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Abstract

The early identification and prediction of hand-foot-and-mouth disease (HFMD) play an
important role in the disease prevention and control. However, suitable models are different
in regions due to the differences in geography, social economy factors. We collected data asso-
ciated with daily reported HFMD cases and weather factors of Zibo city in 2010∼2019 and
used the generalised additive model (GAM) to evaluate the effects of weather factors on
HFMD cases. Then, GAM, support vectors regression (SVR) and random forest regression
(RFR) models are used to compare predictive results. The annual average incidence was
129.72/100 000 from 2010 to 2019. Its distribution showed a unimodal trend, with incidence
increasing from March, peaking from May to September. Our study revealed the nonlinear
relationship between temperature, rainfall and relative humidity and HFMD cases and
based on the predictive result, the performances of three models constructed ranked in des-
cending order are: SVR > GAM> RFR, and SVR has the smallest prediction errors. These find-
ings provide quantitative evidence for the prediction of HFMD for special high-risk regions
and can help public health agencies implement prevention and control measures in advance.

Background

Hand, foot and mouth disease (HFMD) is a serious infectious disease caused mainly by an
enterovirus, threaten mostly children under 5 years old [1–3]. Weather variables, as important
predictors of HFMD, which could influence the transmission and reproduction of enterovirus
directly or indirectly, have been pointed out in prior study [3–7], but results vary in different
regions. For instance, some studies showed that temperature, relative humidity, precipitation,
wind speed and sunshine all have an important influence on HFMD cases in Shandong prov-
ince, Shanghai and Shenzhen [8–10]. However, Huang et al. found that wind speed and pre-
cipitation have no relationship with HFMD cases in Guangzhou city [11], and Liu et al. found
that relative humidity has no effect on HFMD cases in Jiangsu Province [12]. In addition,
some scholars revealed that temperature, humidity and wind speed have a positive correlation
with HFMD, while rainfall and sunshine are negatively correlated with HFMD in studies of
Chongqing, Gansu and Shanghai [10, 13, 14]. On the contrary, a study in Hunan province
showed a positive effect between rainfall and HFMD incidence, while wind speed has a nega-
tive impact on HFMD incidence [15]. The discrepancies of these findings could be likely
attributed to the diversities of geographic, socioeconomic and population variables or statistic
methods and data sources.

Previous studies attempt to apply various traditional models to predict HFMD incidence,
such as SARIMA model, Generalised additive model (GAM), as well as combined models
[16]. Currently, the application of machine learning provided new ideas for disease warning
measures by applying mathematical models after statistical sorting the historical information
of data and applied for the prediction of infectious disease [17–19], such as HFMD, Dengue
[20]. However, no studies have proven that machine learning models have been superior to
traditional models in prediction, and traditional predictive models are still used. It remains
unclear which type models would be better for HFMD epidemic prediction, which hinders
HFMD control and prevention [21–23]. In addition, a unified model cannot be found suitable
for all regions due to these discrepancies of data source, methods and variables in regions [24].
Therefore, it is urgent to establish a predictive model based on the actual situation of a specific
region to predict more accurately.

Zibo city is a high-risk area of HFMD in Shandong Province. The annual average incidence
was 127.9/100 000 from 2010 to 2019, exceeding the average level of Shandong Province
(93.70/100 000) [17]. Thus, this study aims to explore the optimal model for HFMD prediction
based on meteorological factors in Zibo city, helping the formulation and implementation of
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preventive and control measures of HFMD and providing new
objective information for the associated department.

Materials and methods

Study area

Zibo is a central city in the Shandong Province of China, located
between latitude 35°55′ N and 37°17′ N and longitude 117°32′ E
and 118°31′ E (Fig. 1). Zibo city has a temperate monsoon cli-
mate. By 2018, the city consists of five districts and three counties,
covering an area of 5965 square kilometres, with a permanent
resident population of 4.702 million [25].

Data collection

We collected daily reported HFMD cases during 1 January 2010
and 31 December 2019 from the Diseases Reporting
Information System of the Zibo Center for Disease Control and
Prevention. Reported cases were divided into two epochs
(2010–2018, 2019), the former was defined as a training set to
construct models, and the latter as a test set to verify the accuracy
of predictive models. Patients were identified according to the
diagnostic criteria defined by the National Health Commission
of the People’s Republic of China (http://www.moh.gov.cn).

Daily climatic data were collected from the Chinese
Meteorological Data Sharing System (http://cdc.nmic.cn) and it
is publicly accessible, including daily mean, maximum, minimum
temperature (°C), precipitation (mm), mean air pressure (k pa),
wind speed(m/s), relative humidity (%) and duration of sunshine
(h) respectively.

