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Abstract

Non-coding RNAs (ncRNAs) are major players in the regulation of gene expression. This study
analyses seven classes of ncRNAs in plants using sequence and secondary structure-based
RNA folding measures. We observe distinct regions in the distribution of AU content along
with overlapping regions for different ncRNA classes. Additionally, we find similar averages
for minimum folding energy index across various ncRNAs classes except for pre-miRNAs and
lncRNAs. Various RNA folding measures show similar trends among the different ncRNA
classes except for pre-miRNAs and lncRNAs. We observe different k-mer repeat signatures
of length three among various ncRNA classes. However, in pre-miRs and lncRNAs, a diffuse
pattern of k-mers is observed. Using these attributes, we train eight different classifiers to
discriminate various ncRNA classes in plants. Support vector machines employing radial basis
function show the highest accuracy (average F1 of ~96%) in discriminating ncRNAs, and the
classifier is implemented as a web server, NCodR.

1. Introduction

RNA molecules are involved in various cellular functions by catalysing biological reactions,
controlling gene expression, or sensing and communicating responses to cellular signals (Morris
& Mattick, 2014). On the one hand, the coding RNAs are translated into proteins by the cellular
machinery of ribosomes. On the other hand, non-coding RNAs (ncRNAs) are transcribed but
not translated and play significant roles in regulating gene expression (Cech & Steitz, 2014).
Viridiplantae is a clade consisting of green algae and embryophytic land plant species. Identifying
and classifying the ncRNAs in various plant species are important to study and understand
their roles in regulating gene expression at various levels. In the current study, we analyse the
various sequence and secondary structure-based folding measures of seven major classes of
ncRNAs: long non-coding RNAs (lncRNAs), microRNAs (miRNAs), precursor-miRNAs (pre-
miRs), ribosomal RNAs (rRNAs), small nucleolar RNAs (snoRNAs), transfer RNAs (tRNAs) and
small nuclear RNAs (snRNAs).

The sequence length, AU content, minimum folding energy index (MFEI), normalised
base-pairing distance (ND), normalised base-pairing propensity (Npb), normalised Shan-
non entropy (NQ) and k-mers of length three across the different classes of ncRNAs
are analysed. These attributes are then used to train multiple classifiers to distinguish
between the various classes of ncRNAs. The length of the sequence (L) and the AU
content are two intrinsic properties of ncRNAs that determine its ability to form various
secondary structures through canonical and non-canonical base pairing. The MFEI is the
energy associated with RNA secondary structure formation normalised per GC content
per 100 nucleotides (nt). The Npb quantifies the extent of base-pairing in the secondary
structure of RNA. Npb values can range from 0.0, signifying no base pairs, to 0.5, signi-
fying L/2 base pairs (Matera et al., 2007; Schultes et al., 1999). The normalised Shannon
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entropy (NQ) is a measure of the conformational entropy of the
secondary structure calculated from the MaCaskill base pair prob-
ability distribution (BPPD) (Huynen et al., 1997). The ND measures
the base pair distance for all the pairs of structures (Huynen et al.,
1997; Moulton et al., 2000). Previous reports have suggested that
repeats of length one to six nucleotides play significant roles in
functions of ncRNAs (Chen et al., 2010; Hazra et al., 2017; Jaiswal
et al., 2020; Joy et al., 2013; 2018; Joy & Soniya, 2012; Mondal &
Ganie, 2014; Sharma et al., 2021; Tabkhkar et al., 2020). The RNA
folding measures and di-nucleotide compositions were previously
employed to develop classifiers for ncRNAs (Barik & Das, 2018;
Panwar et al. 2014). Moreover, in our previous studies, we used the
k-mers of three nucleotides length to efficiently predict miRNAs
(Nithin et al., 2015; 2017; Patwa et al., 2019).

In this study, we have used these attributes to develop eight clas-
sifiers. The support vector machine (SVM) employing radial basis
function (RBF) shows the highest accuracy (96%) in discriminating
ncRNAs and very high sensitivity and specificity of 0.96 and 0.99,
respectively, for the average of 5-fold cross-validation experiments.
The classifier developed in this study outperforms existing
methods: RNACon (Panwar et al. 2014), nRC (Fiannaca et al.,
2017) and ncRDeep (Chantsalnyam et al., 2020) for the sequences
from Viridiplantae. The classifier will help advance our knowledge
of ncRNAs by enhancing their genome-wide discovery and classifi-
cation in various plant species. Moreover, a detailed understanding
of ncRNAs will improve our knowledge of gene regulation at the
transcriptional and post-transcriptional levels. These advances
may further help develop better crop varieties with improved
yield, productivity and better abiotic stress tolerance and disease
resistance through genome editing technology (Basak & Nithin,
2015). The classifier is freely provided as a web server, NCodR
(http://www.csb.iitkgp.ac.in/applications/NCodR/index.php), as
well as a standalone tool (https://gitlab.com/sunandanmukherjee/
ncodr.git).

