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From Frieze Patterns to Cluster Categories
Matthew Pressland

3.1 Introduction

Since their introduction by Fomin and Zelevinsky around the turn of the mil-
lennium [41], the theory of cluster algebras has had a significant influence on
a wide variety of other areas of mathematics. Originally introduced to study
positivity and canonical bases in Lie theory [27, 50, 54, 80], applications have
been found in combinatorics [12, 60], Teichmüller theory [34, 37], algebraic
geometry and mirror symmetry [5, 16, 53, 86], integrable systems [45, 70],
mathematical physics [10, 46] and beyond – the references given here are by
no means exhaustive, and more can be found in the introduction to [69]. In
these notes we will focus on the influence of cluster algebras on the representa-
tion theory of finite-dimensional algebras, leading to the development of clus-
ter categories by Caldero, Chapoton and Schiffler [23, 24] and Buan, Marsh,
Reineke, Reiten and Todorov [19] (and later, in more generality than covered
here, by Amiot [2]).

We start in Section 3.2 with the combinatorics of frieze patterns, first studied
by Coxeter [31] and then Conway–Coxeter [28, 29] several decades before the
introduction of cluster algebras. These patterns consist of an infinite (but peri-
odic) strip of positive integers, and exhibit many remarkable combinatorial phe-
nomena. To shed light on these phenomena, we will explain in Section 3.3 how
the entries of the frieze can be viewed as specialisations of cluster variables,
certain Laurent polynomials which are distinguished elements of a cluster al-
gebra. Continuing this approach, further combinatorial properties of friezes,
including the aforementioned periodicity, will be explained in Section 3.4 via
categorification, whereby a representation-theoretically defined cluster cate-
gory is introduced to provide a new perspective on the combinatorics of cluster
algebras.
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110 Matthew Pressland

In this way we aim to illustrate how each successively more abstract frame-
work – first passing from friezes to cluster algebras, and then to cluster cate-
gories – can lead to clean explanations of phenomena appearing at the previous
level. This path can be followed further than we have space to do here, and leads
to, for example, the theory of quivers with potential [33] and their more gen-
eral cluster categories [2], Frobenius cluster categories and their applications
to cluster algebras appearing in geometry [18, 49, 63, 77, 78], Adachi–Iyama–
Reiten’s τ-tilting theory [1] and the theory of stability conditions and scattering
diagrams [16, 17, 54].

This chapter is not intended to be a comprehensive exposition of the subjects
we cover, but rather a concise introduction which we hope the curious reader
will use as a jumping-off point for further study. To that end, we give here a
short list of suggestions for further reading covering these topics in more de-
tail, more of which can be found in the references throughout. To the reader
looking for a more detailed survey of the representation-theoretic approach to
cluster algebras, we recommend Keller [69]. Several books on cluster alge-
bras are available: that by Gekhtman, Shapiro and Vainshtein [51] focusses
on connections to Poisson geometry, whereas that by Marsh [72] covers many
combinatorial aspects of the theory. A further book, by Fomin, Williams and
Zelevinsky, is in preparation, and at the time of writing the first six chapters
may be found on arXiv [38, 39, 40]. For up-to-date information concerning the
development of the theory of cluster algebras and its many applications, the
reader may consult the Cluster Algebras Portal [35].

Schiffler’s recent book on representations of quivers [81] contains a section
on the properties of cluster-tilted algebras, a class of algebras we will mention
briefly in Section 3.4 and which arises from cluster categories. Also recom-
mended are books on representations of quivers, and more generally of finite-
dimensional algebras, by Assem–Simson–Skowroński [4] and Auslander–
Reiten–Smalø [7], and lecture notes by Angeleri Hügel [3]. All of these sources,
particularly [3], have a strong focus on the techniques of Auslander–Reiten the-
ory, which underlie much of the material we cover in Section 3.4.

For a more substantial discussion of the rich combinatorial theory of friezes,
we recommend the survey by Morier-Genoud [74] and a paper by Propp [79].
While we restrict to classical friezes in these notes, the recent resurgence of
interest in this subject has spawned a number of generalisations. Examples in-
clude 2-friezes [73], infinite friezes [8, 11, 55], SLk-friezes [9, 30], generalised
friezes (or {0,1}-friezes) [15, 59], weak friezes [26], symplectic friezes [75]
and friezes with coefficients [32].
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3 From Frieze Patterns to Cluster Categories 111

3.2 Frieze Patterns

Frieze patterns were first introduced by Coxeter [31] in 1971. Many of their
combinatorial properties can be found in a paper by Conway and Coxeter pub-
lished in two parts, the first [28] consisting of a list of problems, the solutions
to which are provided in the second [29].

Definition 3.1 A frieze pattern (or simply a frieze) of height n consists of n+2
rows of positive integers, typically written in a slightly offset fashion as in the
following example (with n = 6):

· · · 1 1 1 1 1 1 1 1 1 1 · · ·
3 1 2 3 2 2 2 1 5 3 1

· · · 2 1 5 5 3 3 1 4 14 2 · · ·
9 1 2 8 7 4 1 3 11 9 1

· · · 4 1 3 11 9 1 2 8 7 4 · · ·
3 3 1 4 14 2 1 5 5 3 3

· · · 2 2 1 5 3 1 2 3 2 2 · · ·
1 1 1 1 1 1 1 1 1 1 1

The defining properties are that

1 every entry in the uppermost or lowermost row is 1, and
2 the entries satisfy the SL2 diamond rule, meaning that every local

configuration
b

a d
c

(3.2.1)

satisfies ad−bc = 1; in other words, the matrix
(

a b
c d

)
is an element of

SL2(Z).

We call the uppermost and lowermost rows of the frieze, consisting only of 1s,
trivial rows, and will always write their entries in bold to emphasise their fixed
value. The height measures the number of non-trivial rows.

Some readers may find Definition 3.1 somewhat informal, preferring to
think of a frieze pattern as a function assigning integer values to some set giving
the points of the lattice diagram on which these integers are drawn. We will
take this viewpoint later in Section 3.4, but for the moment remain circumspect
about which set this is.

Because of the SL2 diamond rule, any three of the frieze entries in a diamond
configuration determine the fourth. As a consequence, there are several ways to
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specify a subset of entries of the frieze in such a way that the rest are determined
inductively by this rule.

In this chapter, we will be most interested in specifying a frieze by choosing
a lightning bolt, consisting of one entry in each row such that the chosen entries
in each pair of adjacent rows belong to the same diamond. An example is given
by the circled entries in the frieze pattern below.

· · · 1 1 1 1 1 1 1 1 1 1 · · ·
3 1 2 3 2 2 2 1 5 3 1

· · · 2 1 5 5 3 3 1 4 14 2 · · ·
9 1 2 8 7 4 1 3 11 9 1

· · · 4 1 3 11 9 1 2 8 7 4 · · ·
3 3 1 4 14 2 1 5 5 3 3

· · · 2 2 1 5 3 1 2 3 2 2 · · ·
1 1 1 1 1 1 1 1 1 1 1

Having chosen positive integers to fill the entries in a lightning bolt, we can
compute the other entries of the frieze by repeated use of the diamond rule.
(The figures in the proof of Theorem 3.4 below may be helpful in seeing this.)
However, this process requires division – for example, if entries a, b and c in
the diamond (3.2.1) are known, then

d =
1+bc

a
.

Thus, even if a, b and c are all positive integers, as required by the definition of
a frieze, there is no guarantee that d will also be an integer (although it will at
least be positive). The first phenomenon that we will be concerned with is the
following.

Phenomenon 1 For each lightning bolt, there is a unique frieze pattern such
that all entries in the lightning bolt are equal to 1. More concretely, starting
with this initial set of 1s and computing other entries recursively using the
diamond rule yields a valid frieze of positive integers.

Example 3.2 Given Phenomenon 1, one might reasonably ask whether all
frieze patterns can be obtained by starting from some lightning bolt with all
entries equal to 1. The answer, however, is no; the smallest example exhibiting
this is the height 3 frieze shown below.
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3 From Frieze Patterns to Cluster Categories 113

1 1 1 1 1 1 1 1
· · · 1 3 1 3 1 3 1 · · ·

2 2 2 2 2 2 2 2
· · · 3 1 3 1 3 1 3 · · ·

1 1 1 1 1 1 1 1

The alert reader may have already noticed that both of the examples of frieze
patterns given so far are highly symmetric; indeed, their rows are periodic with
period (dividing) n+3. This turns out to be the case for all frieze patterns, and
is a consequence of a slightly stronger periodicity.

