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1. Introduction 

The next generation of spectroscopic surveys, both Galactic and extra-
galactic (e.g., SDSS, 2dF), present the challenge of classifying spectra in 
an efficient and objective manner. The standard approach to this problem 
has been to visually classify spectra based on a number of spectral features 
(e.g., the equivalent widths of emission lines). The size of new spectral 
surveys ( > 10 6 galaxies) and the desire to compare the luminosity and en-
vironments of galaxies with their spectral properties make these techniques 
infeasible. We describe here an automated classification scheme that is 
being developed for the SDSS. 

2. The Karhunen-Loève Transform 

The application of Principal Component Analysis to multivariate astro-
physical data has been described in detail in a number of publications (Ef-
stathiou and Fall 1984, Connolly et al. 1995). For details of the Karhunen-
Loève transform (KL; Karhunen 1947, Loève 1948) and its use in the anal-
ysis of spectroscopic data we refer the reader to Connolly et al. (1995). 
Here, we describe an extension to these standard techniques that applies 
to censored data (i.e., data that contain spectral regions where the flux is 
unknown). 

We can describe an observed spectrum, / t ( A ) , in terms the true spec-
trum, fi(\), and a mask, nii(X). The mask is defined to be zero where 
the data are unknown and one in wavelength regions where the data are 
secure. If we decompose this spectrum onto a previously defined eigenbasis, 
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ej(À), then, f[(λ) = πΐ{(\) ΣΓ=ι yijej(x)'> where, yij, are the decomposition 
coefficients. 

Clearly the observed spectrum and the eigensystem are not orthogo-

nal over the masked spectral range. Therefore, projecting the observed 

spectrum onto this eigensystem will lead to biased coefficients. We, there-

fore, determine an error, E, that describes the difference between fi (λ) 

and ]Cj=i yijej(x) over the wavelength region where the data are good 

(Everson and Sirovich 1995), E{ = JdX^ilf'iW ~ Σ?=ι !ftj*j(A)] 2. By 

minimizing Ε with respect to yt-j we can define, yi = M^gj, where M{j = 

f\Vm(\)=ldXei(X)ej(X) a n d 9i = f\Vrn(\)=ldXfj(X)ej(X)-

In Figure 1 we show that these corrected coefficients can be used to 

optimally interpolate across the masked spectral regions. The typical rms 

deviation between the true and interpolated regions is ~ 10%). By itera-

tively replacing the masked regions with the interpolated values the above 

analysis can be extended to the case where we wish to derive the eigensys-

tem from a sample of galaxy spectra that cover different spectral ranges 

(Everson and Sirovich, 1995). 
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Figure 1. Spectra with missing data, e.g., due to sky lines, can be optimally interpolated 
across using the derived eigensystem. In this figure (a) shows the original spectrum, (b) 
the spectrum with a 40 Â region masked out and (c) the interpolated spectrum. 

3· A Spectral Classification Scheme 

From the decomposition coefficients described above, we can classify galaxy 

spectra into different spectral types. Figure 6 in Connolly et al. (1995) 

shows this for the Kinney et al. (1996) spectral energy distributions. By 

plotting the mixing angles between the first three eigenspectra we find that 

galaxies from elliptical to starburst form a linear sequence i.e., to first order, 

galaxies separate out into a simple monotonie spectral sequence. 

To extend this analysis to grouping galaxies into subclasses along this 

spectral sequence (analogous to the sub groups in stellar classification) re-
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quires that we consider individual features within each spectrum (e.g., lines 
or line complexes). This naturally results in additional dimensions and in-
creased complexity to any classification scheme. While this is straightfor-
ward to undertake statistically the question remains how do you describe 
the classification of a galaxy spectrum in a simple and physical manner. 

For the SDSS we choose to approach this problem by building on the 
work of Morgan and Mayall (1957). In their Yerkes Y system (and revi-
sions thereof) they describe the spectral types of galaxies in terms of stel-
lar classifications (e.g., classes of galaxies go through A, AF, F, G, and Κ 
stellar types). In defining the subclasses they consider only a limited spec-
tral range for each galaxy (3850-4100 Â ) . From the Kinney et al. (1996) 
eigenspectra we have shown that the statistical spectra derived from the 
KL analysis separate naturally into different stellar types (G, Ο and A ) . 
To subdivide further we apply the KL analysis to smaller spectral regions 
(e.g., the 4000 Â break). In such a way a hierarchical classification of galaxy 
spectra can be built up. 

4. Conclusions 

(1) The Karhunen-Loève transform provides an elegant method for the 
derivation of eigenfunctions that describe multidimensional datasets. These 
techniques have been modified to account for data with imperfect spectral 
coverage, e.g., due to sky lines or different rest-frame wavelength coverage. 
From this, an optimal interpolation scheme can be derived to account for 
the masked spectral regions. 
(2) Decomposing spectra into whose eigenspectra their coefficients can be 
used as an objective spectral classification scheme. This natural classifi-
cation can be described in terms of a one parameter problem and, in the 
mean, is Correlated with independent morphological classifications. 

(3) The resolution of any classification can be optimized to a particular 
range of spectral types by adopting an iterative scheme where we vary the 
normalizations of the input SEDs. 
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