0^{\theta_1} \dots \int_0^{\theta_n} |G(\theta)| |d\theta_1 \dots d\theta_n| \leqslant C |\theta_1 \dots \theta_n|, \ (0 < |\theta_j| \leqslant \pi, j = 1, \dots, n),$$

where $G(\theta)$ is defined similarly to G(s, t). We obtain

THEOREM 2.2. Let f be an integrable function on the unitary group B such that the function $F(\theta)$ defined by (9), where f_0 is the transform of f under (1), satisfies (16). Then the Poisson integral (1.3) has a limit if z approaches the point u_0 on B radially.

§3. Complete orthonormal systems on D. Orthogonal developments.

1. Integration over D. Let z be an n by m matrix $(n \leq m), z_p$ its pth row and Z_p the submatrix consisting of the first p rows (p = 1, ..., n). The inner product (f, g) defined by (1.7) may be transformed into an iterated integral over the product of n hyperspheres by a procedure due to Hua (12), giving

(1)
$$(f,g) = \left(\frac{1}{2i}\right)^{mn} \int_{w_1w_1^*<1} (1-w_1w_1^*)^{n-1} \dot{w}_1 \dots \int_{w_nw_n^*<1} f\bar{g} \, \dot{w}_n,$$

where

(2)

$$\dot{w}_p = \prod_{k=1}^m dw_{pk} d\bar{w}_{pk}$$

 $w_p = z_p \Gamma_{p-1}$
 $z_p = w_p \Gamma_{p-1}^{-1}$ $(p = 1, ..., n, \Gamma_0 = 1),$

68

and Γ_{p-1} is a unique positive definite matrix such that

(3)
$$\Gamma_{p-1}\Gamma_{p-1}^* = (I - Z_{p-1}^* Z_{p-1})^{-1}.$$

2. Construction of the matrix $\Gamma_{p-1}^{-1}(2 \le p \le n)$. Let $U_p(q) = U(q)$ be the minor formed from the first q rows and columns of

(4)
$$U_p = U = (u_{jk}) = I - Z_{p-1}^* Z_{p-1},$$

 $\mathscr{U}_{p}(q) = \mathscr{U}(q)$ the corresponding submatrix and $u_{m-j} = (u_{m-j,1}, \ldots, u_{m-j,m-j-1})$. Since $I - Z_{p-1}Z^*_{p-1}$ is the leading (p-1)th principal submatrix of $I - zz^*$, it is positive definite, hence U is positive definite and U(q) are positive. Thus the hermitian matrix U may be reduced to diagonal form by the well-known Kronecker reduction (1) whose (j + 1)th step is

$$V_{j+1} \dots V_1 U V_1^* \dots V_{j+1}^* = \begin{pmatrix} \mathscr{U}(m-j-1) & 0 \\ & X_{m,m-j} \\ 0 & \ddots \\ & & X_{mm} \end{pmatrix}.$$

 $(0 \leq j \leq m-2)$, where

$$V_{j+1} = \begin{pmatrix} I^{(m-j-1)} & 0\\ -u_{m-j} \mathcal{U}^{-1}(m-j-1) & I^{(j+1)} \\ 0 \end{pmatrix},$$

$$X_{m,m-j} = U(m-j) U^{-1}(m-j-1),$$

$$X_{m1} = U(1).$$

Also

$$u_{m-j}\mathscr{U}^{-1}(m-j-1) = U^{-1}(m-j-1) \cdot \left((-1)^{k+m-j+1} U \begin{pmatrix} 1, \dots, [k], \dots, m-j \\ 1, \dots, m-j-1 \end{pmatrix} \right), (1 \le k \le m-j-1),$$

where

$$U\begin{pmatrix}1,\ldots,[k],\ldots,m-j\\1,\ldots,m-j-1\end{pmatrix}$$

is the minor of U formed from rows $1, \ldots, m-j$ with row k omitted and columns $1, \ldots, m-j-1$.