Phenomenon 2 Any height n frieze pattern is periodic under a glide reflec-
tion, for which a fundamental domain (excluding the trivial rows) consists of a
triangle with n+ 1 elements in the base, but missing its peak, as shown in the
example below.

· · · 1 1 1 1 1 1 1 1 1 1 · · ·
3 1 2 3 2 2 2 1 5 3 1

· · · 2 1 5 5 3 3 1 4 14 2 · · ·
9 1 2 8 7 4 1 3 11 9 1

· · · 4 1 3 11 9 1 2 8 7 4 · · ·
3 3 1 4 14 2 1 5 5 3 3

· · · 2 2 1 5 3 1 2 3 2 2 · · ·
1 1 1 1 1 1 1 1 1 1 1

If we do include the trivial rows, a fundamental domain is given simply by a
triangle with n+2 elements in the base, but the above description will be more
recognisable later on in Section 3.4.

We will explain these phenomena, including the appearance of the frieze
pattern in Example 3.2, in the coming sections, via the much more general
theory of cluster algebras and cluster categories. However, before moving on to
these topics, we take a digression to describe another way of generating frieze
patterns, and a striking result of Conway and Coxeter.

Definition 3.3 Given a frieze pattern with height n, the (doubly infinite) se-
quence of integers appearing in the first non-trivial row is called its quid-
dity sequence. Since we have already remarked that this sequence is periodic
of period n + 3, we may equivalently treat it as a finite sequence of length
n+3, considered up to cyclic reordering, i.e. up to the finest equivalence rela-
tion with

(a1,a2, . . . ,an+3)∼ (an+3,a1, . . . ,an+2).
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Just as for the lightning bolt, one can reconstruct a frieze (up to horizontal
translation) from its quiddity sequence by repeated use of the diamond rule.
Thus, given any potential quiddity sequence (a1,a2, . . . ,an+3), we can consider
the rows

1 1 1 1 · · · 1 1 1 1
· · · an+3 a1 a2 · · · · · · an+3 a1 a2 · · ·

and attempt to complete them to a frieze pattern by computing subsequent rows
with the diamond rule. However, now there are many obstructions to success
– as well as the problem with the lightning bolt construction, whereby a priori
one could obtain non-integer entries, there is no reason why the process of
computing further rows of the frieze should not continue indefinitely, rather
than terminating with a second trivial row of 1s after the n non-trivial rows
we expect. Moreover, we now need to use the diamond rule in the situation in
which entries a, b and d of the diamond (3.2.1) are known, and the computation

c =
ad−1

b

involves subtraction. As a result, we also need to avoid the situation in which
a = d = 1 (when these are entries of a non-trivial row), because in that case we
would compute c = 0 in the next row, and thus fail to obtain a valid frieze.

Conway and Coxeter gave a remarkable method for producing all (n+ 3)-
periodic sequences which are valid quiddity sequences, involving triangula-
tions of polygons.

Definition 3.4 Consider a convex polygon with n+3 sides, drawn in the plane.
A triangulation of this polygon is a maximal collection of pairwise non-crossing
diagonals. In other words, it is a collection of diagonals which cut the polygon
into triangles, as in the following example with n = 6.

Note that we do not consider the sides of the polygon to be diagonals – if we
did, they would be contained in all triangulations.
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3 From Frieze Patterns to Cluster Categories 115

Each triangulation T has an associated (n+3)-periodic sequence defined as
follows. To each vertex i of the polygon, attach the integer ai one greater than
the number of elements of T incident with i. (Visually, ai is the number of tri-
angles incident with vertex i.) Since the vertices of the polygon are cyclically
ordered (say clockwise), we obtain an (n+3)-periodic sequence (a1, . . . ,an+3).
By using these sequences, Conway and Coxeter are able to classify frieze pat-
terns in terms of triangulations.

Theorem 3.1 (Conway–Coxeter [28, 29, (28)–(29)]) An (n+ 3)-periodic se-
quence is the quiddity sequence of a height n frieze if and only if it arises from a
triangulation of an (n+3)-gon as in the preceding paragraph. This gives a bi-
jection between triangulations of polygons (up to rotation) and frieze patterns
(up to translation).

Remark Later on it will be more natural to consider frieze patterns up to the
weaker symmetry of the glide reflection appearing in Phenomenon 2. Modify-
ing Theorem 3.1, these friezes are also classified by triangulations of an (n+3)-
gon, but one in which the vertices are numbered clockwise by 1, . . . ,n+ 3 to
break the symmetry of this polygon.

For the example of a triangulation in Definition 3.4, we obtain the (n+ 3)-
periodic sequence (1,2,3,2,2,2,1,5,3), which is the quiddity sequence of the
frieze in Definition 3.1. The frieze pattern in Example 3.2, not arising from a
lightning bolt, has quiddity sequence (1,3,1,3,1,3), which corresponds to the
triangulation

of the hexagon. It is not a coincidence that the frieze not arising from a lightning
bolt corresponds to a triangulation featuring an internal triangle, of which no
side is an edge of the polygon, and the frieze that does arise from a lightning
bolt corresponds to a triangulation with no internal triangles.

We close this section with an experiment. Returning to the lightning bolt
method for constructing friezes, rather than setting the entries in our lightning
bolt equal to 1, or to other positive integers, we can fill them with formal vari-
ables x1, . . . ,xn. Using the diamond rule, we can then construct a ‘frieze’ whose
entries are rational functions in x1, . . . ,xn. We do this below for the simplest
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case of a height two frieze (for which any two lightning bolts are related by
translation and reflection).

1 1 1 1 1

· · · x1
1+ x2

x1

1+ x1

x2
x2 · · ·

1+ x1

x2
x2

1+ x1 + x2

x1x2
x1

1+ x2

x1

· · · 1 1 1 1 · · ·

This process exhibits a Laurent phenomenon; all of the rational functions ap-
pearing are integral Laurent polynomials, meaning they can be expressed as a
polynomial with integer coefficients divided by a monomial with coefficient 1.
To see that this is not a priori clear, observe that when computing the entry 1+x1

x2
via the SL2 diamond rule from the three entries to its left, we calculate

1+ 1+x1+x2
x1x2

1+x2
x1

=
x1(1+ x1 + x2 + x1x2)

x1x2(1+ x2)
=

(1+ x1)(1+ x2)

x2(1+ x2)
=

1+ x1

x2
,

and see that the calculation initially produces a non-monomial denominator, but
miraculously this has a common factor with the numerator, in such a way that
we are left with a monomial again after simplifying. Note that the integrality
of Phenomenon 1 follows directly from this Laurent phenomenon – evaluating
an integral Laurent polynomial in x1, . . . ,xn at the point (1, . . . ,1) produces a
fraction with denominator 1, i.e. an integer.

The five Laurent polynomials appearing in the non-trivial rows of the above
‘frieze’ turn out to be the five cluster variables of a cluster algebra of type A2.
In the next section, we will explain what cluster algebras and their cluster vari-
ables are in some generality, and explain the connection between friezes of
height n and cluster algebras of type An.

3.3 Cluster Algebras

In this section we introduce cluster algebras, first defined by Fomin–Zelevinsky
[41], who (together with Berenstein) developed the theory in a series of seminal
papers [14, 42, 43]. For our purposes, it will be sufficient to restrict to the
case of cluster algebras arising from quivers, and without coefficients or frozen
variables.

A quiver is a directed graph or, more precisely, a tuple Q = (Q0,Q1,h, t),
where Q0 = {1, . . . ,n} is a set of vertices, Q1 is a set of arrows and
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h, t : Q1 → Q0 are functions specifying the head and tail respectively of each
arrow. We represent quivers visually, as in the examples below.

1 2 3 4

5

1

2 3

4

2

1 3

Definition 3.5 A cluster quiver is a quiver Q without oriented cycles of length
1 or 2. In other words, no arrow a∈Q1 can have h(a)= t(a) (there are no loops)
and the configuration i j is not permitted (there are no 2-cycles).

