COEFFICIENTS OF THE PROBABILISTIC FUNCTION OF A MONOLITHIC GROUP*

PAZ JIMÉNEZ-SERAL
Departamento de Matemáticas, Universidad de Zaragoza, 50009 Zaragoza, Spain e-mail:paz@unizar.es

(Received 13 November, 2006; revised 9 October, 2007; accepted 14 October, 2007)

Abstract

We relate the coefficients of the probabilistic zeta function of a finite monolithic group to those of an almost simple group.

2000 Mathematics Subject Classification. 20P05, 20D60, 20D30.

Introduction. For a finite group G and a non-negative integer t, let $P_{G}(t)$ be the probability that a randomly chosen ordered t-tuple from G generates G. In [7] P. Hall gave an explicit formula for $P_{G}(t)$, exhibiting the latter as a finite Dirichlet series $\sum_{n} a_{n} n^{-t}$, with $a_{n} \in \mathbb{Z}$ and $a_{n}=0$ unless n divides $|G|$; that is,

$$
P_{G}(t)=\sum_{H \leq G} \frac{\mu(G, H)}{|G: H|^{t}},
$$

where μ is the Möbius function of the subgroup lattice of G.
In view of Hall's formula, we can speak of $P_{G}(s)$ for any arbitrary complex number s. The function $P_{G}(s)$ is the multiplicative inverse of a zeta function for G, as described by Mann [9] and Boston [2]. If N is a normal subgroup of G and t is an integer with $P_{G / N}(t) \neq 0$, we define $P_{G, N}(t)=P_{G}(t) / P_{G / N}(t)$; this is the probability that a t-tuple generates G, given that it generates the G module N. W. Gaschütz (see [5]) gave a formula for $P_{G, N}(t)$, generalizing Hall's formula. As noted in [3], although Gaschütz avoided explicit mention of the Möbius function, his formula can be written as

$$
P_{G, N}(t)=\sum_{H N=G} \frac{\mu(G, H)}{|G: H|^{t}}
$$

The identity $P_{G}(s)=P_{G, N}(s) P_{G / N}(s)$ holds initially for sufficiently large positive integers t, but it remains valid as an identity in the ring of Dirichlet series. In [4], E. Detomi and A. Lucchini gave the following factorization, which is independent of the choice of the chief series,

$$
P_{G}(t)=\prod_{A} \prod_{1 \leq i \leq \delta_{G}(A)} \bar{P}_{L_{A}, i}(t),
$$

where A runs over the set of irreducible G-groups G-equivalent to a non-Frattini chief factor of G and $\delta_{G}(A)$ is the number of non-Frattini chief factors G-equivalent to A,

[^0]given a chief series of G. The monolithic primitive group associated with A is defined as $L_{A}=\left(G / C_{G}(A)\right)[A]$ if A is abelian and $L_{A}=G / C_{G}(A)$ otherwise. The factors $\bar{P}_{L_{A}, i}(t)$ are defined in [4] as follows. Let L be a monolithic group, and let N be its socle. Then
$$
\bar{P}_{L, 1}(t)=P_{L, N}(t)
$$
and for $i>1$ it is
$$
\bar{P}_{L, i}(t)=P_{L, N}(t)-\frac{\left(1+q_{N}+\cdots+q_{N}^{i-2}\right) \gamma_{N}}{|N|^{t}},
$$
where $\gamma_{N}=\left|C_{\operatorname{Aut}(N)}(L / N)\right|$ and $q_{N}=\left|\operatorname{End}_{L}(N)\right|$, if N is abelian and $q_{N}=1$ otherwise.
Using this factorization the coefficients of $P_{G}(t)$ can be given in terms of those of $P_{L, \mathrm{soc}(L)}(t)$ for a monolithic group L. The present paper arose from an attempt to describe the coefficients of $P_{L, \operatorname{soc}(L)}(t)$ by means of $P_{X, \mathrm{soc}(X)}(t)$ for certain almost simple groups X. More precisely, let G be a monolithic primitive group whose socle is nonabelian, S a simple component of $\operatorname{soc}(G)$ and $N=N_{G}(S)$. Consider the almost simple group $X=N / C_{G}(S)$. In Theorem 5 for those integers m with $|S| \nmid m$ we describe the coefficients a_{m} of $P_{G, \operatorname{soc}(G)}(t)$ in terms of those of $P_{X, \operatorname{soc}(X)}(t)$.

