Vol. 40 (1989) [481-486]

A NOTE ON SEMI-HOMOMORPHISMS OF RINGS

Y. Fong and L. van Wyk

Abstract

Huq presented a general study of semi-homomorphisms of rings, following, amongst others, Kaplansky's study of semi-automorphisms of rings and Herstein's study of semihomomorphisms of groups. Huq gave several "sufficient" conditions for a semi-homomorphism and a semi-monomorphism of rings to be a homomorphism and a monomorphism respectively. In this note we introduce semi-subgroups of groups, provide counterexamples to four of Huq's assertions and show how a minor, albeit forced, change to one of the conditions of the fourth assertion turns it into a special case of another theorem of Huq's.

1. Preliminary results

Herstein [2] calls a mapping $\varphi: G \rightarrow H$ between two groups (written additively) a semi-homomorphism if

$$
\begin{equation*}
\varphi(a+b+a)=\varphi(a)+\varphi(b)+\varphi(a) \tag{1}
\end{equation*}
$$

for all $a, b \in G$. Any homomorphism or anti-homomorphism is a semi-homomorphism, but the converse need not be true in general.

We call a subset K of a group A a semi-subgroup of A if $h+k+h \in K$ for all $h, k \in K$. The subset $\{k+a . \mid k \in K\}$ of A, for some $a \in A$, will be denoted by $K+a$. The singleton $\{a\}$ is a semi-subgroup of A which is not a subgroup of A, for every $a \in A$ of order 2 , and the image of every semi-homomorphism $\varphi: G \rightarrow H$ is a semi-subgroup of H. However, in the next paragraph we shall be interested in the subsets

$$
H_{\varphi}=\{\varphi(a+b)-\varphi(a)-\varphi(b)-\varphi(0) \mid a, b \in G\} \text { and } H_{\varphi}+\varphi(0) \text { of } H .
$$

The result in the first part of the "proof" of [3, Lemma 4] will be used frequently in the sequel; so we state it as

Lemma 1.1. If $\varphi: G \rightarrow H$ is a semi-homomorphism of abelian groups, then $2 \varphi(a+b)=2 \varphi(a)+2 \varphi(b)$ for all $a, b \in G$.

[^0]
2. SEMI-HOMOMORPHISMS AND HOMOMORPHISMS

We show that the condition,

$$
\begin{equation*}
\varphi(a+b)=\varphi(0)+\varphi(a)+\varphi(b) \tag{2}
\end{equation*}
$$

for all $a, b \in G$, is stronger than (1) in general, but equivalent to (1) in the case where G and H are abelian and the semi-subgroup H_{φ} of H (see Lemma 2.2) contains no elements of order 2. It is also shown that if G and H are abelian, then a semihomomorphism $\varphi: G \rightarrow H$ is a homomorphism if and only if the semi-subgroup $H_{\varphi}+$ $\varphi(0)$ of H contains no elements of order 2.

Lemma 2.1. If a mapping $\varphi: G \rightarrow H$ between groups satisfies (2), then φ is a semi-homomorphism.

Proof: It follows from (2) that $2 \varphi(0)=0$, and so $\varphi(a+b+a)=\varphi(0)+\varphi(a+b)+$ $\varphi(a)=\varphi(0)+\varphi(0)+\varphi(a)+\varphi(b)+\varphi(a)=\varphi(a)+\varphi(b)+\varphi(a)$.

Henceforth G and H will be abelian groups.
Lemma 2.2. If $\varphi: G \rightarrow H$ is a semi-homomorphism, then H_{φ} and $H_{\varphi}+\varphi(0)$ are semi-subgroups of H.

Proof: By Lemma 1.1 and the fact that $2 \varphi(0)=0$.
Proposition 2.3. Let $\varphi: G \rightarrow H$ be a semi-homomorphism. If H_{φ} contains no elements of order 2, then φ satisfies (2).