Remark Given a quiver Q with Q0 = {1, . . . ,n}, we can consider its signed
adjacency matrix, the n×n matrix M(Q) with entries

mi j = #{arrows i→ j in Q1}−#{arrows j→ i in Q1}. (3.3.1)

Note that M(Q) is skew-symmetric, meaning its transpose is equal to its nega-
tive. Fomin–Zelevinsky define cluster algebras in terms of such skew-symmetric
matrices (or more generally, skew-symmetrisable matrices, defined as those
which become skew-symmetric after multiplication with some diagonal ma-
trix), whereas we opt for the more graphical language of quivers. The condi-
tion that Q is a cluster quiver means that only one term on the right-hand side of
(3.3.1) may be non-zero for a given pair (i, j), and so Q can be reconstructed up
to isomorphism from the data of M(Q). Indeed, given a skew-symmetric n×n
matrix M, the quiver Q(M) with vertex set {1, . . . ,n} and with max{mi j,0}
arrows from i to j is the unique cluster quiver with M(Q(M)) = M.

Definition 3.6 Let Q be a cluster quiver and let k ∈ Q0 be a vertex. The muta-
tion of Q at k is the quiver µkQ obtained from Q via the following procedure.

1 For each length 2 path i−→ k −→ j, add an arrow i−→ j.
2 Reverse the direction of all arrows incident with k.
3 Choose a maximal set of 2-cycles, and remove all arrows appearing in them.

Example 3.7 We mutate the 4-vertex quiver from the earlier list of examples
at vertex 1.

1

2 3

4

(1)
=⇒

1

2 3

4

(2)
=⇒

1

2 3

4

(3)
=⇒

1

2 3

4
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For readers wishing to experiment with further examples, we recommend
Keller’s Java applet [65].

It is straightforward to check that µk(µkQ) = Q, that is, mutating twice at
the same vertex recovers the original quiver. Using this mutation operation, we
can associate to each cluster quiver a cluster algebra, in the following way.

Definition 3.8 Let Q(x1, . . . ,xn) be the field of rational functions, with ratio-
nal coefficients, in variables xi for i ∈ {1, . . . ,n}. A seed consists of a cluster
quiver Q with vertex set Q0 = {1, . . . ,n} and a free generating set { f1, . . . , fn}⊆
Q(x1, . . . ,xn) indexed by this set of vertices – being a free generating set means
that the smallest subfield of Q(x1, . . . ,xn) containing Q and the set { f1, . . . , fn}
is Q(x1, . . . ,xn) itself.

We can extend mutation to an operation on seeds. Given a seed (Q,{ fi})
and a vertex k ∈ Q0, we define µk(Q,{ fi}) = (µkQ,{ f ′i }), where µkQ is the
mutated quiver as in Definition 3.6, and

f ′i =


fi, i 6= k,

1
fk

(
∏
k→ j

f j + ∏
`→k

f`
)
, i = k.

(3.3.2)

In the second case, the products are over arrows with tail, respectively head, k.
These products may be over the empty set, in which case they evaluate to 1.
Note that mutating twice at the same vertex recovers the original seed.

Given a cluster quiver Q with vertices Q0 = {1, . . . ,n}, we consider the ini-
tial seed s0 = (Q,{xi}), whose functions are given by the distinguished gen-
erators of Q(x1, . . . ,xn). Let SQ be the set of all seeds obtained from s0 by a
finite sequence of mutations. The cluster algebra AQ of Q is the Q-subalgebra
of Q(x1, . . . ,xn) generated by all functions appearing in all seeds in SQ.

Each function appearing in a seed in SQ is called a cluster variable of AQ,
and the set { fi} of functions appearing in a single seed (Q′,{ fi})∈ SQ is called
a cluster of AQ.

Despite this somewhat esoteric definition, cluster algebras have made sur-
prising appearances in a number of areas of mathematics, as we observed in
the introduction. Notably, the coordinate rings of many important algebraic va-
rieties, such as Grassmannians and other varieties of flags, are isomorphic to
cluster algebras [14, 49, 82], at least after extending the definition slightly to
replace Q by a field extension (typically C) and declaring a subset of vertices of
Q to be frozen, meaning that mutations at these vertices are not permitted when
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3 From Frieze Patterns to Cluster Categories 119

constructing the set SQ of seeds – this means in particular that the variable xi

appears in every cluster when i is a frozen vertex.
The main conclusion of this section will be that for certain cluster algebras,

the cluster variables give formulae for the entries of a frieze pattern in terms of
the entries in a lightning bolt, as the following simple example demonstrates.

Example 3.9 Let Q be the quiver 1−→ 2. Then we can compute that the seeds
of AQ are Ä

1−→ 2,
¶

x1,x2

©ä
Å

1←− 2,
ß

1+ x2

x1
,x2

™ãÅ
1←− 2,

ß
x1,

1+ x1

x2

™ã Å
1−→ 2,

ß
1+ x2

x1
,

1+ x1 + x2

x1x2

™ã
Å

1−→ 2,
ß

1+ x1 + x2

x1x2
,

1+ x1

x2

™ã
∼=
Å

1←− 2,
ß

1+ x1

x2
,

1+ x1 + x2

x1x2

™ã
In this diagram, each two-headed arrow represents a mutation. The ‘isomor-
phism’ on the final line indicates that the two seeds are related by relabelling
the quiver vertices, and correspondingly re-ordering the cluster variables. (If
we suppressed this vertex labelling by writing each cluster variable directly on
the corresponding quiver vertex, both seeds would consist of an arrow from
1+x1+x2

x1x2
to 1+x1

x2
.) We see that there are five cluster variables, which are pre-

cisely the five Laurent polynomials that appeared in our experiment at the end
of Section 3.2.

We now give two important theorems concerning cluster algebras in general,
which will shed light on the phenomena concerning frieze patterns from Sec-
tion 3.2, at least once we have understood how frieze pattern entries are given
by specialising cluster variables. The first is the Laurent phenomenon, which
will completely explain Phenomenon 1.

Theorem 3.2 Let Q be a cluster quiver. Then every cluster variable in AQ is
an integral Laurent polynomial in the initial variables {x1, . . . ,xn}.

Proof A combinatorial proof is given by Fomin and Zelevinsky [41, Thm. 3.1]
in the original paper defining cluster algebras (in more generality than here).
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Gross, Hacking and Keel [53, Cor. 3.11] give a deeper geometric argument,
which involves realising cluster variables as regular functions on a cluster vari-
ety (an algebraic space defined as a union of tori indexed by the set
of seeds).

Since every cluster { fi} in AQ is a free generating set for Q(x1, . . . ,xn), any
element of this field has a unique expression as a rational function in the fi. By
change of variables, it follows from Theorem 3.2 that the cluster variables of AQ

are given by integral Laurent polynomials when written as rational functions in
any of the clusters, not just the initial cluster {x1, . . . ,xn}.

For most quivers Q, the set SQ of seeds will be infinite. The second important
theorem we mention here concerns when, as in Example 3.9, the number of
seeds (and therefore the number of cluster variables) is finite, in which case we
say that the cluster algebra has finite type.

Theorem 3.3 ([42, Thm. 1.4]) A cluster algebra AQ has finite type if and only
if Q is related by a sequence of mutations to a quiver obtained by orienting the
edges of one of the following graphs.

An : 1 2 · · · n−1 n

Dn :
1 2 · · · n−1

n

E6 :
1 2 3 4 5

6

E7 :
1 2 3 4 5 6

7

E8 :
1 2 3 4 5 6 7

8

The graphs appearing in Theorem 3.3 are the simply laced Dynkin dia-
grams, and indeed we call their orientations Dynkin quivers. These diagrams
(together with their non-simply laced counterparts) often appear as the solution
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3 From Frieze Patterns to Cluster Categories 121

to classification problems, most famously that of semisimple Lie algebras over
an algebraically closed field, via the classification of finite root systems. The
number of cluster variables in the cluster algebra of a Dynkin quiver turns
out to be n greater than the number of positive roots in the corresponding
root system, where n is the number of vertices of the quiver [42, Thm. 1.9].
When considering more general cluster algebras from weighted quivers (or
skew-symmetrisable matrices, as in [42]), the statement corresponding to The-
orem 3.3 also includes the non-simply laced Dynkin diagrams. For an intro-
duction to these Lie-theoretic concepts, we recommend the book by Fulton and
Harris [47].