2. Materials and methods

2.1. Dataset of ncRNAs

A dataset of ncRNAs in Viridiplantae was curated to quantify the
various sequence and RNA folding measures, which is further used
to classify ncRNAs. The dataset was curated from RNACentral
(The Rnacentral Consortium, 2019), applying the filters on the
ncRNA class and species names. The RNACentral consolidates data
from several databases. While curating the dataset, the sequences
with degenerate letters for the bases and ambiguous letters such
as ‘N’ were removed. Sequences which repeated multiple times in
the dataset were also removed to make them unique. We used
a total of 526,552 sequences in further analysis (Table 1). The
phylogenetic classification of the species was retrieved using NCBI
taxonomy browser (Schoch et al., 2020). The dataset includes
sequences from 46,324 species, which includes 40,219 vascular
plants, 2,060 mosses, 1,885 green algae, 1,399 liverworts and 327
other green plants (Table 2). The 22,886 lncRNA sequences belong
to 27 different species with eight monocots and 19 eudicots. The
9,328 miRNAs belong to 102 species while 118,912 pre-miRs
belong to 883 species. The snoRNA sequences are from 114 species
while snRNA sequences are from 110 species. The rRNA sequences
are from 36,339 species while the tRNAs are from 15,170 species.
In addition, we curated a dataset of 17,026 mRNAs which is used
as ‘others’ category in this study. The mRNAs from 271 different
species were downloaded from PlantGDB database (Dong et al.,

2004) and were clustered at 50% identity cut-off using CD-hit
program (Li & Godzik, 2006).

2.2. RNA folding measures

The secondary structures of the RNAs were calculated using the
RNAfold program (Hofacker et al., 1994). The MFEI value for
a sequence of length L was calculated using the adjusted MFE
(AMFE), representing the MFE for 100 nt.

MFEI = AMFE

(G+C)% .

AMFE = −MFE

L
×100.

The genRNAstats program (Loong et al., 2006) was used to
calculate NQ, ND and Npb for all the plant ncRNAs. Npb (Schultes
et al., 1999) was calculated to quantify the total number of base pairs
per length of the RNA sequence. The MaCaskill base-pair proba-
bility pij between bases i and j was calculated using the equations
below. Both the parameters, ND and NQ, were calculated using
BPPD per base of the sequence (Huynen et al., 1997; Moulton et al.,
2000).

NQ = − 1
L∑i<jpijlog2 (pij) .

ND = 1
L∑i<jpij (1−pij) .

pij = ∑
Sα ε S(s)

P(Sα)δij.

P(Sα) =
e
−Eα

RT

∑
Sα ε S(s)

e
−Eα

RT

.

δij = { 1, xi pairs xj,
0, otherwise.

For each of the parameters, the probability distributions were com-
puted as a Gaussian kernel density estimate using gnuplot (Racine,
2006).

2.3. k-mers of length three

Sequences were scanned for the presence of all the 64 k-mers of
length three nucleotides. The sequence length in the dataset varies
widely, and to remove this effect, the k-mer count was normalised
per 100 nt (R) by the following equation:

R = Number of k−mer signatures

L
×100.

We calculated the k-mer matrix of window size three for all the
sequences.

2.4. Training and testing of classifiers

We train multiple classifiers using the dataset of ncRNAs to
discriminate between the various classes to choose the most effi-
cient classification algorithm. The classifiers were implemented in
Python using the scikit-learn module (36). The following classifiers
were trained to compare the performance measures: SVM using
RBF kernel, Nearest Neighbours, SVM with linear kernel, Decision
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Table 1. Dataset of Viridiplantae ncRNAs

Parameter/RNA type lncRNA miRNA pre-miR rRNA snoRNA tRNA snRNA

No. of unique sequences 22,886 9,328 1,18,912 1,77,500 75,665 88,111 34,250

Length (nt)

Range 200–24,018 15–29 55–11,032 60–9,601 19–1,854 26–677 18–912

Mean ± sd. 838 ± 955 21 ± 2 145 ± 103 733 ± 895 107 ± 25 75 ± 36 77 ± 67

Median 565 21 132 182 107 73 25

Skewness 5.80 −0.36 20.52 1.61 21.22 8.91 0.85

Kurtosis 65.72 3.80 1,285.63 5.15 1,318.64 102.70 4.87

AU (%)