Proof: The result follows immediately since $2 H_{\varphi}=0$.
In order to show that (2) is stronger than (1) in general, we consider
Example 2.4. We shift for a brief moment from additive to multiplicative notation (composition of functions) in defining $\varphi: S_{3} \rightarrow S_{3} \times S_{3}$ by $\varphi(\alpha)=$ $\left((12) \alpha(12),(12) \alpha^{-1}(12)\right)$ for every $\alpha \in S_{3}$, the symmetric group of degree 3 . It is a routine check that φ is a semi-homomorphism; in fact, if π_{i} denotes the i th coordinate projection, $i=1,2$, then $\pi_{1} \varphi: S_{3} \rightarrow S_{3}$ is a homomorphism and $\pi_{2} \varphi: S_{3} \rightarrow S_{3}$ is an anti-homomorphism. Furthermore, $\varphi(1)=1$, where 1 denotes the identity of S_{3}, and so it is easy to see that the condition,

$$
\varphi(\alpha \beta)=\varphi(1) \varphi(\alpha) \varphi(\beta)
$$

for all $\alpha, \beta \in S_{3}$, is not satisfied.
TheOREM 2.5. A semi-homomorphism $\varphi: G \rightarrow H$ is a homomorphism if and only if the semi-subgroup $H_{\varphi}+\varphi(0)$ of H contains no elements of order 2.

Proof: The result follows immediately as in Proposition 2.3, since $2\left(H_{\varphi}+\varphi(0)\right)=0$.

3. Counterexamples to assertions in [3]

Huq calls a mapping $\varphi: R \rightarrow R^{\prime}$ between two rings a semi-homomorphism if

$$
\varphi:(R,+) \rightarrow\left(R^{\prime},+\right) \text { is a semi-homomorphism of groups }
$$

and

$$
\begin{equation*}
\varphi(a b a)=\varphi(a) \varphi(b) \varphi(a) \tag{3}
\end{equation*}
$$

for all $a, b \in R$, that is $\varphi:(R, \cdot) \rightarrow\left(R^{\prime}, \cdot\right)$ is a semi-homomorphism of semigroups. Note that Ancochea [1] calls an additive automorphism $\varphi: R \rightarrow R$ satisfying

$$
\begin{equation*}
\varphi(a b)+\varphi(b a)=\varphi(a) \varphi(b)+\varphi(b) \varphi(a) \tag{4}
\end{equation*}
$$

for all $a, b \in R$, a semi-automorphism of R. Kaplansky [4] proved that if R is a simple algebra of characteristic different from 2, then (3) is equivalent to (4), and otherwise stronger. In this paper we stick to Huq's definition of a semi-homomorphism of rings.

The first example in this section is a counterexample to [3, Lemma 4 and Corollary 5].

Example 3.1. Let Z_{6} be the ring of integers modulo 6. Then $\varphi: \mathbf{Z}_{6} \rightarrow Z_{6}$, defined by $\varphi(x)=3$ for all $x \in Z_{\theta}$, is easily seen to be a semi-homomorphism of rings. However, char $Z_{8}=6 \neq 2$, and by Theorem 2.5φ is not a homomorphism of the underlying additive groups, since $\left(Z_{6}\right)_{\varphi}+\varphi(0)=\{3\}$ and $2 \cdot 3=0$, or equivalently, $\varphi(0)+\varphi(0)=0 \neq 3=\varphi(0+0)$. Also, $\varphi(-2 \cdot 0)=3 \neq 0=-2 \varphi(0)$ (see [3, Corollary 5]).

Even if $\varphi: R \rightarrow R^{\prime}$ is simultaneously a semi-monomorphism of rings and a homomorphism of the underlying multiplicative semigroups (R, \cdot) and $\left(R^{\prime}, \cdot\right)$, and char $R^{\prime} \neq 2$, then [3, Lemma 4 and Corollary 5] need not be true, as seen in

Example 3.2. Consider the subring $\{0,2,4\}$ of \mathbb{Z}_{6}, and define $\varphi:\{0,2,4\} \rightarrow \mathbb{Z}_{6}$ by $\varphi(x)=\overline{4 x+3}$ for all $x \in\{0,2,4\}$, where \bar{a} denotes the remainder of a after division by 6. Then $\varphi(0)=3$, and it can be easily verified that φ is a semi-monomorphism of rings. In fact $\varphi(x y)=\varphi(x) \varphi(y)$ for all $x, y \in\{0,2,4\}$, but by Theorem 2.5φ is not a homomorphism of the underlying additive groups.

It should be remarked that [3 , Lemma 4 and Corollary 5] are true in case the codomain of the semi-homomorphism is a division ring D (say), since if char $D \neq 2$, then D contains no elements of order 2.