It was proved in [3] that $P_{G}(-1)$ is precisely the Euler characteristic of the coset poset of G. (This was first noticed by Bouc; see [3].) In the same paper, certain divisibility properties of $P_{G}(-1)$ were studied. Our Theorem 5 provides a relationship between divisibility properties of $P_{G}(-1)$ and of $P_{X}(-1)$.

The following theorem, proved by Gross-Kovács [6], will be essential to the proof of Proposition 3.

Theorem 1. (See [6] and 1.1.35 of [1].) Let G be a group in which there exists a normal subgroup M of G such that $M=S_{1} \times \cdots \times S_{n}$, where $\left\{S_{1}, \ldots, S_{n}\right\}$ is the set of all conjugate subgroups of a normal subgroup S_{1} of M. Write $N=N_{G}\left(S_{1}\right)$ and $K=S_{2} \times \cdots \times S_{n}$.
(1) Let L / K be a supplement of M / K in N / K. Then, there exists a supplement H of M in G satisfying the following properties.
(a) $L=(H \cap N) K$ and $H \cap M=\left(H \cap S_{1}\right) \times \cdots \times\left(H \cap S_{n}\right)$. Further, $H \cap S_{1}=$ $L \cap S_{1}$.
(b) Suppose that H_{0} is a supplement of M in G such that

$$
\left(H_{0} \cap N\right) K / K \leq L / K .
$$

Then there exists $k \in K$ such that $H_{0}^{k} \leq H$.
(c) H is unique up to conjugacy under K.
(2) There is a bijection between, on the one hand, the conjugacy classes in G of supplements H of M in G such that $H \cap M=\left(H \cap S_{1}\right) \times \cdots \times\left(H \cap S_{n}\right)$ and, on the other hand, the conjugacy classes in N / K of supplements L / K of M / K in N / K.
(3) Under the bijection above the maximal subgroups of G are in correspondence with maximal subgroups of N / M.

Let G be a monolithic group with $\operatorname{soc}(G)$ nonabelian and S a simple component of $M=\operatorname{soc}(G)$. Consider the projection $p: M \rightarrow S$. The maximal subgroups not containing $\operatorname{soc}(G)$ can be classified in terms of their intersection with $\operatorname{soc}(G)$ as follows.

Type a: maximal subgroups H with $p(H \cap M)=S$.
Type b: maximal subgroups H with $1<p(H \cap M)<S$.
Type c: maximal subgroups H with $H \cap M=1$.
The next result can be found in some of the proofs of the O'Nan Scott Theorem.
Proposition 2. (See 1.1.52 and 1.1.53 of [1]). Let G be a monolithic group with $M=\operatorname{soc}(G)=S_{1} \times \cdots \times S_{n}$ nonabelian.
(a) If H is a maximal subgroup of type b, then

$$
H \cap M=\left(H \cap S_{1}\right) \times \cdots \times\left(H \cap S_{n}\right) \neq 1
$$

(b) There exists a bijection between the set of all conjugacy classes of maximal subgroups of $N /\left(S_{2} \times \cdots \times S_{n}\right)$ that supplement but do not complement $M /\left(S_{2} \times \cdots \times S_{n}\right)$ and the set of all conjugacy classes of core-free maximal subgroups of $N / C_{G}\left(S_{1}\right)$.
(c) Let $L /\left(S_{2} \times \cdots \times S_{n}\right)$ be a maximal subgroup of $N /\left(S_{2} \times \cdots \times S_{n}\right)$ supplementing $M /\left(S_{2} \times \cdots \times S_{n}\right)$. Then $S_{2} \times \cdots \times S_{n}<L \cap M$ if and only if $C_{G}\left(S_{1}\right) \leq L$. (See the proof of 1.1 .53 of [1].)
In 4.3 of [8], Kovács determines the number of conjugacy classes of maximal subgroups with a trivial core. Any monolithic group with nonabelian $\operatorname{soc}(G)$ has maximal subgroups of type \mathbf{b} and it may happen that these are the only maximal subgroups not containing $\operatorname{soc}(G)$. For intersections of such maximal subgroups we have the following result.