Range 17.7–99.8 0.0–95.0 15.9–98.8 15.3–90.0 13.3–88.3 17.9–100 4.8–100

Mean ± sd. 59.2 ± 7.7 55.2 ± 12.1 62.3 ± 6.9 48.4 ± 5.5 59.3 ± 5.6 49.2 ± 7.1 54.4 ± 12.4

Median 60.64 55.0 63.4 47.9 59.8 48.6 54.9

Skewness −1.07 −0.11 −1.70 0.46 −0.77 0.01 −0.01

Kurtosis 4.55 3.63 9.37 4.22 4.70 0.02 0.03

MFEI

Range 0.00–1.86 0.00–1.24 0.09–27.9 0.0–1.99 0.00–2.00 0.00–12.7 0.00–3.28

Mean ± sd. 0.59 ± 0.10 0.10 ± 0.13 1.39 ± 0.37 0.61 ± 0.10 0.48 ± 0.13 0.58 ± 0.47 0.38 ± 0.39

Median 0.60 0.03 1.42 0.61 0.46 0.60 0.38

Skewness 0.02 1.66 2.95 −0.05 1.54 93.20 61.4

Kurtosis 0.03 6.41 228.15 6.28 13.32 9,773.20 7,886.88

ND

Range 0.00–0.29 0.00–0.18 0.00–0.31 0.00–0.24 0.00–0.25 0.00–0.24 0.00–0.26

Mean ± sd. 0.12 ± 0.03 0.06 ± 0.04 0.03 ± 0.03 0.11 ± 0.04 0.10 ± 0.04 0.08 ± 0.04 0.07 ± 0.04

Median 0.12 0.05 0.02 0.11 0.10 0.08 0.06

Skewness 0.06 0.46 2.41 −0.05 0.20 0.41 0.49

Kurtosis 3.01 2.52 11.04 2.76 2.31 2.54 2.81

Npb

Range 0.00–0.46 0.00–0.41 0.11–0.49 0.07–0.48 0.00–0.47 0.00–0.47 0.00–0.44

Mean ± sd. 0.29 ± 0.03 0.11 ± 0.11 0.38 ± 0.04 0.31 ± 0.03 0.27 ± 0.04 0.29 ± 0.06 0.12 ± 0.12

Median 0.30 0.13 0.39 0.32 0.27 0.30 0.25

Skewness −1.24 0.32 −0.85 −1.35 −0.29 −1.60 −0.84

Kurtosis 6.68 1.66 4.78 7.14 3.28 6.73 2.43

NQ

Range 0.01–1.09 0.00–0.55 0.00–0.88 0.00–0.84 0.00–0.86 0.00–0.81 0.00–0.87

Mean ± sd. 0.41 ± 0.11 0.02 ± 0.10 0.08 ± 0.08 0.35 ± 0.13 0.32 ± 0.13 0.24 ± 0.12 0.21 ± 0.13

Median 0.40 0.16 0.05 0.35 0.31 0.23 0.19

Skewness 0.14 0.38 2.83 −0.01 0.29 0.54 0.71

Kurtosis 3.08 2.52 13.61 2.76 2.46 2.88 3.36

Abbreviations: MFEI, minimum folding energy index; ND, normalised base-pairing distance; Npb, normalised base-pairing propensity; NQ, normalised

Shannon entropy.

Tree, Random Forest, AdaBoost, Naïve Bayes and Quadratic
Discriminant Analysis (Adankon & Cheriet, 2015; Breiman, 2001;
Cover, 1965; Cover & Hart, 1967; Freund & Schapire, 1997;
Knerr et al., 1990; Rivest, 1987). Additionally, we trained and
tested a meta-classifier with a ‘voting’ approach using the average
probability calculated by each of the aforementioned classifiers with
equal weights for the prediction. The classifiers were trained using
the following parameters: k-mer matrix, AU content, sequence

length, MFEI, ND, Npb and NQ. The training dataset was made
by randomly selecting 50% of the total sequences. We used the
rest of the sequences for testing the classifier. We calculated the
sensitivity or true positive rate, specificity or true negative rate,
positive predictive value (PPV), negative predictive value (NPV),
false-positive rate, false-negative rate, false discovery rate, accuracy
and F score for the prediction from true positives, true negatives,
false positives and false negatives using the following equations
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Table 2. Taxonomy of dataset of Viridiplantae ncRNAs