By Theorem 2.5 correct versions of [3, Lemma 4 and Corollary 5] read as follows:

Lemma 3.3. A semi-homomorphism $\varphi: R \rightarrow R^{\prime}$ of rings will be a homomorphism of the underlying additive groups if the semi-subgroup R_{φ}^{\prime} of $\left(R^{\prime},+\right)$ contains no elements of order 2.

Corollary 3.4. For a semi-homomorphism $\varphi: R \rightarrow R^{\prime}$ such that the semisubgroup R_{φ}^{\prime} of $\left(R^{\prime},+\right)$ contains no elements of order 2 , we have $\varphi(-n a)=-n \varphi(a)$ for every integer n and every $a \in R$.

By Lemma 1.1 and Theorem 2.5 the condition in Corollary 3.4 that R_{φ}^{\prime} contains no elements of order 2 , can be replaced by the condition that the semi-subgroup $\{\varphi(2 a)-$ $2 \varphi(a) \mid a \in R\}$ of R^{\prime}, which is contained in R_{φ}^{\prime}, contains no elements of order 2.

The next example is a counterexample to [3, Theorem 11]:
Example 3.5. Let $\varphi: \mathbf{Z}_{6} \rightarrow \mathbf{Z}_{6}$ be defined by $\varphi(x)=\overline{4 x+3}$ for all $x \in \mathbf{Z}_{6}$. It is easy to verify that the conditions of [3, Theorem 11] are satisfied. In fact, $\varphi:\left(Z_{6}, \cdot\right) \rightarrow\left(Z_{6}, \cdot\right)$ is a homomorphism of semigroups as in Example 3.2. However, by Theorem 2.5φ is not a homomorphism. (The mentioning of an anti-homomorphism in [3, Theorem 11] is irrelevant, since R and R^{\prime} are assumed to be commutative.)

A correct version of [3, Theorem 11] reads as follows:
Theorem 3.6. For commutative rings R and R^{\prime} with identities, if $\varphi: R \rightarrow R^{\prime}$ is an identity-preserving semi-homomorphism and the semi-subgroup R_{φ}^{\prime} of R^{\prime} contains no elements of order 2 , then φ is a homomorphism.

We come now to [3, Theorem 10]. In order to exhibit a counterexample to this assertion, one needs, as will be shown shortly, a semi-monomorphism of rings with identities which maps 0 into 0,1 into 1 and, above all, which is a homomorphism of the underlying multiplicative semigroups. (Note that in all the counterexamples so far 0 was not mapped into 0 .)

Example 3.7. We consider the field $F:=\mathbf{Z}_{2}[x] /\left(x^{3}+x+1\right)$ with 8 elements, that is the congruence classes in $\mathbf{Z}_{2}[x]$ modulo the ideal $\left(x^{3}+x+1\right)$. Define $\varphi: F \rightarrow F \times \mathbf{Z}_{3}$ by

$$
\begin{array}{rlr}
\varphi(\beta)= & (0,0), & \text { if } \beta=0 \\
& \left(\beta^{-1}, 0\right), & \text { if } \beta \neq 0
\end{array}
$$

Then φ is clearly a semi-homomorphism of the underlying additive groups, since $\operatorname{char} F=2$. Moreover, setting $[x]=: \alpha$, where $[x]$ denotes the congruence class of x, we get $\varphi(1+\alpha)=\alpha^{2}+\alpha \neq \alpha^{2}=1+\alpha^{2}+1=\varphi(1)+\varphi(\alpha)$, and so φ is not a homomorphism of the underlying additive groups. It is eaily verified that φ is a homomorphism of the underlying multiplicative semigroups, and so condition (iii) of [3,

Theorem 10] is satisfied. Furthermore, $\operatorname{char} F \times \mathbf{Z}_{3}=6 \neq 2$ and $\varphi(F)=F \times 0$ is a subfield of $F \times \mathbf{Z}_{3}$ (with identity (1,0)). (It is clear from the "proof" of $[\mathbf{3}$, Theorem 10] that Huq terms a division ring a skew field.) Finally, φ is $1-1$, and so we have established a counterexample to [3, Theorem 10].