Model construction

GAM with a Quasi-Poisson family was used to fit the association
of weather factors and the number of HFMD [20]. We used cat-
egorical indicator variables to control the effects of the weekend
and public holidays, and penalised smoothing splines functions
to adjust for seasonality and long-term time trends in morbidity

[14]. Considering HFMD incubation period range from 3 to 10
days, a lag of up to 14 days was chosen for this study. Each lag
day was modelled, and the optimal lag model used to analyse
the relationship between meteorological factors and HFMD was
selected by comparing the R2 of models [26]. Akaike’s informa-
tion criterion for quasi-Poisson (QAIC) and previous similar
studies were adopted to choose the df for climate factors [7, 27].

log (ut) = b0 + ns(weather, df )+ . . .+ ns(time, 8× 10)

+ as.factor(weekend)+ as.factor(holiday)
(1)

where: ut is the expected number of HFMD on t day, β0 is the
intercept, ns() present penalised smoothing splines.

Support vectors regression (SVR) model maps the nonlinear
samples from the original space to the high-dimensional space,
where conducts linear regression for finding an appropriate
regression hyperplane, that is, the sample fits the optimal regres-
sion function, which is used for regression prediction. For the
sample (xi, yi), SVR allows a difference closed to ϵ between pre-
dicted value f(xi) and observed value yi, which is equivalent to
building an interval band with a width of 2 ϵ, if the training sam-
ple falls into this interval band, it is considered to be predicted
correctly [18, 28]. Thus, the SVR problem can be formalised as:

min
v,b

1
2
||v||2 + › li

∑m
i=1

|f (xi) − yi| (2)

where, › is the constant of regularisation, li is the ϵ-insensitive
loss function, ω, b is model parameters to be determined, m is
the number of HFMD cases.

Random forest was applied to deal with classification and
regression problems. If the CART tree is a regression tree, then
the adopted principle is the least mean square deviation [26].
That is, for any partition feature A, the data was divided into
sets D1 and D2 by the partition points, calculating the minimum
mean square deviation of D1 and D2 sets and the corresponding
feature and eigenvalue partition points. Random forest regression

Fig. 1. Geolocation of Zibo city in Shandong Province, China.
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(RFR) run efficiently on high-dimension data sets, in addition, it
is more accurate and robust to noise [19]. The main step of
obtaining an optimal model is to determine two parameters:
mtry and decision tree (ntree) [29]. When used in regression,
mtry is usually 1/3 of all factors in the database. The prediction
of CART trees is based on the average of leaf nodes, so the predic-
tion of random forest is the average of the predicted values of all
trees. The function is as follows:

min︸︷︷︸
A,s

min︸︷︷︸
c1

∑
xi[D1(A,s)

(yi − c1)
2 + min︸︷︷︸

A,s

∑
xi[D2(A,s)

(yi − c2)
2

⎡
⎣

⎤
⎦ (3)

where, c1 is the sample output mean of D1 dataset, and c2 is the
sample output mean of D2 dataset. The predictive validity of the

models was evaluated by the criteria of the root mean square error
(RMSE), mean absolute error (MAE) and R2.

Data collection and statistical analyses were performed by excel
2016 and R 4.0.1 software respectively in the study. We used the
package ‘e1071’ for support vector regression [30], ‘randomForest’
for the RFR [31] and ‘mgcv’ for GAMs [32] respectively.

Results

Descriptive analysis

Daily HFMD counts and weather variables during the study per-
iod are shown in Table 1. Daily average cases are 14.26 and the
daily maximum count reached 117 cases.

Figure 2 shows monthly HFMD incidence distribution, and
Figure 3 displays the time series of daily HFMD cases and weather

Table 1. Summary statistics for daily HFMD cases and weather factors in Zibo city, China, 2010–2019 (n = 56 058)

Variables Mean (S.D.) Min P5 Median Max P95

Number of cases 14.26 (17.50) 0.00 0.00 8.00 117.00 52.00

Maximum temperature (°C) 18.74 (10.65) −8.00 1.00 20.60 38.10 33.10

Minimum temperature(°C) 8.82 (10.58) −17.70 −8.00 9.80 28.50 23.80

Mean temperature (°C) 13.29 (10.52) −13.10 −3.60 14.80 32.00 27.52

Relative humidity (%) 6.75 (1.80) 0.00 3.30 6.40 10.00 9.10

Sunshine duration (h) 6.34 (3.74) 0.00 0.00 7.30 13.20 11.50

Precipitation (mm) 981.34 (8.34) 962.00 968.30 918.50 1003.80 994.70

Wind speed (m/s) 1.70 (0.77) 0.00 0.70 1.60 6.90 3.20

Pressure (kpa) 2.0 (8.03) 0.00 0.00 0.00 142.40 11.90

S.D., standard deviation, PX, interquartile range.