Taxon lncRNA miRNA pre-miR rRNA snoRNA tRNA snRNA All

Viridiplantae 27 102 883 36,339 114 15,170 110 46,320

∣

∣–Vascular 27 93 850 31,596 98 13,096 93 40,219

∣ ∣

∣ ∣–Seed 27 92 849 31,140 97 12,452 92 38,226

∣ ∣ ∣

∣ ∣ ∣–Flowering 27 88 830 30,618 96 12,093 91 37,628

∣ ∣ ∣ ∣

∣ ∣ ∣ ∣–Monocots 8 16 167 6,912 28 3,120 27 8,662

∣ ∣ ∣ ∣

∣ ∣ ∣ ∣–Eudicots 19 68 656 22,435 65 8,426 61 27,416

∣ ∣ ∣ ∣

∣ ∣ ∣ ∣–Other flowering 0 4 7 1,271 3 547 3 1,550

∣ ∣ ∣

∣ ∣ ∣–Other seed 0 4 19 522 1 359 1 598

∣ ∣

∣ ∣–Ferns 0 0 0 295 0 567 0 681

∣ ∣

∣ ∣–Club mosses 0 1 1 161 1 77 1 203

∣

∣–Mosses (Bryophyta) 0 1 1 1,616 1 1,030 2 2,060

∣

∣–Green algae (Chlorophyta) 0 1 7 1,737 14 263 14 1,885

∣

∣–Liverworts (Hepaticophyta) 0 1 19 1,090 1 781 1 1,399

∣

∣–Other green plants 0 6 6 300 0 0 0 327

(Fawcett, 2006). We selected the best classifier for discriminating
the ncRNAs based on the following performance measures:

Sensitivity (TPR) = TP
TP+FN

,

Specificity (TNR) = TN
TN +FP

,

PPV = TP
TP+FP

,

NPV = TN
TN +FN

,

FPR = FP
FP+TN

,

FNR = FN
TP+FN

,

FDR = FP
TP+FP

,

Accuracy = TP+TN
TP+FP+FN +TN

,

F = 2×TP
2×TP+FP+FN

.

The classifier implemented in the webserver was trained using
ThunderSVM (Wen et al., 2018), which supports both GPU and
CPU-based implementations, and is faster than Scikit learn-based
SVM module. Moreover, the ThunderSVM algorithm is efficiently
able to handle large sizes of the dataset as compared to the Scikit
learn package. We have performed 5-fold cross-validation of the
classifier with non-overlapping test sets. During the 5-fold cross-
validation, the entire dataset is divided into five equal parts (20%
each). During each iteration, a classifier is trained using four parts
(80%) and the fifth (20%) is used for the validation. Each of these
five experiments uses one fraction (20%) of the dataset for valida-
tion in such a way that they do not overlap between the experi-
ments. The average of the 5-fold cross-validation experiments has
an accuracy of 96%.

3. Results and discussion

3.1. Length and AU content of the sequence

RNA molecules play significant roles in many biological processes
by interacting with other RNAs, proteins or DNAs. In the
recognition process, the length of RNA molecules varies from a
few nucleotides in small ncRNAs to thousands of nucleotides in
rRNA. The different classes of ncRNAs analysed in this study show
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Fig. 1. (a) Distribution of Gaussian kernel density estimates of sequence length, percentage of AU content, MFEI, ND, Npb and NQ of different classes of ncRNAs in Viridiplantae.

(b) Distribution of k-mers of length three in different classes of ncRNAs: k-mer signatures are represented in a nucleotide matrix of triplets representing four nucleotides A, U, C, G

and 64 k-mers.

different length distribution, with miRNAs having the lowest mean
length of 21 nt and lncRNAs having the highest mean of 838 nt.
(Figure 1). The length of lncRNAs varies from 200 to 24,018 nt
with a median of 565 nt. Among the various classes of ncRNAs
analysed in this study, the highest deviation in length is observed
for lncRNAs. The length of miRNAs varies from 15 to 29 nt with a
median length of 21 nt. In pre-miRs, the length varies from 55 to
11,032 nt with a mean of 145 nt and a median of 132 nt. The length
of rRNAs varies from 60 to 9,601 nt with a mean and median of
733 and 182 nt, respectively (Table 1). For the snRNAs, the length
varies from 18 to 912 nt with a mean and median of 77 and 25 nt,
respectively. The length of snoRNAs varies from 19 to 1,854 nt with

both mean and median values of 107 nt. The length of tRNAs varies
from 26 to 677 nt with mean and median values of 75 and 73 nt,
respectively. Among the various classes of ncRNAs, tRNAs show
the lowest standard deviation in their length distribution.