Now V_{j+1}^{-1} equals V_{j+1} with the sign of the matrix $-u_{m-j}\mathcal{U}^{-1}(m-j-1)$ changed. Also X_{mk} is real. Hence we can take

(5)
$$\Gamma_{p-1}^{*-1} = V_1^{-1} \dots V_{m-1}^{-1} [X_{m1}^{\frac{1}{2}}, \dots, X_{mm}^{\frac{1}{2}}].$$

By an inductive proof we may show that

(6)
$$V_1^{-1} \dots V_{m-1}^{-1} = \left(\frac{U\binom{j}{1}}{U(1)} \frac{U\binom{1, j}{1, 2}}{U(2)} \dots \frac{U\binom{1, 2, \dots, [j-1], j}{1, 2, \dots, j-1}}{U(j-1)} 1 0 \dots 0 \right),$$

(1 $\leq j \leq m$). (For details of the proof cf. (15).) From (4) it follows that (7) $U\begin{pmatrix} 1, \dots, [i], r \\ 1, \dots, i \end{pmatrix} = U_p \begin{pmatrix} 1, \dots, [i], r \\ 1, \dots, i \end{pmatrix}$ $= \det \left(\delta_{jk} - \sum_{l=1}^{p-1} \bar{z}_{lj} z_{lk} \right),$ $(j = 1, \dots, i-1, r; k = 1, \dots, i; i+1 \leq r \leq m, 1 \leq i \leq m-1).$

3. Formula for $z_{p\tau}$. From (2), (5), and (6) follows

(8)
$$z_{pr} = \sum_{i=1}^{r-1} c_{pi} \bar{U}_{p} \begin{pmatrix} 1, \dots, [i], r \\ 1, \dots, i \end{pmatrix} w_{pi} + c_{prr} w_{pr} (p \ge 2)$$
$$z_{1r} = w_{1r} \Big(1 \leqslant r \leqslant m; \sum_{i=1}^{0} = 0 \Big),$$

where

(9)

$$c_{pi} = [U_p(i) U_p(i-1)]^{-\frac{1}{2}} (1 \le i \le r-1)$$

$$c_{prr} = [U_p(r)/U_p(r-1)]^{\frac{1}{2}}$$

$$c_{1i} = c_{1rr} = 1.$$

The formula

(10)
$$U_p(q) = \prod_{k=1}^{p-1} \left(1 - \sum_{j=1}^{q} w_{kj} \bar{w}_{kj} \right) \qquad (p \ge 2)$$

holds.

We prove (10) by induction on p. Since by (8)

$$U_2(q) = \det(I - z_1^* z_1) = \det(I - z_1 z_1^*) = 1 - \sum_{j=1}^q w_{1j} \bar{w}_{1j},$$

where $z_1 = (z_{11}, \ldots, z_{1q})$, (10) is true for p = 2. Assume (10) holds for $U_p(q)$ and prove for $U_{p+1}(q)$. Since $U_p(q) \neq 0$, there exists a unimodular matrix A such that the matrix $\mathscr{V}_{p+1}(q) = (\delta_{jk} - \sum_{l=1}^{q} z_{jl} \bar{z}_{kl})$ $(1 \leq j, k \leq p)$ is equal to

$$A[\mathscr{V}_p(q), 1 - z_p \mathscr{U}_p^{-1}(q) z_p^*]A^*$$

(12), and thus

$$U_{p+1}(q) = \det \mathscr{V}_{p+1}(q) = \det \mathscr{V}_{p}(q) (1 - z_{p} \mathscr{U}_{p}^{1}(q) z_{p}^{*}).$$