Fig. 2. Time series diagram of yearly HFMD cases from 2010 to 2019 in Zibo city, Shandong Province.
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variables in Zibo city, 2010–2019. We found that the onset of
HFMD presents an unimodal trend, increasing from March, con-
centrating from May to September (Fig. 2), and the onset of
HFMD presents obvious seasonality and cycle occur almost
every 2–3 years (Fig. 3). In addition, HFMD cases and climate
vectors except for wind speed (Fig. 3).

Spearman correlation between weather factors and HFMD cases
is depicted in Table 2. Variables positively correlated with the
HFMD cases included precipitation, sunshine hours, mean tem-
perature, maximum and minimum temperature and relative
humidity, and variables negatively correlated included wind speed
and air pressure. While there was no significant correlation between

Fig. 3. TIme series of yearly weather variables and HFMD cases during 2010–2019 in Zibo city, Shandong Province.

Table 2. Spearman’s correlation coefficients between meteorological factors and daily HFMD cases in Zibo city, China, 2010–2019

Variables PRE PRS WIN TEM RHU SSD Tmin Tmax

PRE 1

PRS −0.27 1

WIN 0n −0.11 1

TEM 0.19 −0.87 (−0.01) n 1

RHU 0.52 −0.33 −0.27 0.35 1

SSD −0.43 −0.12 0.22 0.20 −0.54 1

Tmin 0.29 −0.85 (−0.01) n 0.98 0.45 0.06 1

Tmax 0.11 −0.86 (−0.02) n 0.98 0.27 0.3 0.93 1

Number of cases 0.15 −0.50 (−0.07) n 0.60 0.30 0.09 0.61 0.58

Rn: No Statistical Significance.
PRE, precipitation. PRS, pressure.
WIN, wind speed. RHU, relative humidity.
SSD, Sunshine duration. TEM, mean temperature.
Tmin, daily minimum temperature. Tmax, daily maximum temperature.
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wind speed and sunshine hours and HFMD cases (|r| < 0.1).
Taking the multicollinearity between variables into account, we
can’t take the variables that | r | between variables are more than
0.8 into models. From Table 2, we find that there is multi-
collinearity between air pressure and the three temperature vari-
ables as well as among three temperature variables with each
other (|r| > 0.8). Based on a previous study, we only take mean tem-
perature into models [33]. In summary, weather variables taken
into models are mean temperature, relative humidity and precipita-
tion respectively.

Comparison of models

The independent variables included in SVR, RFR and GAM are
the same, all including average temperature, relative humidity
and precipitation respectively.

Figure 4 (the ordinate represents the smooth fitting value of
weather factors to the incidence of HFMD) presents the nonlinear
effects of mean temperature, precipitation and relative humidity
on HFMD cases. We found the potential risks of HFMD
increased as the temperature increased (below the threshold
value of 28 °C), then became flatted. Remarkably, the data is rela-
tively sparse and not significant (below −10 °C). As for relative
humidity, there is a threshold at 77% about the effect of relative
humidity on HFMD cases, when the risk of HFMD increases rap-
idly (less than 77%) and then decreases slightly and keep stable.
While the effect of precipitation on HFMD cases presents ‘M’
shape (when precipitation<600 mm), s () increases rapidly, then
falls (about 300 mm), then rise quickly (at 400 mm) and more
than the previous peak.

Figure 5 shows the predictive results of the three models for
HFMD cases in 2019 in Zibo city. The results of SVR prediction
are closer to the observed values, predicting a large epidemic peak
from May to August, and have the smallest predictive errors com-
pared to GAM and RFR (Table 3). The accuracy of the three mod-
els was ranked in descending order as follow: SVR > GAM > RFR.
The prediction results of SVR for HFMD are closest to the
observed value, and the trend is roughly coincident to the original
trend. By contrast, RFR and GAM can accurately predict the inci-
dence trend of HFMD, but cannot accurately predict the specific

number of cases. Therefore, the SVR model was effective and
applicable for the prediction of HFMD in Zibo city and RFR
and GAM fail to be used to predict HFMD cases.

Discussion

HFMD has been increasingly recognised as a significant health
problem, and climate change may increase the burden of
HFMD. An early warning could help health agencies to release
potential disease outbreaks through the combination of disease
surveillance information and climate factors [34]. This study
assessed the effect of temperature, precipitation and relative
humidity on HFMD cases, and constructed the most appropriate
predictive model for HFMD based on meteorological factors.