Proposition 3. Let G be a monolithic primitive group with $\operatorname{soc}(G)$ nonabelian. Let S be a simple component of $\operatorname{soc}(G), N=N_{G}(S), X=N / C_{G}(S)$ and $n=|G: N|$. Suppose that H is a supplement of $\operatorname{soc}(G)$ in G such that all maximal subgroups containing H are of type b. Finally denote by $\varphi(H)=(H \cap N) C_{G}(S) / C_{G}(S) \leq X$. If $\mu(G, H) \neq 0$, then we have

$$
\mu(G, H)=\mu(X, \varphi(H))
$$

Moreover $|G: H|=|X: \varphi(H)|^{n}$ and $|H \cap S|=|\varphi(H) \cap \operatorname{Inn}(S)|$.
Proof. Write $M=\operatorname{soc}(G)=S_{1} \times \cdots \times S_{n}, S=S_{1}$ and $K=S_{2} \times \cdots \times S_{n}$.
Set

$$
\bar{\Omega}=\left\{H<G \mid H M=G, H \cap M=\left(H \cap S_{1}\right) \times \cdots \times\left(H \cap S_{n}\right)\right\}
$$

and

$$
\bar{\Sigma}=\{K \leq Y<N \mid(Y / K)(M / K)=N / K\} .
$$

We can define a map $\bar{\varphi}: \bar{\Omega} \rightarrow \bar{\Sigma}$ by $\bar{\varphi}(H)=(H \cap N) K$. Let $H \in \bar{\Omega}$. As $H M=$ G, H acts transitively on the components of M and thus the subgroups $H \cap S_{i}$ are conjugated. Hence $|H \cap M|=|H \cap S|^{n}$. Let $R=H \cap S$. We have

$$
\bar{\varphi}(H) \cap M=(H \cap N) K \cap M=(H \cap N \cap M) K=(H \cap M) K=(H \cap S) \times K=R \times K .
$$

It follows that $\bar{\varphi}(H) \cap S=H \cap S$ and $|R|=|(\bar{\varphi}(H) \cap M) / K|$. Hence

$$
|G: H|=|M: M \cap H|=(|S|:|R|)^{n}=\left(|M / K|:\left|(\bar{\varphi}(H) / K \cap(M / K) \mid)^{n}=|N: \bar{\varphi}(H)|^{n} .\right.\right.
$$

Now we prove that if $H_{i} \in \bar{\Omega}$ and $H=\cap H_{i} \in \bar{\Omega}$, then $\bar{\varphi}(H)=\cap \bar{\varphi}\left(H_{i}\right)$. By definition, it is clear that if $H_{1} \leq H_{2}$, then

$$
\bar{\varphi}\left(H_{1}\right) \leq \bar{\varphi}\left(H_{2}\right) .
$$

Therefore $\bar{\varphi}(H) \leq \cap \bar{\varphi}\left(H_{i}\right)$.
Let $R_{i}=H_{i} \cap S$. Note that $\cap R_{i}=H \cap S$ and hence $\bar{\varphi}(H) \cap M=\left(\cap R_{i}\right) \times K$. We also have $\bar{\varphi}\left(H_{i}\right) \cap M=R_{i} \times K$ and

$$
\left(\cap \bar{\varphi}\left(H_{i}\right)\right) \cap M=\left(\cap R_{i}\right) K=\bar{\varphi}(H) \cap M .
$$

Since $\bar{\varphi}(H) \leq \cap \bar{\varphi}\left(H_{i}\right)$ and both groups supplement M / K with the same intersection, counting orders, we get that $\bar{\varphi}(H)=\cap \bar{\varphi}\left(H_{i}\right)$. Note that $\bar{\Omega}$ contains all the maximal subgroups of types \mathbf{b} and \mathbf{c}. Consider now the sets

$$
\Omega=\{H \in \bar{\Omega} \mid H \text { is an intersection of maximals subgroups of type } \mathbf{b}\}
$$

and

$$
\Sigma=\{Y \leq X \mid Y S=X \text { with } Y \text { an intersection of maximal subgroups }\} .
$$

Let $H \in \Omega, H=\cap H_{i}$ and H_{i} maximal of type \mathbf{b}. We have $\bar{\varphi}(H)=\cap \bar{\varphi}\left(H_{i}\right)$ and, by Proposition 2 (c), $C_{G}(S) \leq \bar{\varphi}\left(H_{i}\right)$ and so $C_{G}(S) \leq \bar{\varphi}(H)$. Therefore, we can define a $\operatorname{map} \varphi: \Omega \rightarrow \Sigma$ with