Since det $\mathscr{V}_p(q) = U_p(q)$, using (10) we need only consider the last factor on the right, which equals

$$E = 1 - \sum_{j,k=1}^{q} z_{pj} U_{kj} \bar{z}_{pk} / U_{p}(q),$$

where U_{kj} is the cofactor of the element u_{kj} in the matrix $\mathscr{U}_{p}(q)$. Substitute (8) for z_{pj} and \bar{z}_{pk} . The term w_{pr} occurs when j = r or when i = r and j = r + 1, ..., q and $\bar{w}_{p\lambda}$ occurs when $k = \lambda$ or $i = \lambda$ and $k = \lambda + 1, \ldots, q$. Thus the coefficient, $C_{r\lambda}$, of $w_{pr}\bar{w}_{p\lambda}(1 \leq r, \lambda \leq q)$ is

$$C_{\tau\lambda} = U_p^{-1}(q) \bigg[c_{p\tau} \sum_{j=\tau+1}^q \bar{U}_p \bigg(\begin{matrix} 1, \ldots, [r], j \\ 1, \ldots, r \end{matrix} \bigg) D_{j\lambda} + c_{p\tau\tau} D_{\tau\lambda} \bigg],$$

where

$$D_{j\lambda} = c_{p\lambda} \sum_{k=\lambda+1}^{q} U_{kj} U_p \begin{pmatrix} 1, \ldots, [\lambda], k \\ 1, \ldots, \lambda \end{pmatrix} + U_{\lambda j} c_{p\lambda \lambda}.$$

By means of elementary properties of determinants it is not difficult to prove in case $\lambda \leq r$ that $D_{j\lambda} = 0$ for $j = r, \lambda < r$ and $j = r + 1, \ldots, q, \lambda \leq r$. Hence $C_{r\lambda} = 0$ for $\lambda \neq r$. Also $C_{rr} = 1$. A similar proof holds for $r < \lambda$. Thus

$$E = 1 - \sum_{j=1}^{q} w_{pj} \bar{w}_{pj}$$

and $U_{p+1}(q)$ has the desired form, which proves (10).

4. Structure of the CONS on D.

THEOREM 3.1. $(P, Q) \neq 0$ implies equations (1.8).

Proof. We first show that

(11)
$$z_{p\tau} = w_{p\tau} \sum B_i w_{pi} \bar{w}_{p\tau} \prod (w_{\lambda_1 \alpha_1} \bar{w}_{\lambda_1 \beta_1} \dots w_{\lambda_l \alpha_l} \bar{w}_{\lambda_l \beta_l} w_{\lambda_i \tau} \bar{w}_{\lambda_i \beta_i}),$$

where B_i is a function of $w_{jk}\bar{w}_{jk}$ $(1 \le j \le p-1)$; $\lambda_1, \ldots, \lambda_i, \lambda_i$ take on values in the set $1, 2, \ldots, p-1$; $\alpha_1, \ldots, \alpha_l$ is a subset of $1, \ldots, i-1$ and $(\beta_1, \ldots, \beta_l, \beta_i)$ is a permutation of $(\alpha_1, \ldots, \alpha_l, i)$ $(i = 1, \ldots, r-1)$. (Notice that each term of (11) can be grouped into pairs $w_{\alpha\beta}\bar{w}_{\gamma\delta}$ in two ways: (i) each pair belongs to the same row, (ii) each pair belongs to the same column.) Since $z_{1r} = w_{1r}$, (11) holds for p = 1. Now assume (11) for p - 1, $1 \le r \le m$, and prove for p. Upon expanding

$$\bar{U}_p \begin{pmatrix} 1, \ldots, [i], r \\ 1, \ldots, i \end{pmatrix}$$

(given by (7)) and multiplying out the resulting factors, we find that its general term is

$$z_{\lambda_1\alpha_1}\bar{z}_{\lambda_1\beta_1}\ldots z_{\lambda_s\alpha_s}\bar{z}_{\lambda_s\beta_{\alpha_s}}z_{\lambda_{s+1}r}\bar{z}_{\lambda_{s+1}\beta_i},$$

where $\lambda_{\alpha}(\alpha = 1, \ldots, s + 1)$ takes on values from 1, 2, ..., $p - 1; \alpha_1, \ldots, \alpha_s$ is a subset of $1, \ldots, i - 1$ and

$$\beta_{\alpha_1},\ldots,\beta_{\alpha_s},\beta_i'$$

is a permutation of $\alpha_1, \ldots, \alpha_s$, *i*. Thus the general term of z_{pr} would be w_{pr} times

