
Canad. Math. Bull. Vol. 17 (4), 1974 

INTEGRATION OF NON-MEASURABLE 
FUNCTIONS (II) 

BY 

ELIAS ZAKON 

This is a supplement to a previous paper [4] in which integration was developed 
for arbitrary extended-real functions over arbitrary sets in an outer measure 
space (S, - # * , m*) where m*, also written m, is a regular outer measure on all 
subsets of an arbitrary set S^0, and ~#* is the family of all m*-measurable 
sets.(1) Our present objective is to strengthen some previous theorems by consid­
ering convergence in measure, and nets of not necessarily measurable functions 
f:S->E* (E* being the extended real number system).<2) The notation and defi­
nitions of [4] are presupposed and continued In particular, the operations in E* 
are defined as usual, with two additional conventions : oo — oo = + oo and 0 • oo=0 
(oo stands for ± oo). As before, we write "f>g on A" iïïf(x)>g(x) for all x e A, 
and set A(f>a)={x e A\f(x)>a}, A(\f\<g)={x e A\f(x)\<g(x)}, etc. Con­
tinuing the numbering of propositions of [4], we now add §6 (the preceding sec­
tions being quoted as §§1-5). 

6. Convergence in measure. In the sequel, {f \iel} denotes a net of extended-
real functions on S where / ranges over a directed set / , i.e. a partially ordered set 
in which every two elements have an upper bound. Given also a function/such 
that l / K + oo on a set A Ç S, we say that the net {f} converges in measure to 
fonA, and write/^/Otneas.) on A, if for every real#>0, lim,- m*A(\fi—f\ >q)=0; 
that is, given any real q, s > 0 , there is i0 e I such that the outer measure of the set 
{XEA I \fi(x)—f(x)\>q} is less than ô whenever /> / 0 in /. Similarly we write 
ff-^+oo (meas.) on ̂ 4 if lim^ m*A(fi<n)=0, n = l, 2, . . . ; and^->—oo (meas.)if 
limt- m*A(f> — n)=0, n = l,2, More generally, we write ft-*f (meas.), 
or )imift ^ / (meas. ) , on A ifft->± oo (meas.) on A(f= ± oo), and/-*/(meas.) on 
A(\f\< + co), as defined above. Analogous definitions apply to uniform (unif) 
and almost uniform (a.unif) convergence (cf. §5). If, in addition, {/Jf on A 
[i.e. if *'<y'in / implies/</} a.e. on A] we write f/f instead off->f Similarly 
for " / f \ / " . As usual, "a.e. on^f" means " o n ^ - g , for some Q^A withra*g=0". 
We denote by <stf the family of all sets of the form A n X, with X eJP*. As 
was noted in §3, the restriction of m* to s/ is a countably additive measure, 

Received by the editors October 13, 1972 and, in revised form, June 25, 1973. 
(1) We are using the terminology of Munroe [3], pp. 50-57. 
(2) p o r "nets", see Kelley [2], p. 65 ff. Sequences are a special case. 
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called mA. We start with some simple propositions, omitting proofs when trivial. 
The space (S, *•#*, ra*) is fixed henceforth. 

(6.1) Iff ->f(meas.) on A and on B, thenfi -^f (meas) on A u B. 

(6.2) Iff - > / (meas.) on A, then: 

0) l / l -* l/l (meas.) on A; 
(ii) ft " ^ / + mdfl - > / ~ (meas.) on A (f+ = sup{/, 0 } , / - = s u p { - / , 0}; 

(iii) af-> af (meas.) on A, for every real (finite) constant a. 

(6.3)(Riesz) If f-*f (meas.) on A, there is a sequence ix <. i2 < • • • in < 
in+1 • • • in I such that l i n v ^ ^ - œf (a.unif) [hence also (a.e.)] 
on A. 

Proof. Let ^ 0 = ^ ( | / | < + oo), A1=A(f= + oo) and A2=A(f =-oo). Our 
assumption implies that for each integer « > 0 there is in e I such that 

6.3.1. m % ( | / , - / | > l/n) + m*A1{f1 < n) 