Previous studies have shown that AU-rich elements (ARE) on
mRNAs are recognised by ncRNAs, especially miRNAs, to induce
mRNA decay (Jing et al., 2005). However, the exact mechanism
of how AREs are recognised and processed by ncRNAs is still
elusive. Significantly, the ncRNAs have distinct AU content than
that of coding RNAs, and we analyse their distribution among the
various ncRNA classes. The mean AU content for different ncRNA
types and their range and standard deviation are shown in Table 1.
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Among the various classes of ncRNAs, we observe that the AU
content in both pre-miRs and lncRNAs has the widest variation,
ranging from 16 to 99%. The highest mean and median values
are observed for pre-miRs with 62% and 63% values, respectively,
while lncRNAs have mean and median values at 59% and 60%,
respectively. The snRNAs have a mean AU content of 54% and
a median value of 55%, while snoRNAs have mean and median
values at 60%. The lowest mean and median values of AU content
are observed in both tRNAs (mean 49%; median 49%) and rRNAs
(mean 49%; median 48%). Figure 1 shows the distribution of AU
content among the various classes of ncRNAs. The distributions of
AU content are distinct among the different classes of ncRNAs, yet
there exist considerable overlapping regions across all the classes.

3.2. RNA folding measures

The various ncRNA classes have distinct secondary structures,
quantified by calculating the various RNA folding measures,
including MFEI, ND, Npb and NQ. The MFEI values represent
the normalised free energy associated with the formation of the
secondary structure. The MFEI values were calculated for the
different classes of ncRNAs, and it is observed to have similar mean
values across various classes except for pre-miRs and lncRNAs.
Despite the similar mean values, the range of MFEI varies across
the different classes. The MFEI varies from 0.00 to 1.98 in rRNAs,
0.00 to 2.00 in snoRNAs, 0.00 to 12.70 in tRNAs and 0.00 to 3.28
in snRNAs (Table 1). The pre-miRs show the highest standard
deviation with MFEI ranges between 0.00 and 27.90, while the
lncRNAs have the lowest standard deviation with ranges between
0.00 and 1.86. The probability distribution of MFEI among various
ncRNAs classes shows a distinct non-overlapping region for pre-
miRs and overlapping areas with other ncRNAs (Figure 1).

A clear distinction is observed in the distributions of ND values
of pre-miRs and lncRNAs compared to the other classes of ncRNAs
(Figure 1). The mean ND value is lowest (0.02) for pre-miRs, which
ranges from 0.00 to 0.31 (Table 1). The highest mean (0.12) is
observed for lncRNAs, and it ranges from 0.00 to 0.29. The rRNAs
have a mean ND value of 0.11, with a range from 0.00 to 0.24.
The snoRNAs, tRNAs and snRNAs have mean ND values of 0.10,
0.08 and 0.07, respectively, with similar ranges of 0.0–0.25, 0.00–
0.24 and 0.00–0.26, respectively. Figure 1 shows the pre-miRs have
a skewed distribution towards the lower ND values, with 99%
of the population lying below 0.15. However, the distribution is
symmetric for both lncRNAs and rRNAs (Figure 1).

The Npb values for no base pairing between the nucleotides to
complete base pairing can range from 0.0 to 0.5. Here, the base
pairing signifies the internal base pairs formed by the RNA as
part of the secondary structure of the molecule. We observe that
the mean values of Npb across different ncRNA types are similar,
except for a slightly higher value for pre-miRs (Table 1). However,
the range widely varies across the different classes. In the case of
lncRNAs, base pairing is observed for 0 to 92% of nucleotides with
a 60% mean. The highest base pairing is observed in pre-miRs,
ranging from 21 to 99%, with a mean of 77%. For rRNAs, tRNAs
snRNAs and snoRNAs, the base pairing ranges from 14 to 97%, 0
to 94%, 0 to 87% and 14 to 94% with mean values of 60, 58, 43 and
54%, respectively. Except for pre-miRs, the probability distribution
of Npb values shows that the different ncRNA classes have distribu-
tions centred around the similar mean values (Figure 1). Besides, it
shows that the distribution of pre-miRs shifts towards higher base-
pairing regions compared to other classes of ncRNAs.