We also remark that any two Dynkin quivers with the same underlying graph
are related by a sequence of mutations (indeed, by mutations only at sinks and
sources). Thus the cluster algebras associated to two different orientations of
the same diagram are related by a change of variables, and so up to isomor-
phism there is one cluster algebra per Dynkin diagram.

The final observation for us to make in this section is that the formulae ex-
pressing general entries of a height n frieze in terms of the entries in a lightning
bolt are given by cluster variables in a cluster algebra of type An, i.e. the cluster
algebra associated to a quiver whose underlying graph is this Dynkin diagram.
Then Phenomenon 1 will follow from the Laurent phenomenon in Theorem 3.2.
While we will still lack an explanation for the periodicity in Phenomenon 2, this
being the topic of the next section, Theorem 3.3 tells us that type An cluster al-
gebras have only finitely many cluster variables, and so we will at least see that
a frieze pattern can have only finitely many distinct entries.

Theorem 3.4 Choose a lightning bolt in a frieze of height n. Then every entry
of the frieze is obtained by taking a cluster variable of AQ, where Q is an
orientation of the diagram An, and specialising the indeterminates x1, . . . ,xn to
the values of the frieze in the lightning bolt.

Proof We sketch the argument. The first step is to construct a quiver Q from
a lightning bolt L. The vertex set is Q0 = {1, . . . ,n} as usual, and we associate
i to the i-th row of the frieze (treating the upper trivial row as the 0-th row,
so that our quiver vertices correspond to the non-trivial rows). There is exactly
one arrow ai between each pair of vertices i and i+1, for which h(ai) = i and
t(ai) = i+ 1 if the entry of L in row i+ 1 is to the left of that in row i, and
h(a) = i+ 1, t(ai) = i otherwise. We then consider the initial seed attached to
this quiver. For the lightning bolt given as an example in Section 3.2, we obtain
the seed
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x1

x2

x3

x4

x5

x6

Because Q does not have any oriented cycles, it must have at least one vertex,
say k, which is a source. In particular, there are no length 2 paths through k,
and so mutating at this vertex only reverses the direction of the incident arrows,
making k into a sink. Similarly, when computing the new cluster variable x′k in
the mutated seed via formula (3.3.2), one of the two products is empty, and we
obtain

x′k =
1+ xk−1xk+1

xk
,

adopting the convention that x0 = xn+1 = 1. In other words, the configuration

xk−1

xk x′k
xk+1

satisfies the diamond rule of a frieze pattern, and so if we specialise the initial
variables xk to the entries of the frieze in L, the cluster variable x′k will be
specialised to the frieze entry directly to the right of that in the k-th row of
L. Moreover, the quiver µkQ of this new seed is exactly the one coming from
the lightning bolt µkL obtained from L by replacing the entry in the k-th row
by that to its right – the fact that k is a source in Q means that µkL is again a
lightning bolt.

x1

x2

x3 x′3

x4

x5

x6

By continuing to mutate at sources in this way, we see that all of the frieze
entries to the right of the lightning bolt L are specialisations of cluster variables
in AQ.
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x1 x′1

x2

x3 x′3

x4 x′4

x5

x6

x1 x′1

x2 x′2

x3 x′3

x4 x′4

x5 x′5

x6

x1 x′1 x′′1

x2 x′2 · · ·

x3 x′3 x′′3

x4 x′4 · · ·

x5 x′5

x6 x′6

We obtain the same result for the entries to the left of L by instead applying
mutations at sinks.

Note that we did not consider all possible mutations of our initial seed in the
proof of Theorem 3.4, and indeed we do not find all seeds of AQ via mutations
only at sources and sinks. On the other hand, it turns out, as we will see in the
next section, that we do find all cluster variables of AQ in this way. Indeed, the
cluster algebra of type An has 1

2 n(n+3) cluster variables, which is the number
of elements of the fundamental domain appearing in Phenomenon 2.

3.4 Cluster Categories

In this section, we explain how representation theory can be used to study clus-
ter algebras and, by extension, frieze patterns. This will require introducing a
number of algebraic concepts relatively quickly: readers wishing to learn more
about the representation theory of quivers (and other finite-dimensional alge-
bras) are advised to consult books by Auslander–Reiten–Smalø [7], Assem–
Simson–Skowroński [4] or Schiffler [81], the latter also including a section
on cluster-tilted algebras, the definition of which is related to the ideas pre-
sented in these notes. We rely heavily on techniques from Auslander–Reiten
theory, and a concise introduction to this subject may be found in lecture notes
by Angeleri Hügel [3], with more extensive discussions in the preceding
sources.

We will be particularly brief in our discussion of the derived category, since
we will need only to understand a very special example in any detail. A slightly
less brief explanation, in a more general context, can be found in Appendix 3.5,
and a reader looking for a detailed exposition of this extremely useful and pow-
erful construction is advised to consult Keller’s survey [66], or the relevant
sections of books by Happel [57] or Gelfand and Manin [52].
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A category C consists of a set Ob(C) of objects, a set HomC(X ,Y ) of mor-
phisms X → Y for any pair of objects X ,Y ∈ Ob(C), and an associative
composition law consisting of maps ◦ : HomC(Y,Z) × HomC(X ,Y ) →
HomC(X ,Z) for each triple X ,Y,Z ∈ Ob(C); we write g ◦ f = ◦(g, f ). Each
object X has an identity morphism 1X , such that 1X ◦ f = f and g◦1X = g when-
ever these compositions are defined. All of our categories will be K-linear, for
K a field, meaning that the sets HomC(X ,Y ) are K-vector spaces, and the com-
position maps are K-bilinear. We will, as is common, write X ∈ C as shorthand
for X ∈ Ob(C).

Given categories C and D, a functor F : C → D consists of a map
F : Ob(C)→ Ob(D) and, for each pair of objects X ,Y ∈ C, a (K-linear) map
F : HomC(X ,Y )→ HomD(FX ,FY ). We require that F(1X ) = 1FX for all X ∈
C and F(g ◦ f ) = F(g) ◦F( f ) for any composable morphisms f and g in C.
A functor F : C→ D is an equivalence if it admits a weak inverse, a functor
G : D→ C such that both F ◦G and G ◦F are naturally isomorphic [4, §A.2]
to the identity functors on D and C respectively. This means in particular that
G(F(X))∼= X for any object X ∈ C, and F(G(Y ))∼=Y for any object Y ∈D. An
equivalence F : C→ C is called an autoequivalence of C. Note that the notion
of an equivalence (or autoequivalence) is weaker than that of an isomorphism
(or automorphism), which requires that F ◦G and G ◦F are really equal, not
only naturally isomorphic, to the relevant identity functors.

The goal of this section will be to define, for any acyclic quiver Q, a cate-
gory CQ, called the cluster category of Q, whose properties reflect those of the
cluster algebra AQ. These categories were originally described by Buan, Marsh,
Reineke, Reiten and Todorov [19] (and by Caldero, Chapoton and Schiffler in
some special cases [23, 24]). The upshot for us will be that, when Q is an orien-
tation of the graph An, we can view a height n frieze pattern as a function from
the set indCQ, of isomorphism classes of indecomposable objects of CQ, to the
positive integers. This will explain the periodicity in Phenomenon 2, and tell us
how to find all height n friezes, not only those arising from lightning bolts.

The construction uses the representation theory of the quiver Q. In the case
that Q has underlying graph An, relevant to friezes, we will also give a different
and more combinatorial explanation, that may be easier to follow for readers
not already familiar with quiver representations.

Definition 3.10 A representation (V, f ) (often abbreviated to just V ) of a quiver
Q is an assignment of a K-vector space Vi to each vertex i∈Q0 and a linear map
fa : Vt(a)→Vh(a) to each arrow a ∈Q1. Given representations (V, f ) and (W,g)
of Q, a morphism ϕ : (V, f )→ (W,g) consists of a linear map ϕi : Vi→Wi for
each i in Q0, such that the diagram
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Vt(a) Vh(a)

Wt(a) Wh(a)

fa

ϕt(a) ϕh(a)

ga

commutes for any a ∈Q1. The morphism ϕ is an isomorphism if every ϕi is an
isomorphism of vector spaces.

