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ON THE LOGLINEAR POISSON AND GAMMA MODEL

PETER TER BERG

Maximum likelihood estimation in case of a Poisson or Gamma distribution with
loglinear parametrization for the mean is quite akin. The asymptotic variance-
covariance matrix for the maximum likelihood estimator is derived as well as a
linear estimator, which can serve as a starting value for the nonlinear search
procedure.

1. INTRODUCTION

The loglinear Poisson model is very useful for the analysis of frequency data.
The mathematical statistics for this model can be found in HABERMAN (1974)
as well as ANDERSEN (1977), who refers to actuarial applications by BAILY

and SIMON (1960), JUNG (1968) and AJNE (1975). The procedure to calculate
the maximum likelihood estimates of this model remains valid when the discrete
data are replaced by continuous data, as has been done for the analysis of
claim costs. However, this procedure does not correspond with maximum
likelihood estimation of the parameters of a well-defined stochastic process,
whereas claim frequency analysis under the Poisson assumption does.

The more interesting is the fact that maximum likelihood estimation of the
parameters of a Gamma distribution with loglinear mean can be performed with
the very same nonlinear search procedure as for the loglinear Poisson model.
The Gamma distribution may be a good description for the fluctuation of mean
claim costs. For such a claim costs analysis, the only modification we have
to make is to replace the exposure by the total claim costs, maintaining the
position of the number of claims.

In the next paragraph, the loglinear Poisson model will be outlined and an
easy to calculate estimator to start the search procedure will be derived.
Then, the loglinear Gamma model will be specified and convenient properties
as regards estimation and aggregation will be demonstrated.

2. THE LOGLINEAR POISSON MODEL

For claim frequency analysis, this model can be formulated as follows:

(2.1) f(nr\mr\r) = {mrlr)»r exp (-mr\r)\nr\ nr = 0, 1, 2, 3, . . .

(2.2) l o g ^ ) =xj£ r = i, ,R

where r indexes the riskgroup, nr stands for the number of claims and mr

equals exposure. The riskgroup r is characterized by the column vector xr

consisting of the dummies o and 1. The parameters to estimate are the K
elements of the column vector (3. What matters for this model is the linearity
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in (3 for log (Xr). It is assumed that the dummy variable trap has been taken
care of such that the R X K matrix X = (xi, , XR)' has full column rank
implying X'X to be invertible. This avoids a basic indeterminacy on the
elements of (3.

For instance, with two factors, having 2 and 3 levels, X amounts to a 6 x 4
matrix given by:

(2-3)

The natural logarithm of the likelihood function associated with (2.1) and
(2.2) amounts to 1:

(2.4) log L = const + (Swrxr)'p - Smrexp (x^S).

Differentiating with respect to the elements of (S gives:

c> log L

(2.5) ~~W~= SWrXr ~S m r e x p ^Xr® X r

Putting (2.5) equal to 0 defines the maximum likelihood estimator (5 whose
elements will be finite as soon as 2«rx r does not have elements equal to 0.
From (2.5) we can see that the maximum likelihood estimate implies predicted
marginal totals equal to the observed marginal totals.

The loglikelihood function is concave in (3 implying a unique solution for the
maximum likelihood estimate.

The concavity can be demonstrated with the help of the matrix of second
order derivatives:

I2 log L
(2-6) - ^ - = - 2 « r exp (X;p) xrx; = -X'MAX

where M and A are R x R diagonal matrices given by diag (mi, , WR) and
diag(X1( , XR).

This matrix is negative semi-definite and will be negative definite if the
diagonal matrix M contains K or more positive elements, that is: the presence
of enough different exposure. If this is the case, the loglikelihood function
will be concave in (3.

Minus the expectation of this matrix, which does not contain any nr, gives
the information matrix of (3. The inverse of the information matrix gives the
Rao-Cramer lower bound for the asymptotic variance-covariance matrix of (I.

1 All summations run from r = 1 to c = R, unless explicitly otherwise stated.
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To be complete: the maximum likelihood estimator jl follows asymptotically
a multivariate normal distribution with mean {3 and variance-covariance
matrix (X'MAX)"1. This matrix can be estimated by substituting (5 for p
in the diagonal elements of A.

It is possible to reduce the dimensionality of the problem by maximizing
(2.4) with respect to the parameters of a single factor conditionally on the
parameters of the other factors. It is of course advisable to choose that factor
with the maximum number of levels. In case of the matrix X, given by (2.3)
this results in a concentrated loglikelihood function with one unknown para-
meter.

In case that K is large, a good starting value for the nonlinear search proce-
dure may be important. In (2.2), a system of R linear equations in K unknowns
is defined. However, log (Xr) is unknown and should be replaced by an estimate.
Dropping the index r and adopting a Bayesian point of view, utilizing an im-
proper prior density for X given by p(X) oc l/X with (2.1) as likelihood function
results in a posterior density for X which is a Gamma density function:

(2.7) p(\\n,m) = X""1 exp(-mX) mn\Y{n)

In order this posterior density function to be proper, n must be positive.
Calculating the posterior mean and variance of log(X) gives:

n— 1

(2.8) E (log X) = <\>{n) - log (m) = S r 1 - log(w) - y

V (logX) = <]/(») = 7t«/6 - V i-2 = (n-iY1

i-i

where ty and <\>' denote the digamma and trigamma function and y =
0.5772156649..; see ABRAMOWITZ and STEGUN (1970, ch. 6) for the above
results associated with the gamma function.