$$
\varphi(H)=(H \cap N) C_{G}(S) / C_{G}(S)=\bar{\varphi}(H) / C_{G}(S)
$$

As $\bar{\varphi}(H) \cap S=H \cap S$, we have $|H \cap S|=|\varphi(H) \cap \operatorname{Inn}(S)|$.
Let $Y / C_{G}(S) \in \Sigma$. By Theorem 1, there exists $H \in \bar{\Omega}$ such that $\bar{\varphi}(H)=Y$. Assume that $Y=\cap Y_{i}$, where the subgroups Y_{i} are maximal in N. Then for each index i there exists $U_{i} \in \bar{\Omega}$ such that $\bar{\varphi}\left(U_{i}\right)=Y_{i}$. As $\bar{\varphi}(H)=Y \leq Y_{i}$ by Theorem 1, we can find some $k \in K$ with $H^{k} \leq U_{i}$. Hence we get $H \leq U_{i}^{k^{-1}}$ and $\bar{\varphi}\left(U_{i}^{k^{-1}}\right)=Y_{i}$.

This means that, changing notation, we can choose for each i a subgroup U_{i} maximal in G such that $H \leq U_{i}$ and $\bar{\varphi}\left(U_{i}\right)=Y_{i}$. By Proposition 2, U_{i} is of type \mathbf{b} and so it belongs to Ω. We have

$$
\bar{\varphi}(H)=Y=\cap Y_{i}=\cap \bar{\varphi}\left(U_{i}\right)=\bar{\varphi}\left(\cap U_{i}\right) .
$$

Using Theorem 1 we deduce that H and $\cap U_{i}$ are conjugated and since $H \leq \cap U_{i} \in \Omega$, we have $H=\cap U_{i}$ and $H \in \Omega$. Therefore $\varphi(H)=\bar{\varphi}(H) / C_{G}(S)=Y / C_{G}(S)$.

This means that φ is surjective. Clearly if $H_{1}, H_{2} \in \Omega$ and $H_{1}<H_{2}$, then $\varphi\left(H_{1}\right)<$ $\varphi\left(H_{2}\right)$.

Let H be a supplement of $\operatorname{soc}(G)$ in G such that all maximal subgroups containing H are of type \mathbf{b}. Suppose $\mu(G, H) \neq 0$. Then $H \in \Omega$. Recall that if $\mu(G, U) \neq 0$, then U is the intersection of maximal subgroups of G. It follows that if $H \leq U$ and $\mu(G, U) \neq$ 0 , then $U \in \Omega$.

Take $H_{1}, H_{2} \in \Omega$ such that $H<H_{1}$ and $H<H_{2}$. Assume that $\varphi\left(H_{1}\right)=\varphi\left(H_{2}\right)$. Then $H \leq U=H_{1} \cap H_{2}$ and so $U \in \Omega$. Applying $\bar{\varphi}$ we get $\bar{\varphi}(U)=\bar{\varphi}\left(H_{1}\right) \cap \bar{\varphi}\left(H_{2}\right)$ and as $\bar{\varphi}\left(H_{1}\right)=\bar{\varphi}\left(H_{2}\right)$, we have

$$
\bar{\varphi}(U)=\bar{\varphi}\left(H_{1}\right)=\bar{\varphi}\left(H_{2}\right) .
$$

We have already seen that $|G: U|=|N: \bar{\varphi}(U)|^{n}$ and so now we obtain $|G: U|=\left|G: H_{1}\right|=\left|G: H_{2}\right|$. Also as $U \leq H_{1}$, we deduce that $H_{1}=U$. Analogously $U=H_{2}$. Hence $H_{1}=H_{2}$.

For any $H \in \Omega, \varphi$ is injective when restricted to $\{U \in \Omega \mid H<U\}$ and its image is $\{Y \in \Sigma \mid \varphi(H)<Y\}$.

Recall that the Möbius function is defined by $\mu_{S}(G)=1$ and

$$
\sum_{K \geq H} \mu_{S}(K)=0
$$

for $H<G$. Using the bijection above we finally get

$$
\mu(G, H)=\mu(X, \varphi(H))
$$

Theorem 4. Let G be a monolithic finite group with nonabelian $\operatorname{soc}(G)$. Let S be a simple component of $\operatorname{soc}(G), N=N_{G}(S), X=N / C_{G}(S)$ and $n=|G: N|$. Suppose that all the maximal subgroups of G supplementing $\operatorname{soc}(G)$ are of type \mathbf{b}. Then

$$
P_{G, \mathrm{soc}(G)}(t)=\sum_{H \mathrm{soc}(G)=G} \frac{\mu(G, H)}{|G: H|^{t}}=\sum_{Y S=X} \frac{|X: Y|^{n-1} \mu(X, Y)}{\left(|X: Y|^{n}\right)^{t}}=P_{X, S}(n t-n+1)
$$