We may define the direct sum of two representations pointwise, i.e.
by (V ⊕W )i =Vi⊕Wi, with morphismsÇ

fa 0
0 ga

å
: Vt(a)⊕Wt(a)→Vh(a)⊕Wh(a).

A representation is indecomposable if it is non-zero (i.e. some Vi is not the zero
vector space) and not isomorphic to the direct sum of two non-zero representa-
tions.

We restrict here to finite-dimensional representations, meaning that the vec-
tor spaces attached to quiver vertices are all finite-dimensional. We denote by
repQ the category whose objects are such representations of Q, and whose mor-
phisms are those described above, with composition (ψ ◦ϕ)i = ψi ◦ϕi. This
category is abelian: among other things, this means that it has direct sums as
defined above, its morphism spaces are abelian groups (even K-vector spaces),
each morphism has a kernel and a cokernel, every injective morphism is a ker-
nel, and every surjective morphism is a cokernel.

Remark Readers familiar with category theory may recognise the commuta-
tive diagram in Definition 3.10 as similar to that involved in the definition of
a natural transformation of functors [4, §A.2]. Indeed, the quiver Q determines
a path category, with objects the quiver vertices, morphisms i to j given by
the directed paths from i to j and composition given by concatenating paths.
A representation of Q is then nothing but a covariant functor from this path
category to the category of K-vector spaces, and a morphism of representations
is a natural transformation between two such functors.

The next step towards our desired category CQ is to construct the bounded
derived category Db(Q) of repQ. This construction, first introduced by Verdier
[84], can be made for any abelian category [85] (and even more general cate-
gories) but is somewhat complicated. For this reason, we give an ad hoc defi-
nition in the case of quiver representations, exploiting special properties of the
abelian category repQ (most importantly that it is hereditary, meaning that ev-
ery subobject of a projective object [4, Def. I.5.2] is again projective). The more
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general construction, and its relationship to the definition given now, is briefly
described in Appendix 3.5.

Definition 3.11 Given a quiver Q, the bounded derived category Db(Q) of Q
is defined as follows. For each i ∈ Z and V ∈ repQ, we introduce the formal
symbol ΣiV , and take the objects of Db(Q) to be formal direct sums of these
symbols. Each morphism space

HomDb(Q)(Σ
iV,Σ jW ) := Ext j−i

Q (V,W ) (3.4.1)

is given by an extension group [4, §A.4] in repQ. Since repQ is a hereditary
abelian category, this vector space may only be non-zero when j− i = 0 or
j− i= 1; in the first case we have Ext0Q(V,W ) =HomrepQ(V,W ), and in the sec-
ond Ext1Q(V,W ) is a vector space describing the possible short exact sequences
of the form

0→W → E→V → 0

in repQ – see [3, §1.7] for a quick introduction. The definition (3.4.1) extends
to morphism spaces between formal direct sums via the formulae

HomDb(Q)(X1⊕X2,Y ) = HomDb(Q)(X1,Y )⊕HomDb(Q)(X2,Y ),

HomDb(Q)(X ,Y1⊕Y2) = HomDb(Q)(X ,Y1)⊕HomDb(Q)(X ,Y2),

and the composition law is defined using cup product of extensions.
The reason for writing ΣiV to encode the pair (i,V ) is that the category

Db(Q) carries an autoequivalence Σ : Db(Q)→ Db(Q), whose action on ob-
jects is exactly as suggested by the notation. On morphisms, Σ acts as the iden-
tity, noting that

HomDb(Q)(Σ
i+1V,Σ j+1W ) = Ext j−i

Q (V,W ) = HomDb(Q)(Σ
iV,Σ jW ).

One can give Db(A) the structure of a triangulated category in which Σ is the
suspension functor, part of the data of such a structure. We will not discuss the
general definition or theory of triangulated categories, but refer the interested
reader to Happel’s book [57].

When Q is a Dynkin quiver, Db(Q) may be described in very combinatorial
terms. First we associate to Q an infinite quiver ZQ, as follows. The vertices
of ZQ are pairs (i,n) with i ∈ Q0 and n ∈ Z, and its arrows are an : (t(a),n)→
(h(a),n) and a∗n : (h(a),n)→ (t(a),n+1) for each a∈Q1 and n∈Z. The quiver
ZQ is highly symmetric – most useful to us is the translation symmetry τ ,
defined by τ(i,n) = (i,n−1), τ(an) = an−1 and τ(a∗n) = a∗n−1.
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Each vertex (i,n) of ZQ gives rise to the mesh relation

∑
a:h(a)=i

an+1a∗n− ∑
b:t(a)=i

b∗nbn,

a formal linear combination of paths in ZQ (which we read from right-to-left,
like composition of functions). For example, if Q is the quiver

1

4 3

2

a

c

b

then ZQ has the local configuration

(1, `)

(2, `)

(3, `) (3, `+1)

(4, `+1)

b∗`

c∗`

b`

c`

a∗`
a`+1

for each ` ∈ Z, and the mesh relation is a`+1a∗` −b∗`b`− c∗`c`.
Now we define a category DQ whose objects are formal direct sums of ver-

tices of ZQ. The set HomDQ((i,n),( j,m)) of morphisms from a vertex (i,n)
to a vertex ( j,m) is the vector space spanned by paths from (i,n) to ( j,m),
subject to the mesh relations: this means that a linear combination of paths ob-
tained from a mesh relation by postcomposing all terms with a fixed path p
and precomposing all terms with a fixed path q is 0. For example, if we see the
configuration

(1, `)

(i,n) (2, `) ( j,m)

(3, `) (3, `+1)

(4, `+1)

b∗`

p

c∗`

b`

c`

a∗`

q

a`+1
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for some paths p and q, then the equation

qa`+1a∗` p−qb∗`b`p−qc∗`c`p = q(a`+1a`−b∗`b`− c∗`c`)p = 0

holds in HomDQ((i,n),( j,m)). As above, we extend this definition of mor-
phisms to all objects via the rules

HomDQ(v1⊕ v2,w) = HomDQ(v1,w)⊕HomDQ(v2,w),

HomDQ(v,w1⊕w2) = HomDQ(v,w1)⊕HomDQ(v,w2).

The symmetry τ of ZQ takes each mesh relation to another mesh relation, and
so induces an autoequivalence of DQ.

Theorem 3.5 ([57, §I.5.6]) When Q is a Dynkin quiver, there is an equivalence
of categories DQ

∼→Db(Q).

This statement is perhaps a bit misleading for readers already familiar with
representations of quivers. Indeed, the most natural equivalence of categories
is DQop

∼→ Db(Q), where Qop is the opposite quiver of Q, obtained by re-
versing the directions of all the arrows, and takes the object (i,0) ∈ DQ to
Σ0Pi ∈Db(Q), where Pi is the indecomposable projective representation at ver-
tex i. However, by drawing some examples (or looking at the A6 case shown
below) the reader will quickly convince themselves that DQ is independent of
the orientation of Q, up to equivalence of categories, and so the theorem as
stated is also true. In our application, it will be enough to know that we can
substitute Db(Q) for DQ when Q is a quiver of type An, and the details of the
functor providing the equivalence will not be relevant.

The following picture shows DQ in the case that Q is the orientation of A6

used to illustrate the proof of Theorem 3.4.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

In this picture, each point • represents an indecomposable object in DQ, i.e.
one of the objects (i,n), and each arrow represents an irreducible morphism, a
non-isomorphism between indecomposable objects which is not expressible as
a product of such morphisms. The arrows between the vertices (i,0) are shown
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in bold, making the initial quiver Q visible. Comparing to Section 3.2, we see
that it is natural to think of a height n frieze pattern (excluding the trivial rows)
as a function on the indecomposable objects of DQ (or equivalently those of
Db(Q), by Theorem 3.5) for any orientation Q of the Dynkin diagram An.

The mesh relations in DQ say that each square

•

•

•

•

either commutes or anti-commutes, whereas at the bottom of the diagram, a
pair of morphisms

•

•

•

composes to zero (and similarly at the top). In type An, it is not difficult to
compute the space of morphisms between any pair of objects using these rules,
as in the following example.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

◦

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

The rectangle shows those indecomposable objects having a non-zero mor-
phism from the fixed object indicated by ◦, at the left-hand corner of the rect-
angle. Moreover, the space of morphisms from ◦ to each of these objects is
1-dimensional, spanned by any path from ◦ to the given object – any two such
paths determine the same morphism (up to sign) because of the mesh relations.
In general the morphisms starting at a given indecomposable object X ∈ DQ,
for Q of type An, can be computed by drawing a maximal rectangle with X at its
left-hand corner: note that when X is on the upper or lower edge of the figure,
this rectangle will degenerate to a line.

