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VARIATIONS ON THE HAMILTONIAN THEME 
BY 

J. A. BONDY 

1. Introduction. As its name implies, this paper consists of observations on 
various topics in graph theory that stem from the concept of Hamiltonian cycle. 
We shall mainly adopt the notation and terminology of Harary [5]. However, we 
use vertices and edges for what are called "points" and "lines" in [5]. V(G), E(G) 
respectively will denote the sets of vertices and edges of graph G, and \X\ will 
denote the cardinal of the set Z. | V(G)\ is the order of G, and \E(G)\ the size of G. 
Throughout n is reserved for the order of G. 

A Hamiltonian cycle in a graph G is a simple cycle which passes through every 
vertex of G ; if G has a Hamiltonian cycle, G is Hamiltonian; G is hypo-Hamiltonian 
if G is non-Hamiltonian but every vertex-deleted subgraph G—v of G is Hamil­
tonian. 

Our first variation is concerned with extremal non-Hamiltonian graphs. We 
show that, except for «=5, there is a unique non-Hamiltonian graph of order n 
and maximum possible size. We then investigate non-Hamiltonian graphs whose 
supergraphs are all Hamiltonian, and show that the minimum possible size of 
such graphs is 3«/2. In §3 we exhibit some new hypo-Hamiltonian graphs. 

2. Extremal non-Hamiltonian Graphs. 
2.1. It was proved by Ore [8] that every graph of order n and size greater than 

\{n2 — 3«+4) is Hamiltonian. Ore noted that this result is best possible in that 
Kn-i'K2 (the connected graph with blocks Kn.x and K2) and K2+K3 (for n=5) 
are non-Hamiltonian and have exactly i(n2 — 3n + 4) edges. We show in Theorem 1 
that these are the only extremal graphs. Our proof makes use of the following 
lemma. 

LEMMA 1. (Chvâtal [3]). Let G be a graph with partition {4}ï, where dx<d2 

< • • • <dnandn>2. If 

dk < k < x=> dn-k > n-k, 

then G is Hamiltonian. 

THEOREM 1. Let G be a non-Hamiltonian graph of order n and size %(n2 — 3n+4). 
Then either G~Kn.vK2or G^K2+K3. 
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Proof. Suppose that G satisfies the hypotheses of Theorem 1. If G has partition 
{di}i with d1<d2<- - <dn then, by Lemma 1, there is some k such that 

dk < k < -z and dn„k < n—k. 

It follows that 

(1) «2-3«+4 = 2 \E(G)\ = 2 ^ < k2 + (n-2k)(n-k-l)+k(n-l). 
i = l 

Hence 

(2) 3k2+k - 4 > (2k - 2)n > (2k - 2)(2& +1). 

Simplifying, 
(fc-l)(Jfc-2) < 0. 

Therefore either & = 1 (with equality holding in (1)) or k=2 (with equality holding 
in (1) and (2)). If fc= 1, ^ = 1, rfa= - • • = 4 - i = " ~ 2 , </n=«-1, and GzKn-VK2. 
If fc=2, « = 5 and d1 = d2 = dQ = 29 rf4 = rf5=4. So G Q ^ + J^ . 

In [1] the author extended Ore's result to (« — l)-cycles: if G has order « and 
size greater than %(n2 — 5n +12) then G has a cycle of length n—l. More recently 
the author [2] and Woodall [10] have obtained much more general results on the 
existence of (/i—recycles. By the method of proof of Theorem 1 (but using Theorem 
1 of [2]) one can show that, for small values of r, the only graphs with no (« — /*+1)-
cycles and with maximum possible size are Kn„r-Kr+l9 Kr + K2r (when n — 3r) and 
Kr+1 + K2r+1 (when w = 3r+2). It would seem that such a result should hold for a 
wide range of values of r. 

2.2. A graph G is ready for a Hamiltonian cycle if G is not Hamiltonian but has 
Hamiltonian paths between every pair of nonadjacent edges; that is, if the addition 
of any new edge to G results in a Hamiltonian graph. The graphs of §2.1 are ready 
for Hamiltonian cycles, and they have the maximum possible size consistent with 
this. We now look at the question of the minimum possible size that such graphs 
can have. Graphs realizing this minimum will be called lower extremal graphs 
(ready for a Hamiltonian cycle). 

LEMMA 2.1. If G is nonseparable and ready for a Hamiltonian cycle, then no 
vertex of degree 2 can be adjacent to a vertex of degree less than 4 in G. 