RNA molecules, being more flexible than proteins (Bahadur
et al., 2009; Mukherjee & Bahadur, 2018; Nithin et al., 2017),
have higher conformational freedom levels than proteins. This
conformational freedom of the RNA is measured in terms of
Shannon entropy. The secondary structure is calculated using the
RNAfold program which uses the equilibrium partition function
and the BPPD to determine the minimum folding energy structure
(McCaskill, 1990). An ensemble of permissible RNA secondary
structures, represented using MaCaskill BPPD, provides the
probability values for base pairing at each position in a sequence
(Huynen et al., 1997). Shannon entropy (Shannon, 1948) was
calculated using the base-pairing probability and normalised per
length of the sequence to obtain the NQ values. A lower value
signifies that the distribution is dominated by a single or a few
base-pairing probabilities, while a higher signifies the possibility
of alternative conformations (Huynen et al., 1997; Schultes et al.,
1999). The highest average value of NQ is observed for lncRNAs
that range from 0.01 to 1.09, with a mean of 0.41. The lowest
NQ observed is for miRNAs followed by pre-miRs, and it ranges
from 0.00 to 0.55 and 0.00 to 0.88, with a mean of 0.02 and 0.08,
respectively (Table 1). The rRNA class shows NQ values ranging
from 0.00 to 0.84, with a mean of 0.35. The snoRNAs, tRNAs and
snRNAs have NQ values ranging from 0.00 to 0.86, 0.00 to 0.81 and
0.00 to 0.87, with mean values of 0.32, 0.24 and 0.21, respectively.
NQ values’ probability distributions show different skewness (Table
1) across different ncRNA classes with exceptions for rRNAs with
the symmetrical distribution centred on the mean (Figure 1). We
observe the highest degrees of both skewness and kurtosis in pre-
miRs.

3.3. k-mers of length three

In this study, we have checked the presence of k-mers of three
nucleotide length in different classes of ncRNAs. In our previous
studies, we have shown that k-mers of three nucleotides are con-
served across the same miRNA family (Nithin et al., 2015; 2017).
On an average, the k-mer signatures UUA, AAG, CUU, UGA, GAA,
UUC, CAA, AAA, UUG, AAU, UUU and AUU are repeated at
least two times per 100 nucleotides in lncRNAs, while AUG is
repeated 1.95 times. AUG acts as the start codon. Additionally,
signatures, UUG, AAG and AUU are reported to act as alternate
start codons in protein synthesis (Kearse & Wilusz, 2017). These
sequence motifs can be attributed to the fact that the lncRNAs
usually co-locate on the genome and the protein-coding genes in
sense or antisense directions (Ziegler & Kretz, 2017). The presence
of start codons in lncRNAs is expected as ncRNAs often contain
several potentially translated ORFs (Ingolia et al., 2011). Also, the
poor conservation of lncRNAs across species means that the small
ORFs in lncRNAs, if translated, will produce species- or lineage-
specific peptides (Ruiz-Orera et al., 2014). Moreover, the de novo
protein-coding gene evolution is theorised to be a continuum from
non-functional genomic sequences to fully fledged protein-coding
genes (Carvunis et al., 2012). The lowest average R-value in lncRNA
is observed for the k-mer CGC. Moreover, we did not observe any
significant conserved k-mers across all the lncRNAs as well as in
pre-miRs. Although the k-mers are not conserved across various
miRNA families (Kozomara et al., 2019), they are conserved within
each of the different miRNA families (Nithin et al., 2015). These
conserved k-mer signatures were utilised previously to remove the
false positives in the prediction of miRNAs (Nithin et al., 2015;
2017; Patwa et al., 2019). The general trend observed both in
lncRNAs and pre-miRs is the presence of a diffuse pattern across

https://doi.org/10.1017/qpb.2022.18 Published online by Cambridge University Press

https://doi.org/10.1017/qpb.2022.18


Quantitative Plant Biology 7

Fig. 2. Performance measures for different classifiers. The classifiers were trained using scikit-learn with different proportions of training/testing datasets: (a) 50/50, (b) 80/20 and

(c) 95/5. The legends (d) are common for the first three panes. (e) For the test dataset with Viridiplantae non-coding RNAs, NCodR shows significantly higher performance than

nRC and ncRDeep methods.

various k-mer signatures. A total of five signatures (UGA, GGA,
CGA, AAG, GAA) are observed in rRNAs to have a mean R of 2.0 or
more with the highest value of 2.90 observed for GAA. The highest
frequency (3.36) of any k-mer observed in ncRNAs is for UGA in
snoRNAs. The signature CAU also shows a high mean R of 3.07 in
snoRNAs, where 12 other k-mers also have R values more than 2.0.
GGU has the highest frequency in tRNAs (<R> = 3.23) with seven
other signatures (AGU, UCA, UUC, UCC, UAG, GUU, UGG)
having R values more than 2.0. We find only one k-mer with mean
R more than 2.0 in snRNAs, AUU (<R> = 2.02). The distribution
of all 64 k-mers among various classes is shown in Figure 2. Each
class of ncRNA shows a unique pattern of k-mers, making it an
excellent parameter for their discrimination. Moreover, previous
studies suggest that k-mer-based classification has proved to be
a powerful approach in detecting relationships between sequence
and function in lncRNAs (Kirk et al., 2018; 2021).