The autoequivalence τ acts by translating the picture one step to the left,
whereas Σ acts by a glide reflection to the right, with fundamental domain as
shown.
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· · ·

· · ·

· · ·

A consequence of Theorem 3.5 is that the autoequivalence τ of DQ can be
seen as an autoequivalence of Db(Q). In fact, this coincides with an
autoequivalence of Db(Q) defined intrinsically for any acyclic quiver Q, not
just the Dynkin quivers – it is closely related to a functor on repQ called the
Auslander–Reiten translation, also typically denoted by τ . (For readers already
familiar with this functor on repQ; in Db(Q), the equivalence τ takes ΣnV to
Σn(τV ) when V is indecomposable and not projective, and takes ΣnPi to Σn−1Ii,
where Pi, respectively Ii, denotes the indecomposable projective, respectively
injective, representation at vertex i.)

The two autoequivalences Σ and τ of Db(Q) even commute with each other:
Σ ◦ τ = τ ◦ Σ. We will write ρ = Σ−1 ◦ τ , and using this autoequivalence of
Db(Q) we may finally define the category CQ. First we give a general
construction.

Definition 3.12 Let C be an additive category, and let F : C → C be an
automorphism (meaning that there is a functor F−1 : C→ C such that the com-
positions F ◦F−1 and F−1 ◦F are both equal to – not only naturally isomor-
phic to – the identity functor on C). Then the orbit category C/F has the same
objects as C, but with morphism spaces

HomC/F(X ,Y ) =
⊕
n∈Z

HomC(X ,FnY ). (3.4.2)

The composition

◦ : HomC/F(Y,Z)×HomC/F(X ,Y )→ HomC/F(X ,Z)

has components given by the maps

HomC(Y,F
nZ)×HomC(X ,FmY )→ HomC(X ,Fn+mZ),

(g, f ) 7→ Fm(g)◦ f ,

noting that

Fm : HomC(Y,F
nZ)→ HomC(F

mY,Fn+mZ).

If F is only an autoequivalence, rather than an automorphism, then this compo-
sition need not be well-defined. On the other hand, in this case one can choose
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a skeleton C̄ ⊂ C, consisting of exactly one object in each isomorphism class,
with morphisms between such objects defined exactly as in C. Then the inclu-
sion C̄ ↪→ C is an equivalence, there is an automorphism F̄ : C̄→ C̄ related to F
in a natural way (for example, F̄X is the unique object of C̄ isomorphic to FX
in C), and we may define C/F = C̄/F̄ . More details concerning this subtlety
may be found in a paper of Bennett-Tennenhaus and Shah [13] (see also [83,
§II.8.1]).

Definition 3.13 ([19, §1]) Given an acyclic quiver Q, its cluster category CQ is
the orbit category

CQ =Db(Q)/ρ

for the action of ρ = Σ−1 ◦ τ on Db(Q). For each X ,Y ∈Db(Q), only finitely
many of the vector spaces appearing on the right-hand side of (3.4.2) are non-
zero, and so the morphism spaces in CQ are still finite-dimensional vector
spaces. Like Db(Q), the cluster category CQ is again a triangulated category,
by a result of Keller [67].

Remark Since ρ is not an automorphism of Db(Q), but only an autoequiva-
lence, one has to take account of the subtlety referred to in Definition 3.12 when
defining the cluster category. However, in the special case of Dynkin quivers,
the equivalence of categories DQ

∼→ Db(Q) from Theorem 3.5 is an isomor-
phism of DQ with a skeleton of Db(Q), since isoclasses in DQ all consist of
single objects. Moreover, on DQ the functor ρ (described above as a glide re-
flection of the quiver ZQ when Q is of type An) is an automorphism, and so one
can use the explicit construction from Definition 3.12 to define CQ =DQ/ρ .

While CQ may in some sense appear much ‘bigger’ than DQ – it has the same
set of objects as this skeleton, and more morphisms between any two – in prac-
tical terms it is actually ‘smaller’, as indecomposable objects which are non-
isomorphic in DQ can become isomorphic in CQ. Indeed, any two objects of DQ

in the same ρ-orbit are isomorphic in CQ, since for any
n ∈ Z, the morphism space HomCQ(X ,ρnX) contains the identity morphism
in HomDQ(X ,X), which is an isomorphism X → ρnX in CQ

(cf. [83, Rem. II.8.3(ii)]). Indeed, these isomorphisms mean that the
autoequivalence of CQ induced by ρ = Σ−1 ◦ τ is naturally isomorphic to the
identity functor (which is precisely what the orbit category construction is de-
signed to achieve). As a consequence, the autoequivalences of CQ induced by
τ and Σ are naturally equivalent to each other.

Returning to our A6 example, we see that a fundamental domain for ρ is as
shown (cf. Phenomenon 2).
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Thus the isomorphism classes of indecomposable objects in CQ are in bijection
with the points inside this fundamental domain. Note that there are morphisms
in CQ from objects at the right-hand end of this domain to those at the left-hand
end, as the arrows crossing these two ends of the domain are identified in the
orbit category – indeed one can think of CQ as being drawn on a Möbius band,
obtained as a quotient of the strip on which we draw DQ. If we think of frieze
patterns as functions on the indecomposable objects of DQ, Phenomenon 2 is
the observation that these functions descend to CQ, or in other words that they
are constant on ρ-orbits.

As the name suggests, the cluster category CQ can be used to study the clus-
ter algebra AQ: it is a categorification of this cluster algebra. More precisely, it
is an additive categorification – cluster algebras may also have monoidal cat-
egorifications [58, 64], which have a rather different flavour more in common
with categorifications in Lie theory, whereby the cluster algebra is realised as
the Grothendieck ring of a monoidal category. The most important feature of
CQ for us is that certain isomorphism classes of objects in CQ are in bijec-
tion with the cluster variables of AQ, whereas others are in bijection with the
clusters.

Definition 3.14 We say that two objects X ,Y ∈ CQ are compatible if
HomCQ(X ,ΣY ) = 0. An object X ∈ CQ is rigid if it is compatible with itself.

We write addX for the set of objects of CQ isomorphic to direct sums of
direct summands of X , and say that X is cluster-tilting if addX is precisely the
set of objects compatible with X . Cluster-tilting objects are sometimes referred
to by the longer but more descriptive adjective maximal 1-orthogonal [61].

Remark For any X ,Y ∈ CQ, we have

HomCQ(X ,ΣY ) = HomCQ(Y,τX) = HomCQ(Y,ΣX)∗, (3.4.3)

where (−)∗ denotes duality for K-vector spaces. Here the first equality holds
since Σ and τ are naturally isomorphic autoequivalences of CQ, and the sec-
ond is a consequence of the Auslander–Reiten formula for finite-dimensional
algebras [6] (see also [3, Thm. 3.4.1]). As a result, the relation of being com-
patible is symmetric. However, it is not reflexive, since not every object is rigid
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(although at least every indecomposable object is rigid when Q is a Dynkin
quiver), and nor is it transitive. The equality of the outer terms in (3.4.3) means
that CQ is 2-Calabi–Yau as a triangulated category. For more appearances and
uses of Calabi–Yau triangulated categories, see Keller’s survey [68].

In CQ, but not in all 2-Calabi–Yau triangulated categories, cluster-tilting ob-
jects are precisely the maximal rigid objects, i.e. those rigid objects X for which
X⊕Y is rigid only if Y ∈ addX .

Theorem 3.6 ([25], [21, Thm. A.1]) A choice of cluster-tilting object T =⊕n
i=1 Ti ∈CQ, with a decomposition into indecomposable summands Ti, induces

a bijection X 7→ ϕT
X between the rigid indecomposable objects of CQ and the

cluster variables of AQ. Under this bijection, compatible pairs of indecompos-
able rigid objects are sent to cluster variables that appear together in the same
cluster. In particular, there is an induced bijection between the cluster-tilting
objects of CQ and the clusters of AQ.