Proof. Let d(x) = 2 and let y, z be adjacent to x. Then y and z are adjacent. For 
otherwise there would have to be a Hamiltonian path from y to z, and this is 
clearly impossible if «>3. (If n = 3 G is separable, and this case is excluded.) 

Clearly d(y)>2. But d(y) + 2 since this would imply that either G was the cycle 
xyzx, or that z was a cut-vertex of G. Suppose that d(y) = 3, and let y be adjacent 
to w (in addition to x and z). Since x is not adjacent to w, there is a Hamiltonian 
path from x to w9 say xyzu±.. .i/n_4w. But then yxzux.. .wn_4wj>is a Hamiltonian 
cycle of G. Therefore d(y)>4 and similarly d(z)>4. 

https://doi.org/10.4153/CMB-1972-012-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1972-012-3


1972] HAMILTONIAN THEME 59 

LEMMA 2.2. Let G be ready for a Hamiltonian cycle and let v and w be vertices 
of degree 2 in G with the same neighbours, x and y. Then G—{v9 w} is complete and 
hence the size of G is exactly %{n2 — 5n +14). 

Proof. Let ul9 u2 be vertices of G—{v, w}. No path in G connecting ux and u2 

can contain both v and w9 and hence no such path can be Hamiltonian. 

LEMMA 2.3. Let G be ready for a Hamiltonian cycle. If G contains vertices 
ul9 . . . , uk9 vl9..., vk + 1 such that d{u^) — 2 andux is adjacent to vt andvi + l9 \<i<k9 

then k<2. Moreover, ifk=2 then d(v2)=n—l. 

Proof. If k were greater than 2 there would be no Hamiltonian path connecting 
v2 and w3. If fc=2, there is no Hamiltonian path connecting v2 with any other vertex. 

THEOREM 2. Let G be ready for a Hamiltonian cycle. If G has order n>6 and m 
vertices of degree 2, then the size of G is at least %(3n+m). 

Proof. If G is separable, every block of G must be complete. The theorem is then 
easily verified. 

By Lemma 2.2 we can assume that no two vertices of degree 2 have the same 
neighbours since, when «>6, 

i(«2-5«+14) >2n> K3»+m). 

If G is nonseparable, let ul9..., um be the vertices of degree 2 in G. Then, by 
Lemmas 2.1 and 2.3, G' = G—{ul9..., um} has minimum degree at least 3. Hence 

\E(G)\ = \E(G')\+2m > ftn-n!)+2ro = ffln+m). 

COROLLARY 2.1. If G is ready for a Hamiltonian cycle, and if G has order n>6 
and size 3n/29 then G is regular of degree 3. 

COROLLARY 2.2. The Petersen graph is a lower extremal graph ready for a Hamil­
tonian cycle. 

3. Hypo-Hamiltonian Graphs. It is a simple observation that the minimum 
degree of any hypo-Hamiltonian graph must be at least 3. Cubic hypo-Hamiltonian 
graphs are therefore of special interest, since they have minimum possible size for 
their order. Only two cubic hypo-Hamiltonian graphs seem to be known. One is 
the Petersen graph, which is the smallest hypo-Hamiltonian graph [4], and the 
first member of an infinite family of hypo-Hamiltonian graphs constructed in­
dependently by Sousselier [6] and Lindgren [7]. The other is a graph of order 18, 
also found by Sousselier [6], 

We first show that the Coxeter graph C28, which Tutte proved non-Hamiltonian 
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[9], is in fact hypo-Hamiltonian. C28 is cubic, of order 28, and can be described as 
follows : 

V(C2Q) = {ai9bhci,di}
7

i = 1 

(where indices are taken modulo 7). 
C28 has the following 27-cycles: 

a2a3aia5aGa1d1b1b3d3c3c1d1bib4:décéCQdQbQb2b5d5c5c1C2d2Ci2 

(using every vertex but a^ and 

a1a2d2b2b^b1bJ)1d1c1C2C^a^a3d3b3bQdQCQC1c3cbdbabaQa1a1 

(using every vertex but d±). 
Using this, and the existence of the three automorphisms 

(i) i->i+k (mod 7) 
(ii) i->2/ (mod 7); a->c->b->a 

(iii) i -» 3/ (mod 7) ; # -> è -> c->a, 

it follows that C28 is hypo-Hamiltonian. 
It has already been remarked that the Petersen graph is hypo-Hamiltonian. On 

a suggestion of Dr. U. S. R. Murty I investigated some generalized Petersen graphs 
Gk u defined by 

V(Gktl) = {ai,bi}U, 
E(Gk,d = {(ai9 at + 1), (bi9 bi + l), (au bi)}^1 

(where indices are taken modulo k). 
We shall call the cycle axa2.. .akax the rim of Gktl. 