The purpose of this study is to explore the influence of weather
on HFMD and predict the incidence of disease on this basis.
Therefore, other factors such as age, immunity of patients and
the influence factors of virus infection are not considered, and
only meteorological factors are taken into the model. Although
the influence of meteorological factors on HFMD has been
explored in published studies, the effects of these studies are
inconsistent. Effect of temperature on HFMD presents an inverted
V-shape in Guangzhou city and Beijing [35]. On the contrary, a
linear correlation between temperature and HFMD cases was
found in other studies of Guangzhou [34]. Additionally, the
impact of wind speed on HFMD has always been controversial.
Studies by WangHao et al. and Wuxinrui et al. found wind
speed is a protective factor for HFMD [9, 15], the possible explan-
ation is that wind speed increases the resistance to transmission of
viruses, blocking the transmission of viruses, which reduces the
chance of infected disease, while some studies show that wind
speed is a risk factor for HFMD [10, 13, 14]. In this study, we
observed that the effects of temperature, relative humidity and
precipitation on HFMD presented nonlinear trends, and there
are thresholds, which are consistent with studies in Guangdong
province, Japan, Singapore [36–38]. These regional discrepancies
could be likely attributed to the diversities of geographic, socio-
economic and population variables or methods and data sources.
Although there is no unified conclusion about biological mechan-
isms of climate factors on HFMD, acceptable explanations in

Fig. 4. Effects of meteorological factors on HFMD in
Zibo city, Shandong Province, 2010–2019(A-D).
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published studies mainly include three aspects: survival and
reproduction of pathogens, the host population and environmen-
tal factors [39]. Appropriate temperature and humidity are
conductive to the propagation of the virus, increasing the prob-
ability of disease, and wind speed will accelerate the spread of
the virus, thus leading to more infections. Therefore, related
departments could use the impact of meteorological factors on
HFMD in specific areas to predict the incidence, providing a
scientific basis for the prevention and control of HFMD.

Based on the impacts of meteorological factors on HFMD, we
constructed and compared three predictive models. The compari-
son of prediction may help epidemiologists choose the most
appropriate model for a given situation. Although three models
can solve nonlinear prediction problems, for the predictive effi-
ciency, the order of the three predictive models is SVR > GAM
> RFR. GAM excelled flexibly controlling the confounding factors
affecting diseases, such as time series, weekend and holiday effect.
The adjusted degree of freedom of factors, it has been widely used
to predict a variety of diseases, but it is too complex in calculation
and sensitive to the choice of parameters. Machine learning
methods don’t require complex calculations, and the choice of

parameters is less likely to cause a large change in error. In con-
trast, machine learning is less affected by parameter selection.
SVR model is a new approach of machine learning provided
better performance and greater potential in predicting infectious
disease. It uses a nonlinear kernel function followed by linear
regression in this feature space and can minimise the actual risk
by seeking to minimise the structural risk and better solves pro-
blems such as small samples and nonlinearity, which are the
most prominent feature of SVR [40]. Because it carries out linear
regression in high-dimensional feature space by insensitive loss
function and makes use of strong data inclusion to reduce the
complexity of the model for a long time. It avoids the traditional
process from induction to deduction, achieves the efficient infer-
ence from training sample to prediction sample, greatly simplifies
the traditional regression problem. Although the SVR model algo-
rithm is simple and has good robustness, it fails to implement for
large-scale training sample, which will consume a lot of machine
memory and operation time. However, due to fast training speed
and two random principles, RFR can process a large amount of
data and not easy to generate overfitting problems. In addition,
it has a strong ability to make use of data, and obtain the

Fig. 5. Predictive results of three models in Zibo city, Shandong Province (2019) respectively.

Table 3. Comparison of the predictive performance of three different predictive models

Model

Fitted value (2010–2018) Predictive value (2019)

MAE MSE RMSE MAE MSE RMSE

GAM 7.29 125.72 11.21 5.41 55.29 7.43

SVR 9.41 182.37 13.50 1.46 5.44 2.33

RFR 14.83 547.06 23.38 7.99 113.96 10.68
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importance of eigenvalue, but takes a long time when the number
of decision trees. In summary, for prediction of HFMD in 2019,
Zibo city, the results of SVR are closest to the observed value,
and has minimal predictive errors.

There are several limitations which should be noted. Firstly, we
only consider meteorological factors as risk factors for HFMD,
but other influencing factors, such as population density, eco-
nomic conditions, geographical environment are not taken into
consideration, which may decrease the predictive ability of the
model [12]. Secondly, due to discrepancy in geographical location,
living custom and other aspects, the results may only apply to
HFMD in Zibo city, and cannot be extended to other regions
with different weather patterns.

In summary, we compared three models based on the influ-
ence of weather factors on HFMD incidence, and concluded
that the SVR is superior to GAM and RFR, and can be used for
forecasting HFMD cases, providing scientific evidence for further
application in HFMD prevention and control in Zibo city,
Shandong Province.
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