We are going to show that a minor, albeit forced, change to condition (i), together with conditions (ii) and (iii), of [3, Theorem 10], turn it into a special case of [3, Theorem 12]. A few preliminary consequences of conditions (ii) and (iii) are first needed:

Lemma 3.8. Let $\varphi: R \rightarrow R^{\prime}$ be a semi-monomorphism of rings such that conditions (ii) and (iii) of [3, Theorem 10] are satisfied. Then $\varphi(0)=0$.

Proof: Suppose that $\varphi(0) \neq 0$. Recall that $2 \varphi(0)=0$, since φ is an additive semi-homomorphism. Therefore, $-\varphi(0)=\varphi(0)$, and so by condition (iii), with $y=0$,

$$
\varphi(0)=\varphi(0)[\varphi(0)]^{-1}=1
$$

where 1 denotes the identity of the skew field $\varphi(R)$. However, $\varphi(a)=0$ for some $a \in R$, since $0 \in \varphi(R)$, a skew field. But then

$$
0 \neq \varphi(0)=\varphi(0 a 0)=\varphi(0) \varphi(a) \varphi(0)=0
$$

which completes the proof.
Corollary 3.9. Let φ satisfy the conditions of Lemma 3.8. Then $\varphi:(R \backslash\{0\}, \cdot) \rightarrow(\varphi(R) \backslash\{0\}, \cdot)$ is an isomorphism of groups, and so R is a skew field.

Proof: It follows from condition (iii) that $\varphi(y z)=\varphi(y z y)[\varphi(y)]^{-1}=$ $\varphi(y) \varphi(z) \varphi(y)[\varphi(y)]^{-1}=\varphi(y) \varphi(z)$ for all $y, z \in R \backslash\{0\}$, and so φ is a homomorphism of semigroups. But φ is $1-1$, and so φ is an isomorphism, which implies that $(R \backslash\{0\}, \cdot)$ is a group, as $(\varphi(R) \backslash\{0\}, \cdot)$ is a group. Therefore R is a skew field.

It follows from Corollary 3.9 that $\varphi(1)=1$, where 1 denotes the identities of the skew fields R and $\varphi(R)$, and so we immediately get

Proposition 3.10. Let φ satisfy the conditions of Lemma 3.8. Then $\varphi: R \rightarrow$ $\varphi(R)$ is an identity-preserving semi-monomorphism of skew fields and $\varphi:(R \backslash\{0\}, \cdot) \rightarrow$ ($\varphi(R) \backslash\{0\}, \cdot$) is a homomorphism of groups.

If we now change condition (i) of [3, Theorem 10] to the condition

$$
\operatorname{char} \varphi(R) \neq 2
$$

then by Proposition 3.10 the following theorem, which is a correct version of [3 , Theorem $10]$, is merely a special case of [3 , Theorem 12]:

Theorem 3.11. A semi-monomorphism $\varphi: R \rightarrow R^{\prime}$ of rings will be a monomorphism, if
(i) $\quad \operatorname{char} \varphi(R) \neq 2$
(ii) $\varphi(R)$ is a skew subfield of R^{\prime} and
(iii) $\varphi(2 y+y z)-2 \varphi(y)=\varphi(y z y)[\varphi(y)]^{-1}$.

We conclude wilh a remark concerning semi-subgroups:
If a semi-subgroup K of a group A is not a subgroup of A, then we call K a nonsubgroup of A. Non-subgroups seem to have a very interesting structure, and we hope to give a characterisation of the non-subgroups of finite abelian groups in a forthconing paper.

References

[1] G. Ancochea, 'Le théorème de von Staudt en geometrie projective quaternionienne', J. Reine Angew. Math. 184 (1942), 192-198.
[2] I.N. Herstein, 'Semi-homomorplisms of groups', Canad. J. Math. 20 (1968), 384-388.
[3] S.A. Huq, 'Semi-homomorphisms of rings', Bull. Austral. Math. Soc. 36 (1987), 121-125.
[4] I. Kaplansky, 'Semi-homomorphisms of rings', Duke Math. J. 14 (1947), 521-525.

Department of Mathematics
National Cheng Kung University 70102 Tainan, Taiwan
Republic of China

Department of Mathematics
University of Stellenbosch
7600 Stellenbosch
Republic of South Africa

[^0]: Received 17 January 1989
 The second author wishes to thank the NSC of the Republic of China and the CSIR of South Africa for a two months grant in accordance with a bilateral exchange agreement between the two institutions which made it possible for him to visit the National Cheng Kung University.