+ m*A2(fi>-n)<2-\ for i>in 

As I is directed, we can choose the in inductively in such a manner that in< 
in+l9 « = 1 , 2 , . . . , with 6.3.1 preserved for all n. Now, given s > 0 , fix k such that 
2 ^ 2 - < « f and set D= U £ * lA0(\f-f\>\\n) u Ax(fn<n) u ^ ( / n > - « ) ] , 
so that m * Z ) < 2 £ U 2 - n < £ , by 6.3.1. Also, let E=A n D where DeJt*, 
D^L D and m*D=mD (i.e. 5 is a "measurable cover" of Z); it exists by the assumed 
regularity of m*; cf. [3], pp. 50-57). Then E e s/ and mE<m*D<e. Moreover, 
AQ-E^AQ-D= n ^ ^ o ( l / n ~ / l < l / « ) , A - £ < = 0"= , A(Z W >") and ^ 2 - . £ ç 
n r=fc^2( / n <-" ) - ( 3 ) Thus, for all n>k, we have \fin-f\<l/n on A0-E,fn<n 
on Ax—E9 and/ i <—« on y42—£. It easily follows t h a t / ^ - ^ / (unif.) on A0~E, 

f - > + oo (unif.) on A1—E and^ ->— oo (unif.) on A2—E. As such an E exists for 
a/iy £>0, we have, by definition, f ->f (a.unif.) on A0 U A± U ^42, hence on ^4. 
This, in turn, implies^- ->/(a.e.) on A, as is well known. QED. 

This extension of the classical Riesz theorem enables us to extend also other 
classical results to nets of arbitrary functions f:S->E*. In particular, we 
immediately obtain (by choosing a sequence f ->/*(a.e.)): 

(6.4) Iff - > / (meas.) on A and if there is a function g such that f < g a.e. on 
A, for all i e I, thenf<g a.e. on A. Similarly in casef > g a.e. on A, for 
all i. 

(6.5) Letf —>f (meas.) on A. Thenf = g a.e. on A ifff —• g (meas.) on A. 

Proof. The "only if" is obvious. The "if" follows by choosing the sequence 
{f } of 6.2, in such a manner that bothf -^fanàf ~>g a.e. on A. This is possible 
because I is directed. 

(3) Because the sets A0i Ax and A2 are disjoint. 
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Henceforth we write "f&g" ("/is equivalent to g") for "f=g a.e.", and " / < # " 
for " / < g a.e." (all on A), omitting "A" if A=S. This partially orders the set 
E*s of all functions / : S-+E*. A function g is an essential upper {lower) bound 
of {/•} iff/* <g (/• >g), for all /. We wr i te /^essup/ ( /^ess inf / ) on 4̂ if/ < / < g 
(/* ^f^g) o n ^> f ° r aU s u c h g a n d all /. Clearly, essup/ and essinf/ are unique 
to within equivalence.(4) 

(6.6) (i) Iff /f f (meas.) on A, thenf t& essup/ on A. 
(ii) Iff \ f(meas.) on A, thenf & essinf/ on A. 

Proof of (i). Fix any i0 el. As I is directed, the sequence {/ } of 6.2 can be 
so chosen that / 0</i ; so we include fQ in f/f a.e. on ^4. It easily follows that; 

fiQ KfonA. As i0 is arbitrary,/is an ess. upper bound of {/}, on A. Now, if g is 
another such bound, 6.4 yields/ Kg on ^4. T h u s / ^ e s s u p / , proving (i). Similarly 
for (ii). 

As in [4], we identify J/with the upper integral, J / of / (with respect to m). 
We consider lower integrals, / / , also. Both were defined for any function/: S->E*9 

over any set A^ S (cf. §2). We now obtain: 

6.7. LEMMA. For any functions / , g: S-+E* such that $A | / | < + oo and §A \g\< 

+ co,<« we W e I L Z - U I ^ l / - * l «** ^ / - . U ^ L \f-gl 

Proof. By 2.9(b) and (2.3(f) in §2, 

f(f-g) = f [/+(-«)] > f/+ f(-g) = f/- f g-
J^ J A J A J A J A J A 

Thus, if $Af>$Ag, we obtain \$Af-$Ag\<L \f~g\- Similarly in case $ Ag>$ Af 
Thus all is proved for upper integrals. Now replacing/and g by —/and —g, 
respectively, we obtain 

fi/-gi>| f(-/)-f(-g)| = |-f/+fg|, 
proving the result for lower integrals, also. 

6.8. Let f-^f (meas.) on A. Suppose there is g:S-+E*, with J^tg< + oo and 
l / l Kg on A, for all i. Then lim^ $A | / — / | = 0 and lirn,. J ^ / = J ^ / We also have: 
Km* [A \fi-f\ = 0 a*/ lim< [Af=[Af^ 

Proof. By 3.4, there is an A-measurable (i.e. measurable on A, with respect to 
the measure mA mentioned above) function h>g^\f\, such that $Ah=$Ag< 
H-oo. Hence, by 5.1, h vanishes on A — C where C = |J«=i Cn for some disjoint 
sets Cn G J / , with mACn< + oo, w=l , 2, . . . . By the countable additivity of the 

(4) Provided they exist (we leave this question open at this time). 