$$\mathcal{Z}'_{p\,i} \mathcal{Z}_{\lambda_1 \alpha_1} \overline{\mathcal{Z}}_{\lambda_1 \beta \alpha_1} \ldots \mathcal{Z}_{\lambda_s \alpha_s} \overline{\mathcal{Z}}_{\lambda_s \beta \alpha_s} \mathcal{Z}_{\lambda_s + 1\,\tau} \overline{\mathcal{Z}}_{\lambda_s + 1\,\beta_i} \mathcal{W}_{p\,i} \overline{\mathcal{W}}_{p\,\tau},$$

 $c_{pi}' = c_{pi}/w_{pr}\bar{w}_{pr}$. Replace

$$z_{\lambda_1\alpha_1\lambda}\bar{z}_{\lambda_1\beta\alpha_1}\ldots$$
 by $w_{\lambda_1\alpha_1}\bar{w}_{\lambda_1\beta\alpha_1}\ldots$

times a factor which by induction already has the required form and (11) follows.

Now consider $z_{pr}^{s_{pr}}$. From (11) we see that except for the first factor $w_{pr}^{s_{pr}}$ if $w_{\nu j}^{\sigma}$ occurs, then a factor $\bar{w}_{\nu k}^{\sigma}$ also occurs and if $w_{i\mu}^{\tau}$ appears, then $\bar{w}_{i\mu}^{\tau}$ also appears. Consequently in the expression for $z_{pr}^{s_{pr}}$ for each $\nu(\nu = 1, \ldots, p - 1)$ the sum of the exponents of the factors $w_{\nu j}(j = 1, \ldots, m)$ equals the sum of the exponents of the sum of the sum of the exponents of \bar{w}_{pi} increased by s_{pr} . Similarly for the columns. Thus P can be expressed in the form

(12)
$$P(z) = P_0(w\bar{w}) \prod w_{jk}^{s_{jk}} = P_0(w\bar{w})P(w),$$

where $P_0(w\bar{w})$ contributes the same exponents to the sum of the elements in the *v*th row of *w* and of \bar{w} and similarly for the columns of *w* and \bar{w} . An analogous expression holds for *Q*.

In (P, Q) replace P and Q by (12). Since $\{w_{\nu_k}^{s_{\nu_k}}\}$ $(k = 1, \ldots, m)$ forms an orthogonal set on $w_{\nu}w^*_{\nu} < 1$ (2), $(P, Q) \neq 0$ if and only if for each k the exponent of w_{ν_k} equals the exponent of \bar{w}_{ν_k} . Consequently if we sum the exponents of the ν th row, owing to the form of $P_0(w\bar{w})$, $Q_0(w\bar{w})$ we obtain the first of equations (1.8) and summing the exponents of the μ th column the second of equations (1.8). Thus the theorem is proved.

5. CONS. Orthogonal development. A CONS is constructed from the set of powers $\{P(z)\}$ as follows. Let $\alpha = (\alpha_1, \ldots, \alpha_{m+n})$ be a set of non-negative integers with $\sum_{j=1}^{n} \alpha_j = \sum_{k=1}^{m} \alpha_{k+n} = p$. The powers of the set $S(\alpha) = S(\alpha_1, \ldots, \alpha_{m+n})$ such that

$$\sum_{k} s_{\nu k} = \alpha_{\nu}, \qquad \sum_{j} s_{j \mu} = \alpha_{\mu + n}$$

need not be orthogonal to each other. (There exist sets $S(\alpha)$ whose members are not all orthogonal to each other—for example, in the 2 by 2 case the elements $z_{11}z_{22}$, $z_{12}z_{21}$ are not orthogonal **(12)**.) However if $P \in S(\alpha)$, $Q \in S(\beta)$, where $\alpha_j \neq \beta_j$ for some *j*, then by Theorem 3.1 (P, Q) = 0. We order the elements of the set $S(\alpha)$ in some convenient manner into a sequence $P_0, P_1, \ldots, P_{p(\alpha)}$. An ONS is constructed from these elements by the Gram-Schmidt formulas