For Q of type An, the cluster variables corresponding to indecomposables
in a mesh satisfy the SL2 diamond rule. That is, for each configuration

A

B

C

D

the corresponding cluster variables satisfy ϕT
A ϕT

D −ϕT
B ϕT

C = 1. At the bound-
ary meshes, either B or C will be missing, and we take ϕT

B = 1 or ϕT
C = 1 as

appropriate in the preceding formula.

The map X 7→ ϕT
X appearing in Theorem 3.6 is obtained by restricting to

rigid indecomposable objects the assignment of a Laurent polynomial ϕT
X to

any object X ∈ CQ via an explicit formula, known as the Caldero–Chapoton
formula [22]; unfortunately, the ingredients in this formula require more repre-
sentation theory than there is space to discuss here. The interested reader may
consult the original paper [22], and a survey by Plamondon [76].

Combining Theorem 3.6 with a classical result in representation theory –
Gabriel’s theorem [48] – gives an alternative proof of Theorem 3.3. Precisely,
Theorem 3.6 shows that AQ has only finitely many cluster variables if and only
if CQ has only finitely many indecomposable objects. By construction, this is
equivalent to repQ having finitely many indecomposable objects (since CQ has
n = |Q0| more such objects than repQ), and Gabriel’s theorem states that this
happens if and only if Q is an orientation of a simply laced Dynkin diagram.

Theorems 3.4 and 3.6 show that we can consider (the non-trivial rows of)
a frieze pattern of height n to be a function on the set indCQ of indecompos-
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able objects of the cluster category CQ for Q an An-quiver (all of which are
rigid). Indeed, each frieze entry is the specialisation of a cluster variable, re-
lated by Theorem 3.6 to an element of indCQ. This connection between cluster
categories of type An and frieze patterns was first observed by Caldero and
Chapoton [22, §5].

Our diagrams in Section 3.2 draw frieze patterns as functions on the set
of isoclasses of indecomposable objects of the derived category DQ, but since
indecomposable objects of DQ in the same ρ-orbit are isomorphic indecompos-
able objects in CQ, and hence correspond to the same cluster variable, a frieze
must be constant on each of these orbits. Since ρ acts by a glide reflection, this
explains Phenomenon 2.

Our final result is a second classification of height n friezes, in terms of
cluster-tilting objects.

Theorem 3.7 Let Q be any An quiver. Then the friezes of height n are in bi-
jection with the (isomorphism classes of) cluster-tilting objects of the cluster
category CQ. Indeed, given a cluster-tilting object T , there is a unique frieze
pattern taking the value 1 on each indecomposable summand of T , when inter-
preted as a function on indCQ.

Proof While this result is well-known, see e.g. [9, Rem. 5.6], we are not able to
find a convenient reference or direct proof in the literature. However, the result
can be obtained by ‘direct calculation’, as follows. For a choice of cluster-tilting
object T , we change coordinates in AQ so that ϕT

Ti
is the initial variable xi for

each indecomposable summand Ti of T . We then obtain a frieze by assigning
to each indecomposable X ∈ CQ the integer ϕT

X |xi=1; this frieze takes the value
1 on indecomposable summands of T by construction. Using the details of the
formula ϕT

X , one can check that these are in fact the only entries taking value 1,
and so non-isomorphic cluster-tilting objects give different friezes. Then since
the number of cluster-tilting objects in CQ up to isomorphism (or equivalently
the number of clusters in AQ) is equal to the number of height n = |Q0| friezes
when Q is of type An, both being given by the (n+ 1)st Catalan number, it
follows that all friezes are obtained in this way.

Remark Given any Dynkin quiver Q, not necessarily of type An, one can ex-
tend the definition of frieze pattern to obtain functions indCQ→ Z>0 satisfying
a condition generalising the SL2 diamond rule. However, in this larger general-
ity, the analogue of Theorem 3.7 is not true – there exist frieze patterns in this
sense which do not take the value 1 on all indecomposable summands of any
cluster-tilting object. An example, and a discussion of these frieze patterns for
Q of type Dn, can be found in a paper of Fontaine and Plamondon [44].
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Recall from Remark 3.2 that height n friezes, thought of as functions on
DQ for Q of type An, are classified up to the glide reflection ρ by triangu-
lations of labelled polygons. Comparing to Theorem 3.7, we see that there is
a bijection between triangulations of a labelled (n+ 3)-sided polygon and the
cluster-tilting objects of CQ for Q of type An – indeed, this connection was used
by Caldero, Chapoton and Schiffler [24] to give a geometric description of CQ

in these cases. This bijection can be made explicit, and there is a combinatorial
way of computing the endomorphism algebra of a cluster-tilting object T ∈ CQ

from the corresponding triangulation. These endomorphism algebras are called
cluster-tilted algebras, and have many interesting properties [20], which are
discussed further in Schiffler’s book [81].

Example 3.15 The cluster category of type A6 has a cluster-tilting object
whose indecomposable summands are indicated by the white vertices in the
following figure.

• • • • • • • • •

• • • • • • • • •

• • • • • • • • •

• • • • • • • •

• • • • • • • •

• • • • • • • •

◦

◦

◦ ◦

◦

◦

◦

◦

◦ ◦

◦

◦

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

This cluster-tilting object corresponds to our first example of a frieze pattern –
observe that it has the same ‘shape’ as the lightning bolt used to construct that
frieze.

The cluster category of type A3 has a cluster-tilting object indicated by white
vertices as shown.

• • • •

• • • • • • • •

• • •

◦ ◦ ◦

◦ ◦ ◦ ◦

· · ·

· · ·

· · ·

· · ·

This cluster-tilting object corresponds to the frieze pattern with no lightning
bolt observed in Example 3.2. On the level of the cluster algebra, it corresponds
to a seed whose quiver has an oriented cycle (and indeed consists entirely of
such a cycle, of length 3).

Just as clusters can be mutated, replacing a single cluster variable by a new
one, so can cluster-tilting objects, by an operation replacing a single indecom-
posable summand by a non-isomorphic one. Given what we have already seen,
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this operation could simply be defined using the bijections of
Theorem 3.6. However, mutation of cluster-tilting objects can also be defined
intrinsically [19] – indeed Iyama and Yoshino [62] show that this is a gen-
eral phenomenon of 2-Calabi–Yau triangulated categories – and one can then
check that the bijection between clusters and cluster-tilting objects from The-
orem 3.6 relates the combinatorial and categorical notions of mutation. Under
the bijection with triangulations of the (n+ 3)-gon, when Q has type An, mu-
tations correspond to flips: each diagonal separates two triangles whose union
is a quadrilateral, and using the other diagonal in this quadrilateral gives a new
triangulation.

flip←→

The connection between cluster algebras or categories and triangulations
can be greatly generalised [36]. Let S be an oriented surface with boundary,
and let M⊂ ∂S be a finite subset of points in the boundary of S, such that each
boundary component contains at least one point in M. A triangulation of (S,M)

consists of a maximal collection of pairwise non-crossing arcs in S with end-
points in M. Excluding a small number of degenerate cases, any such triangu-
lation determines a cluster-tilting object in a (generalised [2]) cluster category,
and mutating this cluster-tilting object corresponds to flipping diagonals in the
triangulation. The combinatorial rule for computing endomorphism algebras
extends to this generality as well [71].
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3.5 Appendix: The Bounded Derived Category

In this appendix, we will give a more common and more general description of
the bounded derived category than that given in Definition 3.11 for the special
case of quiver representations.

To start with, we let A be any abelian category – our main example is the
abelian category repQ, but other examples include categories of representa-
tions over more general rings or algebras, the category of abelian groups, or
the category of coherent sheaves on an algebraic variety. We can then consider
complexes of objects of A, i.e. diagrams

V • : · · · V i−1 V i V i+1 · · ·di−1 di

consisting of objects V i ∈ A for each i ∈ Z and morphisms di : V i→ V i+1 be-
tween these objects, with the property that di ◦di−1 = 0 for all i. A morphism of
complexes is, similar to a morphism of quiver representations, a commutative
diagram

V • : · · · V i−1 V i V i+1 · · ·

W • : · · · W i−1 W i W i+1 · · ·

ϕ

di−1

ϕ i−1

di

ϕ i ϕ i+1

δ i−1 δ i

Given a complex V • of objects of A, we can compute its cohomology groups

Hi(V •) = ker(di)/im(di−1),

which are themselves objects of A, and a morphism ϕ : V • →W • induces a
morphism ϕ̄ i : Hi(V •)→Hi(W •) in A for each i. We call ϕ a quasi-isomorphism
if all of the maps ϕ̄ i are isomorphisms; note that this does not imply the exis-
tence of a map ψ : W •→V • of complexes such that ψ̄ i = (ϕ̄ i)−1.