(5) Note that these assumptions ensure that Jj/and jAg are "orthodox" (§2). 
(6) As before (and thereafter),/and/, need not be measurable. 
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integral, $ Ah=$A_ch+$ch=0+ 2n=i $cn
h- A s L * < + °°> t h e s e r i e s l,$cn

h 

converges. Thus, given £>0, there is an integer/? such that $Ah—e< 2n=i Scn
n=z 

$Hh where //„= L ) L i Q e ^ > and m*Hp=mAH1,< +co.{7) Hence $A-H h= 
Lh-Snph<e. 

As |/J</i on ^ , 6.4 and 6.2(i) yield | / | Kh. Thus I L / J < J ^ < + oo and 
|J^ l/|<JJ[A< + oo. Also, \fi—f\ <2h on ,4. Hence by 6.7, we get, for all i, 

(6.8.1.) I f /<- f / < f | /<- / | < f | /<- / | + f 2h < f | / , - / | + 2e. 

Next, recalling that m*Hv< + oo, with e fixed, we choose a real q>0 such that 
q-m^H^Ke. We also set, for all /, A—H^-f^q) and B~H^A~ 
Hv{\fi-f\<q). As fTp=4, U 4 we have, by 2.11 (noting that \fr-f\Kq on 

(6.8.2) f | / , - / | < f | /<- / | + f | /<- / | < f | / , - / l + « • m * JB<. 
Ju, J ^ JB€ JA. 

Here # • m^B^q • m*E<e. Thus, combining 6.8.2 and 6.8.1, we obtain 

(6.8.3) I [f^[f\<\\f^f\<[ | / , - / | + 2 8 < f | /<- / | + 3c, 
\ JA J A | *U JH^ J ^ 

for all /. 
Now, as h is ^4-measurable, with JV*< +oo, it is m^-integrable in the sense of the 

traditional theory of integration. Thus, as is well known, $h dmA is absolutely 
continuous (cf. [1], 12.34); so, with s as above, there is <5>0 such that 2$xh<e, 
whenever Z G J / and m*X=rnAX<ô. Fixing this ô, and recalling that fr+f 
(meas.) on A, we find an i0el such that m*Ai=--m*HI)(\fi—f\>qXô, for all 
/>/0.(8) Let ÂiE<Jf* be a measurable cover of Ax and set X~A n Âi9 is I. 
Then Xt e s/, X^At and m*X~rn*Ai<6 for i>i09 implying: J^.l/»—/!< 
2§Ah<2§xh<s, for such /. Hence, by 6.8.3, 

I f / , - f /I < f \fi-f\ < 46, for all i > i0. 
I J A J A | i l l 

As £ is arbitrary, we have j A \fi—f\-+0 and $Afi-*$Af9 as claimed. Since 
k l / i " / l < L l/«-/l (cf- §2) and \Ufi-Uf\KU \ft-f\ (by 6.7), the theorem 
also holds for lower integrals. Thus all is proved. 

Simultaneously, we have proved the absolute continuity of the integral, even for 
non-measurable functions/: S-+E*; that is, we have: 

6.9. If' $A | / | < + oo, then for every £>0 there is (5>0 {dependent on f and s 
only) such that §x \f\<£ whenever X^A andm*X<(5. 

(7) Recall that mA is a restriction of m*. 
(8) This applies since $A \f\ < + oo (implying that | / | < + co a.e. on A). 
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Indeed we only have to choose an A-measurable function h>\f\, with $Ah= 
SA l/l> a n d u s e t n e absolute continuity of J7z, as in the proof of 6.8. 

Theorem 6.8 strengthens an analogous proposition (5.4) previously proved for 
uniform and almost uniform convergence only. Indeed, convergence in measure is 
more general since f-*f (a.unif) implies f-*f (meas.), as easily follows from 
our definitions; moreover, 5.4 was proved for sequences {fn} only, not nets. It is 
now obvious that 6.8 holds also with "fr*f (meas.)" replaced by the stronger 
assumption "fr*f (a.unif.)" or "(unif.)." A similar generalization for monotone 
convergence (5.3) is as follows. 

