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FORMAL MODULI FOR p-DIVISIBLE GROUPS

HIROSHI UMEMURA

The formal moduli for one-parameter formal Lie groups was constructed

by Lubin and Tate (1) by using Lazard's methods. The aime of this paper

is to prove the existence of the formal moduli for higher dimensional formal

groups.

The author learned, after obtaining this, that P. Cartier established

more general result. He was suggested that it might be worthwhile to publish

this, Carrier's result notwithstanding, since our treatment is more down-to-

earth.

0. Notation

0.1) Let R be a ring (all rings are assumed to be commutative and

have the unit element). We denote by R[[xi, , xnJ\ = ^[M] the power

series ring in n variables over R. R[[x~\]0 is the set of elements f(x)^R[[xJ]

with /(0) = 0, and /?[[#]]? is the additive group of vectors {fi{x)9 9fm(x))

with /i(α?)e/?[[α?]]0, 1 < i < m. Let

/ = (A, ,/Je/?[[«!, ,a j |y and

9 = (9u '99i)

We denote by go/ the element h — (hu ,λ t) of R[[xί9 ,ccΛ]]o where

If / = m = n and

gof(xu ,a?») = (a?i, ,a?n),

we say / is invertible and denote g by Z"1.

/Jei?[[X]]S is defined by

IdyXif , XTJ = (Xif * , -A-TI/
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0.2) Let R be a complete local Noetherian ring, with maximal ideal m

and residue field k such that char, k = p > 0. C ~ CR is the category of

Artinian local /^-algebras having the residue field k. All homomorphisms

are assumed to be local. Let C = CR denote the category of complete

Noetherian local iv?-algebras with residue field k.

0.3) Let A be a ring and F= (Fl9 , F n ) a formal group over A. All

formal groups are assumed to be commutative. Sometimes it is convenient

to regard F a s a group functor from the category of ^4-algebra to the cate-

gory of sets:

F{B) = {(&!, ^bn)\bi^B nilpotent

(bu ,bn) + (δ'lf •••,«) =

0.4) DEFINITION 1. Let Φ be a formal group over k and F a formal

group over S^C. F is a deformation of Φ over S if the reduction F of F

is Φ.

Morphisms of the deformations are morphisms of formal groups whose

reductions are the identity Id.

We define the functor D for which D(S) is the set of the isomorphism

classes of the deformations of Φ over 5.

1. Lifting of p-divisible groups

Let A — > A, A" — > A be morphisms in C. There is a natural map

(*) D{A'XAA") —

1.1) LEMMA 1. (*) is surjective if A"—>A is surjective.

Proof. Let F't=D(A'), F"ζΞ{A") and F'XF"eD(A')XDU)D(A"). We denote

by F'\A (resp. F"\A) the reduction of Fr (resp. F") to Λ. Then, there is an

isomorphism α: F r u—>F"\ A such that the reduction of α to fc is the

identity Id. Since p" is surjective, we can lift a to Λ/r. Let a be a lifting.

Define G{x,y) = aFrf(a~ι(x), a~1{y)). Then G is a deformation of Φ over A"

and G~F". Let F(x,y) = ΣιatβXayβ, G{x, y) = Σ ^ Ί Λ We set H{x,y) =
Σ](aίβ,a'a'β)xayK Then H(x,y) is a formal group over A'JSQA". Moreover it

is a deformation of Φ and mapped to F'XF".
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1.2) LEMMA 2. Let Φ be ̂ -divisible (for the definition see Tate (4)) and

F a deformation of Φ over A^C.

Then an automorphism ψ: F—>F whose reduction to k is the identity is itself

the identity.

Proof Let m be the maximal ideal of A. There exists an integer n

such thet mn=0, m71'1 % 0. We prove lemma 2 by induction on n. If n = l,

there is nothing to prove. We assume lemma 2 for m < n — 1 and we shall

prove lemma 2 holds for n. By induction assumption ΨΈΞΞ Id mod rn71'1.

Let p be the difference of ψ and Id in Horn (F, F), then p is an endo-

morphism of F and all the ceofficients of p are in mn~ι. p{F{x,y)) = F{ρ{x),

P(y)) = P(%) + p(y)9 since {mn"1)2 = m2n'2czmn. On the other hand mn~ι\mn

is a vector space over k. Therefore, pΦ{[p']x) = p p(x) = 0. As Φ is p-divisible,

/o = 0. It follows that ψ = Id.