Definition 3.16 Let A be an abelian category. The bounded derived category
Db(A) of A has as objects complexes V • of objects in A such that Hi(V •) = 0
for i� 0 and i� 0.1 The morphism sets in Db(A) are obtained from mor-
phisms of complexes by formally adjoining inverses of all quasi-isomorphisms.2

1 Depending on A, sometimes additional restrictions are imposed on these cohomology objects.
For example, if A is the category of all modules over a ring, one sometimes requires that each
Hi(V •) is finitely generated for V • to be an object in Db(A).

2 This language is rather sloppy, but will do for our purposes. The reader interested in more
details should look up ‘localisation of categories’, which is a similar construction to
localisation of rings. In this language, we define Db(A) by taking the category of bounded
complexes over A, which has the same objects as Db(A) but morphisms given simply by
morphisms of complexes, and then localising this category in the set of quasi-isomorphisms.
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A little more concretely, this means that a morphism V •→W • in Db(A) can
be represented (non-uniquely) by a finite sequence

X•1 X•2 · · · X•n

V • Y •1 Y •2 Y •n−1 W •

∼ ∼ ∼ ∼

in which the rightward-pointing arrows are arbitrary maps of complexes, and
the leftward-pointing arrows are quasi-isomorphisms.

As mentioned in Section 3.4 for the special case A = repQ, we may equip
Db(A) with the structure of a triangulated category. Part of this structure is the
autoequivalence Σ : Db(A)

∼→ Db(A), which shifts the degrees of the objects
and morphisms in a complex in the following way.

V • : · · · V i−1 V i V i+1 · · ·

ΣV • : · · · V i V i+1 V i+2 · · ·

di−1 di

−di −di+1

The category Db(A) also has direct sums, given by taking the direct sum of
complexes term by term.

For a general abelian category A, understanding Db(A) can be rather
difficult – indeed, from the description given above it is not clear that it is a cat-
egory at all, since it is not clear that the morphisms between a pair of objects,
which consist of sequences of morphisms of complexes interlaced with formal
inverses of quasi-isomorphisms, even form a well-defined set, although it turns
out that they do. In some special cases (most notably the case A= repQ), sim-
pler descriptions are available. First, we give a general simplification of the
description of the morphisms in Db(A).

Definition 3.17 We say a morphism f : V • → W • of complexes is null-
homotopic if there are morphisms hi : V i → W i−1 for each i ∈ Z, such that
ϕ i = δ i−1hi +hi+1di, as in the following figure.

V • : · · · V i−1 V i V i+1 · · ·

W • : · · · W i−1 W i W i+1 · · ·

ϕ

di−1

ϕ i−1

di

ϕ ihi
ϕ i+1hi+1

δ i−1 δ i

The bounded homotopy category Kb(A) has the same objects as Db(A), with
HomKb(A)(V

•,W •) given by the space of maps of complexes V •→W • modulo
the subspace of null-homotopic maps.
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Proposition 3.8 The bounded derived category Db(A) is equivalent to the
category obtained from Kb(A) by formally inverting (the classes of) quasi-
isomorphisms.

The advantage of describing Db(A) as in Proposition 3.8 is that it allows for
an easier description of the morphisms, which makes it clear that HomDb(Q)

(V •,W •) is indeed a set. Using this description, morphisms V •→W • are rep-
resented (still non-uniquely) by roofs of the form

X•

V • W •
∼

where both arrows represent morphisms in Kb(A) (that is, homotopy classes of
maps of complexes), with the left-hand arrow being a quasi-isomorphism. This
advantage derives from the fact that Kb(A), unlike the category with the same
objects but with all morphisms of complexes, is a triangulated category, and
the localisation in quasi-isomorphisms can be realised as a Verdier localisation
[85] in the triangulated subcategory of acyclic complexes, those V • for which
Hi(V •) = 0 for all i.

Now let us consider the case that A = mod A is the category of finite-
dimensional modules over a finite-dimensional algebra A; we abbreviate
Db(A) :=Db(mod A) and Kb(A) :=Kb(mod A). (Much weaker, but more tech-
nical, assumptions are sufficient for what follows.) Recall that an A-module P is
projective if for every surjective A-module map f : X →Y and every A-module
map g : P→ Y , there exists h : P→ X with g = f ◦h.

P

X Y 0

g∃h

f

Definition 3.18 Write Kb(projA) for the category whose objects are complexes
P• of A-modules such that Pi is projective for all i and Pi = 0 for i� 0 or i�
0, and with morphisms given by maps of complexes modulo null-homotopic
maps. Using the description of Db(A) from Proposition 3.8, we see that there
is a natural functor Kb(projA)→Db(A) given by the identity on both objects
and morphisms.

Note that the boundedness conditions in Definition 3.18 are different from
those in Definition 3.11, since they refer to the terms of the complex, not the
cohomology. Indeed, since projA is typically not an abelian category, an object
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P• ∈ Kb(projA) does not have well-defined cohomologies Hi(P•) ∈ projA –
they are well-defined objects of modA, but are not typically projective.

Definition 3.19 We say that a finite-dimensional algebra A has finite global
dimension if there is an integer n such that each X ∈ modA fits into an exact
sequence

0 Pn · · · P0 X 0π (3.5.1)

in which each Pi is a projective A-module. The minimal such n is called the
global dimension of A, which is instead defined to be ∞ if no such n exists.

Exactness of the complex (3.5.1) is equivalent to the morphism

· · · 0 Pn · · · P1 P0 0 · · ·

· · · 0 0 · · · 0 X 0 · · ·

π

in Kb(A) being a quasi-isomorphism, so that the lower complex is isomorphic
in Db(A) to a complex in the image of the natural map Kb(projA)→ Db(A).
This observation can be upgraded to the following theorem.

Theorem 3.9 ([84, Ch. II, Prop. 1.4]) If A is a finite-dimensional algebra with
finite global dimension, the natural map Kb(projA)→ Db(A) is an equiva-
lence.

Theorem 3.9 is very useful, since the category Kb(projA) has a much sim-
pler description than the (equivalent) category Db(A). This theorem covers the
case of derived categories of representations of acyclic quivers, which was of
interest to us in Section 3.4. Such a quiver Q has a path algebra KQ, which as
a vector space is spanned by the paths of Q – this is finite dimensional since
Q is acyclic. Multiplication of paths is given by concatenation when this is de-
fined, and 0 when it is not (cf. Remark 3.4). Thus KQ is a finite-dimensional
algebra, and repQ is equivalent (even isomorphic) to the category modKQ of
finite-dimensional modules over this algebra. The global dimension of KQ is 1,
and so there is an equivalence Kb(projKQ)

∼→Db(KQ) by Theorem 3.9.
An algebra A of global dimension 1 is called hereditary (because the prop-

erty of being a projective A-module is inherited by submodules – that is, any
submodule of a projective A-module is again projective). In this case we can
simplify our description of Db(A) still further, to recover our ad hoc descrip-
tion of the objects of Db(Q) from Section 3.4.
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Proposition 3.10 ([56, Lem. 4.1]) Let A be a hereditary algebra. Then each
object V • ∈Db(A) is isomorphic in this category to

· · · Hi−1(V •) Hi(V •) Hi+1(V •) · · ·0 0 0 0

In other words, if Σ−iM denotes the stalk complex with M ∈modA in degree i
and the zero module in all other degrees, then we have

V • ∼=
⊕
i∈Z

Σ
−iHi(V •).

Our description of morphisms between stalk complexes in Db(Q) from Sec-
tion 3.4 can also be recovered from the results presented in this appendix, but
we will not give the details of this. Roughly, the idea is to use Theorem 3.9
to replace each stalk complex by a quasi-isomorphic complex of projectives,
and then compare the computation of the morphisms between these complexes
up to homotopy to the usual computation of extension groups between the two
representations giving the non-zero terms of the stalk complexes.
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