(13)
$$\phi_{\nu}^{(p)}(z) = \det \begin{pmatrix} P_0 \dots P_{\nu} \\ a_{00} \dots a_{\nu 0} \\ \dots \\ a_{0, \nu-1} \dots a_{\nu, \nu-1} \end{pmatrix} / (D_{\nu-1} D_{\nu})^{\frac{1}{2}},$$

where

$$D_{\mu} = \det(a_{\alpha\beta}) \ (0 \leqslant \alpha, \beta \leqslant \mu; \mu = \nu - 1 \text{ or } \nu, \nu \neq 0), D_{-1} = 1.$$

$$a_{ij} = (P_i, P_j), \ (0 \leqslant i, j \leqslant \nu).$$

Now order the system $\{\phi_{\nu}^{(p)}\}\$ into a sequence ϕ_1, ϕ_2, \ldots . The orthogonal development of any $f \in L^2$ with respect to the ONS is

(14)
$$\sum a_q \phi_q,$$

where a_q are the Fourier coefficients, (f, ϕ_q) , of f. From Bergman's theory (2) it is known that (14) converges absolutely and continuously to f on D (continuous convergence means that the series converges uniformly on any compact set contained in D).

§4. Applications of the CONS.

1. Abelian and Tauberian theorems. Let $\{a_q\}$ be an arbitrary sequence of numbers and consider the behaviour of (3.14) as $z \in D$ approaches a point $u_0 \in B$. In particular let $u_0 = [I, 0], I = I^{(n)}$, and $z \to u_0$ along the set of points [r, 0] where r is the diagonal matrix $[r_1, \ldots, r_n], 0 \leq r_j < 1$. When z = [r, 0] it is seen that P_r of the set $S(\alpha)$ is either equal to 0 or to

 $\prod r_j^{p_j}$

in case $\alpha_j = \alpha_{j+n} = p_j$ for j = 1, ..., n and $\alpha_{j+n} = 0$ for j > n. Consequently for a fixed set α either all P_r are zero or there is one P_r different from zero in case $\alpha_j = \alpha_{j+n}$ for j = 1, ..., n and $\alpha_{j+n} = 0$ for j > n. Order the elements of the set $S(\alpha)$ so that the non-zero term is the last term of the set. Then in (3.13) only $\phi_t^{(p)}(z), t = p(\alpha)$, is different from zero when z = [r, 0] and

$$\phi_{\iota}^{(p)}(z) = \left[D_{\iota-1}/D_{\iota}\right]^{\frac{1}{2}} P_{\iota}(z) = \left[D_{\iota-1}/D_{\iota}\right]^{\frac{1}{2}} r_{1}^{p_{1}} \dots r_{n}^{p_{n}}.$$

Thus (3.14) reduces to a multiple power series. Let this series be summed by the usual method for power series. Then

(1)
$$S(r) = \sum_{p_1=0}^{\infty} \dots \sum_{p_n=0}^{\infty} c_{p_1\dots p_n} r_1^{p_1} \dots r_n^{p_n},$$
$$c_{p_1\dots p_n} = a_q / (D_{t-1}/D_t)^{\frac{1}{2}},$$

where $\phi_t^{(p)} = \phi_q$ is the ordering of the ONS $\{\phi_t^{(p)}\}$ into a simple sequence. Let

$$S_{q_1...q_n}$$

be the partial sum of S(r):

$$S_{q_1...q_n} = \sum_{p_1=0}^{q_1} \ldots \sum_{p_n=0}^{q_n} c_{p_1...p_n} r_1^{p_1} \ldots r_n^{p_n}.$$

The following Abelian theorem is valid:

THEOREM 4.1. If S(I) exists and

$$|S_{q_1}\ldots q_n| < C,$$

where C is an absolute constant, then S(r) is uniformly convergent for $0 \le r_j < 1$ and $\lim_{r \to I} S(r) = S(I)$. $(r \to I \text{ means } [r, 0] \to [I, 0]$.) See (4) for a proof.