3.4. Classifier to discriminate ncRNA types

Using the various sequence-based parameters and RNA folding
measures developed in this study, we trained eight classifiers and

compared their sensitivity, specificity, PPV, NPV and F score
(Figure 2). The Nearest Neighbours algorithm was trained using a
k value of ten and KD tree algorithm. The Linear SVM was trained
with the penalty parameter C set to 1. The Decision Tree classifier
was run without constraining the depth of the trees. Both Random
Forest and AdaBoost classifiers were trained with the number
of estimators set to 1,000. The multi-class SVM is implemented
with RBF kernel (SVM-RBF) and is based on the ‘one-against-one’
approach. The kernel parameter γ was set to 1/n, where n is the
number of parameters. The penalty parameter C was empirically
optimised by minimising the error rate on the training data by
performing a grid search before the final training. A meta-classifier
was trained as an ensemble of all the eight classifiers with identical
parameters used for training of each of the individual classifiers.
For all other classifiers, default parameters were used. Moreover, we
trained and tested the classifiers with three different proportions of
training/testing datasets: 50/50, 80/20 and 95/5.

Among the various classifiers, the overall performance of SVM-
RBF, meta-classifier and Random Forest is surpassing. F-score,
which represents the harmonic mean between precision and recall,
is around 0.95 for all the three classifiers (Figure 2). Moreover, all
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Fig. 3. Confusion matrix generated using different classifiers. The confusion matrix shows the performance of classifiers trained using scikit-learn using a dataset split of 50/50 for

training and testing.

the three classifiers with all three sets of training/testing datasets
have an accuracy of ~99% with overall sensitivity and specificity
above 0.95 and 0.99, respectively (Figure 2). The confusion matrix
for the 50/50 training/testing dataset is shown in Figure 3. For
some of the ncRNA classes, meta-classifier shows better prediction
accuracy than SVM-RBF or Random Forest, but it is several times
slower than the other two classifiers. We performed five-fold cross-
validation using 95% of the training data. It randomly shuffles and
splits the dataset into five groups and randomly selects four groups
for training and remaining one for testing with a ratio of 80/20,
respectively.

The SVM-RBF classifier was optimised by testing different val-
ues for hyperparameters C and gamma. Different values of C from 1
to 50 were tested while gamma values ranging from 0.001 to 50 were
tested. For each tested combination of C and gamma, we performed
the training and testing of the classifier with an 80/20 split of
dataset and calculated the performance measures. The optimum
values for C and gamma were selected as 8 and 0.003, respectively
(Supplementary Figures S1 and S2, Supplementary Material).

3.5. lncRNAs in diverse taxa

lncRNAs are a class of large, diverse, transcribed, non-protein
coding RNA molecules with more than or equal to 200 nucleotides.

Since the first discovery of the regulatory role of lncRNA in an
important biological process in the Drosophila bithorax complex
(Lipshitz et al., 1987), they were identified in several plants and
animals. The lncRNAs have certain specific properties including
lower abundance, restriction to particular tissues or cells and
less frequent conservation between species (Derrien et al., 2012).
These specific properties make the prediction and identification
of lncRNAs difficult. As a result, the number of lncRNAs available
in the RNACentral database is limited to a handful of species.
Even though the overall dataset of ncRNAs used to train the
classifier is diverse in terms of the taxa included, the data for
lncRNAs come only from two major groups: monocots and
eudicots (Table 2). The limited availability of data from diverse
taxonomic groups for the lncRNA class may cause the classifier
to have limited predictive ability for lncRNAs. To test this, we
curate an additional dataset of lncRNAs from four different
species that were not included in the original training dataset. The
four taxonomically defined, diverse species we have used to test
the classifier are Micromonas pusilla (green algae/Chlorophyta),
Physcomitrella patens (mosses/Bryophyta), Galdieria sulphuraria
(red algae/Rhodophyta) and Selaginella moellendorffii (club-
mosses). lncRNA sequences of M. pusilla and S. moellendorffii
were downloaded from the GREENC database (Paytuví Gallart
et al., 2016) while that of G. sulphuraria and P. patens were from
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CANTATAdb (Szcześniak et al., 2016). Of the 651 lncRNAs of
M. pusilla lncRNAs, 63% (410) were correctly classified. For the
red algae, G. sulphuraria, 97.6% (1871) of the 1,917 lncRNAs
were classified correctly. In the case of the mosses, P. patens
73.76% (1,498) were predicted correctly as lncRNAs. In the case
of S. moellendorffii, 67.36% (1,483) of the 2,267 sequences were
predicted as lncRNAs. In spite of the lack of data from these taxa
in the training dataset, the classifier is able to predict the majority
lncRNAs correctly. This demonstrates the robustness of the features
used in training the classifier. With the availability of more lncRNA
sequences in the future, the classifier could be retrained to improve
the predictive power.