1.3) LEMMA 3. If v" is surjective and Φ is ^-divisible, then (*) w bijective.

Proof. Let F ' ^ F ' ^ A O X D U ) ^ " ) . AS in the proof of lemma 1, we

may assume F'\A = F " u = ̂ > where F'\A (resp. F / ru) is the reduction of Fr

(resp. F/r) to A. Let G be a formal group constructed in the proof of

lemma 1. Let H be another formal group over A'XAA" with the reductions

H\A,^*F', H\AΠ -^ F". Since the projection A'XAA"—> A' is surjective,

we may assume φ' = Id. We sahll show the reduction ψr

A = Id. In fact
φ"

H\A = F -^+ F"\A — F induces an automorphism of the deformation F. By

lemma 2 φ"\A = Id. This shows φ'Xφ'fεΞA'XAA"[[xJ\ and φ'Xφ" gives an

isomorphism H^>G.

2. Cohomology group of a formal group

2.1) DEFINITION 2. Let R be a ring and M an i?-module. We denote

by M[|>i, ,anBo=M[M]o

 t n e submodule of M®B/?[[fl5i, ,αjn]] generated

by the elements without constant term (cf. Lubin and Tate (1)).

We define the cohomology group of a formal group as in Lubin and

Tate (1).

DEFINITION 3. Let F(x,y)^R[[xl9 ,αsn, yu ,yn]Γ=Λ[[»>y]Γ be a

formal group of dimension n. If /eM[|>i, , ccΛ]]S, then ^/eMίίa?!, xn9

yu ,2/τJ]2 is defined by
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, y) = f(v) ~ f(F(x, y)) + f(χ)

If f<=M[[xu , xM 2/1, , ynlo = M ^ vlTo, then

is defined by

**/(«, V, z) = f(y, z) - f(F(x, y)9 z) + f(x, F(y, z)) - f(x, y).

B2

M(F) is the set of all f^M\£xtyJ\no such that f=δg for some g<EM[[xJ\n

Q.

ZUF) is the set of all f(=M[[x,yJ\n

Q such that δf = 0 and f(x,y) = f(y,x).

HUF) is defined by Z2

M(F)IB2

M(F).

2.2) Let J? be a ring, / an ideal of R such that / 2 is the zero ideal

and F a formal group over R. We denote by F the reduction of F to J?//.

A formal group G over i? having F as the reduction is called a deformation

of F.

PROPOSITION 1. There is 1-1 correspondence between the set of isomorphism

classes of deformations of F and the elements of the group Hj(F).

The equivalence of two deformatinos is defined as in 0.4) definition 1.

Before we proceed to the proof, we give some remarks and simplify the

notation. Let u, v be elements of i?[[>IIS. We denote by u*v the vector

F{u,v)eR\lx,y'Sβ. We denote by — the vector i{u) such that F{u9i{u)) = 0.

+ is the usual addition of vectors. Since J2 = (0), u^ υ — u + v if all the

coefficients of u and υ are in /.

Proof of proposition. Let G be a formal group over R such that the

reduction is F. We define d{F,G)tΞj[[x,y]\n

0 by - ί-*G. We show that
Γ

d{F,G) is a cocycle. Since the coefficients of d{F9G) are in /, by the

remark above,

δ(d(F, G)){x9 y, z) = d(F, G)(y, z) - d(F9 G)(x*y,z) + d(F, G)(x, y*z)

-d(F,G)(x,y)

l *d{F,G)(x,y*z)* λ

"- d(F,G)(x*y,z) — > ~ ™ ^ d(F,G)(x,y)

= — *G{y,z)*-~. \,—Γ*G{x,y*z)*x*-7^7z x G{x*y9z) G(x9y)

To show this is equal to zero, it is sufficient to prove,
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Λ-*G{x*y,z) = -Q/l y\

-i-* G(x9 y*z) = -Q^y * G(x, G(y, z))*y.

In fact, since the coefficients of d{F, G) are in / and J2 = (0),

d(F,G)(x + y,z)= d(F,G)(G(x,y),z).

By definition,

- ί - * G(x*y9 z) = - r l * G{G(x9 y \ z)*y

X Lr[X,y)

The other equation follows from

d(F9G)(x,y*z)= d(F,G)(x,G(y,z)).