Also a Tauberian theorem proved by Knopp (7) for double series may be extended to multiple series.

THEOREM 4.2 (Tauberian theorem). Let the series S(r) converge for each $[r, 0] \in D$, $r = [r_1, \ldots, r_n]$, and for these r let $|S(r)| \leq K$, where K is an absolute constant. If

(2)
$$|c_{p_1...p_n}|(p_1^2+\ldots+p_n^2)^{\frac{1}{2}n} < M < \infty$$
,

then $\lim_{r\to I} S(r) = S$ implies S(I) = S, that is,

(3)
$$\sum_{p_1=0}^{\infty} \dots \sum_{p_n=0}^{\infty} c_{p_1\dots p_n} = S.$$

In order to prove Theorem 4.2, Theorems 3 of § 3 and the proofs in § 4 of Knopp's paper must be proved for *n*-fold series $(n \ge 3)$. Using condition (2) Theorem 3 has been extended to multiple series in **(18)**. Also by means of (2) the proofs in § 4 follow for multiple series. In addition see **(13)** where a similar condition is utilized for multiple series summed spherically.

On the other hand if we let $z \rightarrow [I, 0]$ along the set $[\rho I, 0], 0 \le \rho < 1$, and sum series (3.14) by diagonals:

(4)
$$S_0(\rho) = \sum_{p=0}^{\infty} b_p \rho^p,$$

where

(4a)
$$b_p = \sum_{p_1 + \ldots + p_n = p} c_{p_1 \ldots p_n},$$

then (4) is a simple series and the boundedness conditions on $S_{q_1} \ldots q_n$ and S(r) can be omitted in Theorems 4.1 and 4.2 (17). Abel's theorem reads if $S_0(I)$ exists, then $S_0(\rho I)$ is uniformly convergent for $0 \le \rho < 1$ and $\lim_{\rho \to 1} S_0(\rho I) = S_0(I)$ and Theorem 4.2 becomes

Let the series $S_0(\rho I)$ converge for each $[\rho I, 0] \in D$, $(0 \leq \rho < 1)$. If $b_p = 0(1/p)$, then $\lim_{\rho \to 1} S_0(\rho I) = S_0$ implies $S_0(I) = S_0$.

2. Cauchy's inequality and mean value theorem. In the next paragraphs it is convenient to group the elements of the CONS $\{\phi_{\nu}\}$ of same degree, hence, let

$$\phi_1^{(p)},\ldots,\phi_{M_p}^{(p)}$$

be the terms of degree p. Then for any $f \in L^2$ on D

(5)
$$f(z) = \sum_{p=0}^{\infty} \sum_{j=1}^{M_p} a_j^{(p)} \phi_j^{(p)}(z),$$

where the convergence is continuous and absolute for $z \in D$. Multiply (5) by \overline{f} and integrate over the domain

(6)
$$D_{\rho} = [z|\rho^{2}I - zz^{*} > 0, 0 < \rho < 1].$$

Clearly $D_{\rho} \neq D$ for $0 < \rho < 1$. Since the convergence of (5) is uniform and absolute on \bar{D}_{ρ}

(7)
$$I(\rho) = V_{\rho}^{-1} \int_{Dp} |f|^2 dW_z = V_{\rho}^{-1} \sum_{p=0}^{\infty} \sum_{j=1}^{M_p} \sum_{q=0}^{\infty} \sum_{k=1}^{M_q} a_j^{(p)} \bar{a}_k^{(q)} \int_{Dp} \phi_j^{(p)} \bar{\phi}_k^{(q)} dW_z$$

 $(V_{\rho}$ being the volume of D). In the integral

$$I = \int_{Dp} \phi_j^{(p)} \bar{\phi}_k^{(q)} dW_z$$

set $z = \rho w$. Then $D_{\rho} \rightarrow D$, $dW_z \rightarrow \rho^{2mn} dW_w$ (cf. § 3.1) and

$$\phi_j^{(p)}(z) = \sum \Sigma_{\alpha_{jk}=p} \text{ constant } \prod z_{jk}^{\alpha_{jk}} \to \rho^p \phi_j^{(p)}(w).$$