Now we can write:

(2.9) E(log X) = x'p + {E (log X) - log X}

where {E (log X) — log X} is unobservable, having mean 0 and finite variance
given by V (log X). Utilizing the approximations for is (log X) and V (log X),
adding the index r again, assuming nr 5= 1 for simplicity of notation, enables
us to apply weighted least squares to (2.9).

This results in a linear estimator for (5 given by:

(2.10) p = [X ' (N- i I ) X r X'(N - II)v

where N = diag (m, , «R) and v contains the R values log {{nr — \)jmr}.
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3. THE LOGLINEAR GAMMA MODEL

The analysis of claim costs is hampered by the fact that it is difficult to
specify a probability distribution which gives a good description of empirical
reality. However, the total claim costs for n claims will tend to have a smooth
probability distribution and will approach the Normal distribution.

The Gamma distribution approaches the Normal distribution too and assigns
no probability mass to the negative axis. So, it may be fruitful to adopt a
Gamma distribution for the total claim costs and act as if the individual claim
costs follow a Gamma distribution too.

The probablity density function for the Gamma distribution can be written as:

(3.1) g{q\y., 9) = qv-iexp (-<p?/(x) 90 [r*/r(<p)

implying a mean and variance given by u and «2/<p.
The sum of n of such distributed random variables will follow a Gamma

distribution with parameters n\x. and n<p. The sample mean will follow a Gamma
distribution with parameters [x and wp. The sample mean happens to be the
maximum likelihood estimator for the population mean JJ,.

The parametrization:

(3-2) iog([jg = x;e r = i, , R

results in a loglikelihood function:

(3.3) log L = const + 9 2 nr log(jv) - 2 log {T(cpwr)} + 9 log (9) 2 nr +

+ 9 { - (s^xr)'e - sy (x;e)}

where yr stands for the total claim costs for the nr claims in riskgroup r.
The form between curls in (3.3) is equivalent with the crucial part of (2.4) if
we substitute (3 for — 8 and mr for yr. This gives the possibility to calculate
the maximum likelihood estimator for 8 in the same way as in case of the
loglinear Poisson model.

It is interesting to observe that aggregation of the individual claim costs to
total claim costs does not have any implications for the maximum likelihood
estimate of 8. This remains valid for arbitrary specifications for \xr, as long as
these do not depend on 9. The aggregation does have implications for the
estimation of 9, however.

Differentiating (3.3) with respect to 8 and 9 gives:

d log L
^ 2 x +I 8

log I,

= ^ ~ 2 n r x r + S3V e xP ( - x r 6 ) x r )

= 2 {nr log <yr) - «rxr8 - yr exp (-xr8) + nr)

+ log (9) S nr - 2 nrty (<pn
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The second order derivates amount to:

d2 log L
-5 aeae' = ~ 9 s y*exp * ~ X r^X r*r

<)2logL
= - 2 wrxr + S yr exp (-x r6) xr

T ~ "r r T vr"ri'

Minus the expectation of these second order derivatives gives:

r<)2 log n
(3-6) - £ h ^ T f i - = ?X'NX

The vanishing of (3.7) implies a blockdiagonal information matrix for 8 and
9. This implies that the maximum likelihood estimator for 8 follows asymptoti-
cally a multivariate normal distribution with mean 8 and variance-covariance
matrix given by 9"1 (X'NX)"1. This matrix can be estimated by substituting the
maximum likelihood estimate for 9,

)2 log LI

J 2 \
p) og LI

(3.8) - E [ -^~-J = 2 n\ W (<pnr) - W 1 ]
~ S I9-2 = -|R9"2, for large nrtp.

So, the asymptotic variance of the maximum likelihood estimator for 9
equals 292/R, which goes to 0 when R goes to infinity, R can be large, but is
fixed, contrary to the number of claims. In order to improve the estimation of
9, aggregation of claim costs should not take place blindly. Risk groups with
many claims should form separate totals such that R increases.

As the sample mean yr\nr follows a Gamma distribution with mean \xr and
variance yLr\nry, the mean and variance of log(j>r/wr) are given and approxi-
mated by:

(3.9) Epog (yr/»r)] = x;e + ^(Mr9) - log (nr<p)

4= x^8 - (2»r<

F[log (yr/nf)] = <]/(

r = 1, ,R

Utilizing the approximations and adding the normality assumption, enables
us to apply the maximum likelihood method to (3.9), resulting in closed form
estimators for 8 and 9 given by:
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(3.10) 8 = (X'NX)"1 [X'Nw + (29)-1X'i]

R + {R2 + w'[N-NX(X'NX)"1X'N]w.i'[N-i-X(X'NX)-1X']i}1/2

(3-n) 9 = 2w'[N - NX(X'NX)"1X'N]w

where 1 is a vector with all element equal to 1 and w contains the R values
log (yrlnr). When the diagonal elements of N grow large (3.10) will approach
(X'NX^X'Nw, being independent of 9. This furnishes a convenient starting
value for 6.
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