THEOREM 3. Gk2 is non-Hamiltonian if and only ifk = 3m + 2 with m odd. 

Proof. We shall indicate the proof mainly with the aid of diagrams as a detailed 
proof would be unnecessarily complicated. 

Consider a Hamiltonian cycle (if such exists) of Gkt 2. The intersection of this 
cycle with the rim of Gkt2 will be a sequence of paths of lengths nl9...9nr taken 
in order round the rim. The sequence nl9..., nr, nr + 1( = n1) is restricted by the 
following observations: 

(i) No even nt is greater than 2: 
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(ii) If «j>2, then«i_!=« i + 1 = l: 

(iii) If rti > 2 then no rij=2 : 

(iv) If no nt>2, then either nj=nj+1 = l for some j and H* = 2 otherwise, or 
rti = 1 for all /, or «i=2 for all /. 

Now, by (i)-(iii), if nt > 2 for some i then & must be even. If no nt > 2 then, by (iv), 
either k=3r—2 or k—3r or k=2r. Hence, if k=3m + 2 with m odd, then Gkt2 is 
non-Hamiltonian. It is an easy matter (using details of this proof) to construct a 
Hamiltonian cycle for Gkf 2 if k is not of this form. 

COROLLARY 3.1. Ifk=3m+2 with m odd, then Gkt2 is hypo-Hamiltonian. 
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Proof. We must show that Gfcf 2—^ and Gkt2 — b{ are Hamiltonian for 1 <i<k. 
But clearly all the vertices at are similar, and all the vertices bt are similar, and so 
we need only exhibit Hamiltonian cycles of G—au and of G—bx. G—ax has the 
Hamiltonian cycle 

a2a3.. .flA*fc-2. • - ^A- i - • -b2a2 

and G—bx has the Hamiltonian cycle 

axa2b2b±.. .bk^.1ak^1ak^2.. .a3b3b5.. .bkakalt 

It is interesting, in this context, to note the following result obtained also by 
the above methods. 

THEOREM 4. Gkt 3 is always Hamiltonian, with the sole exception of the Petersen 
graph (fc=5). 

ACKNOWLEDGEMENT. I would like to thank Dr. L. Cummings for a suggestion which helped 
considerably in the proofs of Theorems 3 and 4. 

REFERENCES 

1. J. A. Bondy, Large cycles in graphs, Proc. of the First Louisiana Conference on Com­
binatorics, Graph Theory, and Computing, Louisiana State Univ., 1970 (ed. R. C. Mullin, 
K. B. Reid, D. P. Roselle), 47-60. 

2. , Large cycles in graphs, Discrete Mathematics 1 (1971), 121-132. 
3. V. Chvâtal, On Hamilton's ideals, Univ. of Waterloo preprint. 
4. T. Gaudin, J.-C. Herz, and P. Rossi, Solution du Problème No. 29, Rev. Franc. Rech. 

Operationelle 8 (1964), 214-218. 
5. F. Harary, Graph theory, Addison-Wesley, Reading, Mass., 1969. 
6. J.-C. Herz, J.-J. Duby, and F. Vigué, Recherche systématique des graphes hypoHamiltoniens, 

in Theory of Graphs, Internat. Symposium, Rome (1966), (ed. P. Rosenstiehl), 153-159. 
7. W« F. Lindgren, An infinite class of Hypo Hamiltonian graphs, Amer. Math. Monthly 74 

(1967), 1087-1088. 
8. O. Ore, Arc coverings of graphs, Ann. Mat. Pura Appl. 55 (1961), 315-321. 
9. W. T. Tutte, A non-Hamiltonian graph, Canad. Math. Bull. 3 (1960), 1-5. 
10. D. R. Woodall, Sufficient conditions for circuits, J. London Math. Soc. (to appear). 

UNIVERSITY OF WATERLOO, 

WATERLOO, ONTARIO 

https://doi.org/10.4153/CMB-1972-012-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1972-012-3