Hence

$$I = \rho^{2mn+p+q}(\phi_{j}^{(p)}, \phi_{k}^{(q)}) = \rho^{2mn+p+q}\delta_{pq}\delta_{jk}$$

Also $V_{\rho} = \rho^{2mn} V_0$ where V_0 is the volume of *D*. Thus (7) becomes

(8)
$$I(\rho) = \frac{1}{V_{\rho}} \int_{Dp} |f|^2 dW = \frac{1}{V_0} \sum_{p=0}^{\infty} \rho^{2p} \sum_{j=0}^{M_p} |a_j^{(p)}|^2.$$

From (8)

$$\frac{1}{V_0} \sum_{j=0}^{M_p} |a_j^{(p)}|^2 \leq (1/\rho^{2p}) \max_{z \in D_p} |f(z)|^2.$$

Now according to a theorem proved by Hua (6) if f is analytic on the closed circular domain \bar{D}_{ρ} , then f attains its maximum modulus on the circular manifold

(9)
$$B_{\rho} = [z|zz^* = \rho^2 I].$$

Hence we get the Cauchy inequality:

(10)
$$\frac{1}{V}\sum_{j=0}^{M_p} |a_j^{(p)}|^2 \leqslant (1/\rho^{2p}) \max_{z \in Bp} |f(z)|^2.$$

THEOREM 4.3 (mean value theorem). $I(\rho)$ defined by (7) is a monotone increasing function of $\rho(0 < \rho < 1)$ and log $I(\rho)$ is a convex function of log ρ .

Proof. The monotonicity of $I(\rho)$ is obvious from (8). The proof of convexity is the same as the proof in **(17**, p. 174**)** for the one variable case.

3. A mean value theorem over B_{ρ} .

THEOREM 4.4. In the case n = m the integral

(11)
$$I_1(\rho) = \int_{Bp} |f|^2 dV$$

is a monotone increasing function of ρ and $\log I_1(\rho)$ is a convex function of $\log \rho$.

Proof. Hua (6) has shown how to construct a set $\{\psi_{\nu}\}$ orthonormalized with respect to the inner product

$$(\psi_{\nu}, \psi_{\mu})_B = \int_B \psi_{\nu} \bar{\psi}_{\mu} dV$$

from the CONS $\{\phi_r\}$ as follows. Since *B* is a circular space $(\phi_j^{(p)}, \phi_k^{(q)})_B = 0$ if $p \neq q$. Define the vector

$$z_p = (\phi_1^{(p)}, \ldots, \phi_{M_p}^{(p)}).$$

Then

$$(z'_p, z_p)_B = ((\phi_j^{(p)}, \phi_k^{(p)})_B) = K_p$$

is a matrix of constants. Since $z_p'\bar{z}_p > 0$ if

$$z_p z_p^* = |\phi_1^{(p)}|^2 + \ldots + |\phi_{M_p}^{(p)}|^2$$

is positive, $K_p > 0$ and there exists a unitary matrix U such that $U^*K_pU = \Lambda$, where Λ is a diagonal matrix with positive elements on the diagonal. Now $\{y_p\}$, defined by

$$y_p = z_p \overline{U} = (\theta_1^{(p)}, \ldots, \theta_{M_p}^{(p)}),$$

is a CONS on D if $\{z_p\}$ is, since

$$((z_p \bar{U})', z_p U) = U^*(z'_p, z_p)U = U^*((\phi_j^{(p)}, \phi_k^{(p)}))U = U^*IU = I.$$

Let

$$\psi_{j}^{(p)} = \theta_{j}^{(p)} / ||\theta_{j}^{(p)}||_{B}.$$

Then $\{\psi_j^{(p)}\}\$ is an ONS with respect to integration over *B* and the orthogonal development (5) of $f \in L^2$ can be written as