6.10. (a) Ifft/f {meas.) on A and if X J > - - o o for some i, then $Af/r $Af; 
(b) Iff^fimeas.) on A and if jAf<+oo for some i then $Af\ $Af Similarly 

for lower integrals, provided however that, in case (a) at least, £Af is orthodox 
(ie. [Af+<+oo or ]Af~< + œ; cf. §2). 

Here, instead of giving an independent proof, it is simpler to use 5.3 (an analo­
gous theorem, for almost uniform convergence), combined with 6.3. We prove 
case (b). I f f \ f (meas.) on A, Theorem 6.3 yields a sequence ii<ti2 ' * * <*in< 
/ n + 1 < ( • • in /such that f \ f (a.unif) on A. By assumption, $Afi< + °o for some 
/=/ 0 , and we may safely assume i0<h. Then, since {/Ji , we also have lAf < 
L A < + 00

? "=1> 2 , . . . . Thus, by 5.3, 

f/ = lim f/, = inf (f< > inf f/, = lim f/,. 
J A n-+oo JA n J A i J A i J A 

But, by 6.6, we also have^ ^ / o n A, hence $Afi>$Af for all /. It follows that 

f/<inf f/, = lim f/,<lim f/,-=f/; 
JA i J A i J A w-^oo J A J A 

so j ^ / ^ l im^ $Af, proving assertion (b). Similarly for (a) and for lower integrals 
[but, for the latter, case (a) requires "orthodoxy''9, by 5.3.] 

As an application, consider families {ft} of functions depending on a real 
parameter t [we may write f(t, x) forft(x), where t is real, and x varies over an 
arbitrary set A in the outer measure space (S, ~#*, ra*)]. Since the reals in any 
finite or infinite line interval form a directed (even totally ordered) set, the family 
{/J is a net. Using the classical notation §Af(t, x) dm(x) for jAft, we easily obtain : 

6.11. Letf(t, x) be a function of two variables, where t varies over a line interval 
(a, b)<^E*, and x varies over a set A in a regular outer measure space (S, Jl*, m*). 
Suppose \f(t, x)\<g(x), [a<t<b, x e A], for some function g(x), with 

g(x) dm(x) < + oo. 
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Under these assumptions we have: 

(i) If limt^af(t, x)=f(a, x), in measure, on A then l im^ a $Af(t, x) dm(x)= 
$Af(a, x) dm(x), and lim^a $Af(t, x) dm(x)=$Af(a, x) dm{x). 

(ii) Analogous statements hold in case t->b or t->t0 (a<70<è). 

Proof. In case t->b9 we consider the interval (a, b) in its usual order. Then, as 
noted above, it is a directed set. Thus, taking {ft} for {f} in 6.8, we obtain the result. 
In case t^»a, we only have to reverse the order in (a, b). Finally, in case t^t0 

(a<tQ<b), we let the set / consist of pairs of reals (r, s) such that a<r<,t0<s<b, 
and order / as follows: (r, s)<(r\ s') iff r<r'<t0<s'<s. This again makes / a 
directed set, and yields the result for the bilateral limit as /—^0 (instead of the 
one-sided limit at a or b). 

Note 1. The endpoints a and b in 6.11 may be infinite. This takes care of the case 
where £->+oo or /->—oo, over real values. 

Note!. The restriction \f(t, x)|<g(x)in6.11 may be relaxed as in Theorem 6.10, 
if fis monotone in t, i.e. t<t' implies f(t, x)<f(t', x), [or t<t' implies/(/, x)> 
f(t'9 x)] for almost all x e A. 

In conclusion, we would like to repeat a remark made at the end of [4] : It seems 
to us that the above exposition is so simple that it can be adapted to any course 
in measure theory and that there is no necessity to limit the theory of integration 
to measurable functions. Though this paper (along with [4]) is largely expository, 
Theorems 6.8, 6.10, 6.11 seem to be new in the proposed generality. 

REFERENCES 

1. E. Hewitt and K. Stromberg, Real and Abstract Analysis, Springer Verlag, New York, Inc. 
1965. 

2 J. L. Kelley, General Topology, D. Van Nostrand Co. Inc., 1960. 
3. M. E. Munroe, Measure and Integration, 2nd Edition, Addison-Wesley Publishing Co. 

Reading Mass., 1971. 
4. E. Zakon, Integration of non-measurable functions, Canad. Math. Bulletin, vol. 9, no. 3, 

1966, pp. 307-330. 

UNIVERSITY OF WINDSOR, 
WINDSOR, ONTARIO, CANADA 

https://doi.org/10.4153/CMB-1974-105-0 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1974-105-0