In order to further test the utility of the classifier on a wider
scale, we downloaded the Plant Long non-coding RNA Database
(PLncDB) (Jin et al., 2020) which consist of 1,008,006 lncRNA
sequences from 80 different species. The classifier was able to
predict 82.15% of the sequences correctly as lncRNAs. This demon-
strates the utility of NCodR in the large-scale classification of plant
ncRNAs with high accuracy.

The classifier is developed to efficiently discriminate the differ-
ent classes of ncRNA, and it may not be very effective in differ-
entiating coding RNAs from ncRNAs. The classifier performs best
when the dataset is pre-screened to separate the coding and ncR-
NAs. For discriminating coding RNAs from ncRNAs, specialised
tools such as Coding Potential Calculator (Kong et al., 2007) and
Coding Potential Assessment Tool (Wang et al., 2013) are available.
Moreover, the combination of these tools can also effectively dis-
criminate coding RNAs from ncRNAs (Nithin et al., 2017).

3.6. Comparison with other classifiers

The SVM-RBF developed in this study was compared with nRC,
ncRDeep and RNACon. In order to test and compare the classifiers,
we use a dataset of 1,084 sequences. The dataset was prepared by
randomly selecting 1% of sequences from each class of ncRNAs
available in the testing dataset. The RNACon program generated
output with sequences classified into coding and ncRNAs. RNAcon
had predicted 90% of the ncRNAs correctly as non-coding; how-
ever, it failed to classify further into the different classes of RNAs.
In the subsequent analysis RNAcon was excluded. The various
performance measures were computed for nRC and ncRDeep and
compared with NCodR. NCodR outperforms both the classifiers
(Figure 2e) for predicting plant ncRNAs. The performance mea-
sures reported of NRC and ncRDeep are low for plant ncRNAs. This
could be attributed to the fact that the original training and testing
dataset did not include much of the plant ncRNAs. This observation
is in line with the previous studies with miRNA prediction tools.
The tools which were not developed specifically for plant miRNAs
performed poorly and predicted very low number of miRNAs in
Phaseolus vulgaris and Cajanus cajan which prompted us to adapt
and develop the pipeline to be specific for plant miRNAs (Nithin
et al., 2015; 2017).

3.7. Implementation and availability of the classifier

The classifier is implemented as a web server, NCodR, which
is freely available at the URL: http://www.csb.iitkgp.ernet.in/
applications/NCodR/index.php. Users need to submit the sequence
in FASTA format, and the output generated by the NCodR
shows the ncRNA class. For large-scale prediction, NCodR can
be set up locally to use it as a ‘standalone’ tool. The tool is
implemented using a combination of scripts developed in C++,
Perl and Python. Details about installation and manual for usages

are publicly available from the git repository (https://gitlab.com/
sunandanmukherjee/ncodr.git). Additionally, NCodR is also
available as a precompiled Docker image (https://hub.docker.com/
repository/docker/nithinaneesh/ncodr). The dataset used in the
study is available in Mendeley Data at the URL: http://doi.org/
10.17632/87k9rssdm4.2.

4. Conclusions

In this study, based on the sequence and structural measures of
known ncRNAs, we have developed eight classifiers. The multi-
class SVM-RBF model was the best in discriminating the ncRNAs
and is implemented in a web server, NCodR, to classify ncRNAs
in Viridiplantae. The SVM-RBF has an F-score of 0.96, along with
a specificity of 0.96 and a sensitivity of 0.99. This classifier can be
further used for genome-wide identification and classification of
ncRNAs in various plant species. Identification and classification of
ncRNAs will improve our understating of gene regulation in plants
at the transcriptional and post-transcriptional levels. An improved
understanding of ncRNAs will help us develop better varieties of
crops through genome-editing technology with improved yield,
productivity, better stress tolerance and disease resistance. Further-
more, the classifier has significant predictive ability of classifying
sequences in diverse taxonomic groups which will help us in the
further advancing of knowledge of ncRNAs in general.
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