(12)
$$f(z) = \sum_{p=0}^{\infty} \sum_{j=1}^{M_p} b_j^{(p)} \psi_j^{(p)},$$

where

$$b_{j}^{(p)} = (f, \psi_{j}^{(p)}) / ||\psi_{j}^{(p)}||^{2}$$

Multiply (12) by \overline{f} and integrate over B_{ρ} . By a procedure similar to that in paragraph 3 we obtain the formula

(13)
$$I_1(\rho) = \int_{B_{\rho}} |f|^2 dV = \sum_{p=0}^{\infty} \rho^{2p} \sum_{j=1}^{M_p} |b_j^{(p)}|^2,$$

from which the conclusions of the theorem follow.

Note added in Proof. Recently it has come to my attention that Hua and Look (21) have proved that $F(z) \rightarrow f(u_o)$ as $z \rightarrow u_o$ in any manner. Further for continuous f on B, the solution F given by (3) is unique. They also consider Abel summability for continuous functions of the unitary group.

References

- 1. A. A. Albert, Modern higher algebra (Chicago, 1937).
- 2. S. Bergman, The kernel function and conformal mapping, Math. Surveys, No. V (1950).
- 3. S. Bochner, Group invariance of Cauchy's formula in several variables, Ann. Math., 45 (1944), 686-707.

11

76

- 4. T. J. I'A Bromwich and G. H. Hardy, Some extensions to multiple series of Abel's theorem on continuity of power series, Proc. London Math. Soc., 2 (1905), 161-189.
- 5. E. Cartan, Sur les domains bornés homogènes de l'espace de n variables complexes, Abh. Math. Sem. Univ. Hamburg, 11 (1936), 116-162.
- L. K. Hua, On the theory of functions of several complex variables, I-III, Acta Math. Sinica, 2 (1953), 288-323; 5 (1955), 1-25, 205-242; (in Chinese), M.R., 17 (1956), p. 191. Also Harmonic analysis of the classical domain in the study of analytic functions of several complex variables, mimeographed notes (about 1956).
- 7. K. Knopp, Limitierungs-Umkehrsätze für Doppelfolgen, Math. Z., 45 (1939), 573-589.
- B. Lowdenslager, Potential theory and a generalized Jensen-Nevalinna formula for functions of several complex variables, Jn. Math. Mech., γ (1958), 207-218.
- 9. ——— Potential theory in bounded symmetric homogeneous complex domains, Ann. Math., 67 (1958), 467–484.
- C. C. Macduffee, *The theory of matrices* (Ergebnisse der Mat. und ihrer Grenzgebiete [Chelsea, 1946]).
- 11. J. Mitchell, On double Sturm-Liouville series, Amer. J. Math., 65 (1943), 616-636.
- An example of a complete orthonormal system and the kernel function in the geometry of matrices, Proceedings of the Second Canadian Mathematical Congress (Vancouver, 1949), 155-163.
- On the spherical summability of multiple orthogonal series, Trans. Amer. Math. Soc., 71 (1951), 136–151.
- 14. ——— Potential theory in the geometry of matrices, Trans. Amer. Math. Soc., 79 (1955), 401-422.
- Orthogonal systems on matric spaces, West. Research Lab. Pub., Scientific Paper 60-94801-1-P2 (1956).
- K. Morita, On the kernel functions of symmetric domains, Sci. Reports of Tokyo Kyoiku Daigaku Sec. A, 5 (1956), 190-212.
- 17. E. C. Titchmarsh, The theory of functions (2nd ed., Oxford University Press, 1939).
- 18. S. H. Tung, *Tauberian theorems for multiple series*, unpublished Master's thesis (The Pennsylvania State University).
- 19. H. Weyl, The classical groups (Princeton University Press, 1946).
- 20. A. Zygmund, Trigonometrical series, Monog. Mat., Tom V (Warsaw, 1935).
- L. K. Hua and K. H. Look, Theory of harmonic functions in classical domains, Sci. Sinicd, 8, No. 10 (1959), 1032-1094.

The Pennsylvania State University