Let G be a formal group such that the reduction G is F. We show

G is equivalent to F if and only if d(F, G) is a coboundary. In fact G is

equivalent to F if and only if there exists uf^R[[xJΐS such that F(u'{x),uf(y))

= u'(G(x,y). Define u by — L - * ^ = ^', then

r^—v*u(x)*u{y) =

G{x,y)* λ *{u{x) + u{y)) = u(G{x,y))
r [X, y)

d(F, G)(x9 y) + u(x) + u(y) = u(G(x, y))

d(F, G)(x9 y)=- u(x) + u(G(x, y)) - u(y)

d{F,G)(x9y)= -u{x) + u(x*y)-u(y)9

since P = (0), u(G(x9y)) = u{F(xfy)).

This shows that G is equivalent to F if and only if d{F9 G) is a coboundary.

Let Gi, G2 be formal groups over R such that the reductions Gί9 G2 are F.
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Then similarly we can show that d is equivalent to G2 if and only if

d(F9 Gi) — d(F, G2) is a coboundary. It follows that the map

Deformations of F—>Hj{F)

G I > d{F, G)

is injective.

For surjectivity, we have to show that for any cocycle d there exists

a deformation G of F and a 1-cochain u such that

G = d*F*δu.

For any 1-cochain w G = d*F*δu is already commutative and associative.

We only have to show that there exists u such that G(0, a?) = 0. It suffices

to put u(x) = d{0, x).

3. Schlessinger's criterion

3.1) THEOREM (Schlessinger). Let F be a {covariant) functor from C to the

category of sets (Sets) such that F{k) = one point. Let A'—>A and A"—>A

be morphisms in C. Consider the map

(**) F{A'XAA") — > F{A') XFU)F{A").

Then F is pro-representable (i.e. there exists T^C such that F(S) = Hom β (S, T))

if and only if (Ht), (H2), (H3) and (H4) are satisfied

(Hi) (**) is surjectiυe whenever A" — > A is a small extention. (see Schlessinger

(3)).

(H2) (**) is bijective when A= k and A" = k[έ], with ε2 = 0.

REMARK. If (H2) is satisfied, F(k[έ\) has a natural fc-vector space struc-

ture (see Schlessinger (3)).

(H4) For any smalll extension Ar—>A

F{A'XAA
f) —>F(A')XFU)F(A')

is bijective.

3.2) THEOREM 1. The functor D from C to (Sets) is representable if k is

perfect and Φ is ^-divisible.
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Proof. To prove D is representable, it is sufficient to show that the

restriction of D to the full subcategory C is pro-representable. We shall

prove that D satisfies (Hi), (H2), (Hz) and (iJ4). 1.3) Lemma 3 already shows

that (Hx), (HZ) and (ίΓ4) are satisfied. Since Φ has a lifting to k[έ}9 D(k[έ]) =

Hl(Φ) by proposition 1. It is easy to verify that this correspondence is an

isomorphism of vector spaces. On the other hand the additive group functor

Ga from the category of ^-algebras is smooth (i.e. Ga(A) — > Ga(A/I) is sur-

jective if / is a nilpotent ideal) and consequently every extension has a

functorial section. Hence Hl(Φ) ~ Ext (Φ, G2), where Ext is the set of exten-

sions of group functors over k. To calculate Ext (Φ, Gΐ), we can use the

contravariant Dieudonne module since k is perfect (see Oda (2)). The

following calculation is essentially due to Oda. For a formal group G, let

M(G) denote the corresponding Dieudonne module.

Then M(Ga) = AIAV. We put M(Φ) = N. From the exact sequence

0—>A >A—>AIAV—>0
right multiplication by V

we get an exact sequence

0 — > Hom (AIAV, N) — > Hom (A, N) — > Hom [A, N)

— > Ext (AIAV, N) — > Ext (A, N).

On the other hand Hom (AIAV, N) = Ext (A, N) = 0, Hom (A, N) = N and the

map Hom (A, N) — > Hom (A, N) is the left multiplication by V. This implies

dim Ext(A/AV, N) = corank (Φ). Consequently dim^Ext (Φ, GS) = n corank (Φ).

This completes the proof of Theorem 1.
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