Moreover, denoting

$$
P_{G, \mathrm{soc}(G)}(s)=\sum_{m \in \mathbb{N}} a_{m} m^{-s} \text { and } P_{X, s o c X}(s)=\sum_{m \in \mathbb{N}} b_{m} m^{-s}
$$

we have

$$
a_{l^{n}}=l^{n-1} b_{l}
$$

Note that for any simple group S, any X with $S<X \leq \operatorname{Aut}(S)$ and any transitive permutation group P_{n} of degree n, the group $G=X \imath P_{n}$ satisfies the hypothesis of the theorem above.

Proof. Let $M=\operatorname{soc}(G)=S_{1} \times \cdots \times S_{n}, S=S_{1}$ and $K=S_{2} \times \cdots \times S_{n}$. Take a subgroup H of G such that $H \operatorname{soc}(G)=G$ and $\mu(G, H) \neq 0$.

By Proposition 3 it is $\mu(G, H)=\mu(X, \varphi(H))$ and $|G: H|=|X, \varphi(H)|^{n}$. Let $Y \leq X$ such that $Y S=X$ and $\mu(X: Y) \neq 0$. We need to check that

$$
|\{H \in \Omega \mid \varphi(H)=Y\}|=|X: Y|^{n-1}
$$

where Ω is the same as in Proposition 3.
By Proposition 1, the subgroups $\{H \in \Omega \mid \varphi(H)=Y\}$ are conjugated under an element of K and so we have to check that $\left|K: N_{K}(H)\right|=|X: Y|^{n-1}$. Observe that $\left|N_{K}(H)\right|$ is the same for every H such that $\varphi(H)=Y$.

As in the proof of Theorem 1, G can be seen in a natural way as a subgroup of $X \imath P_{n}$, where P_{n} is the permutation group associated to the permutation action of G over the n components of $\operatorname{soc}(G)$; that is $P_{n} \simeq G / \cap N_{G}\left(S_{i}\right)$.
(To be more precise: first we choose a family $\left(1, g_{2}, \ldots, g_{n}\right)$ of representatives of the left cosets of N in G such that $S^{g_{i}}=S_{i}$. For $g \in G$ let $g_{i} g=c_{i, g} g_{i^{\alpha}}$, where α is the
projection of g in P_{n} and $c_{i, g}^{*}$ is the projection of $c_{i, g} \in N$. It is easy to check that the map $g \mapsto\left(c_{1, g}^{*}, c_{2, g}^{*}, \ldots, c_{n, g}^{*}\right) \alpha$ is a monomorphism.)

Note that N projects surjectively on the first component. Let $H \in \Omega$. As

$$
(H \cap N) K \leq X \times\left(X \imath P_{n-1}\right) \text { and } C_{G}\left(S_{1}\right) \leq(H \cap N) K,
$$

$\varphi(H)$ is the projection in the first component. Choose $Y \leq X$ supplementing S and consider

$$
H=\left(Y \imath P_{n}\right) \cap G .
$$

It is easy to check that $\varphi(H)=Y$.
Let $t=\left(1, t_{2}, \ldots, t_{n}\right) \in K$ such that $t \in N_{K}(H)$. For any $\left(y_{1}, \ldots, y_{n}\right) \alpha \in H$, $\left[\left(y_{1}, \ldots, y_{n}\right) \alpha\right]^{t} \in H$; that is,

$$
\left(y_{1} t_{1^{\alpha}}, t_{2}^{-1} y_{2} t_{2^{\alpha}}, \ldots\right) \alpha \in H
$$

In particular $y_{1} t_{1^{\alpha}} \in Y$ and $t_{1^{\alpha}} \in Y$. As H acts transitively on $\{1, \ldots, n\}$, for any i there is some α with $t_{1^{\alpha}}=t_{i}$ and so we obtain $t \in H \cap K$. Obviously $H \cap K \in N_{K}(H)$ and this implies that $N_{K}(H)=H \cap K$. Moreover $H \cap M=\left(H \cap S_{1}\right) \times \cdots \times\left(H \cap S_{n}\right)$. Thus $|H \cap K|=|H \cap S|^{n-1}$.

By Proposition 3, $|H \cap S|=|Y \cap \operatorname{Inn}(S)|$. Therefore $|H \cap K|=|Y \cap \operatorname{Inn}(S)|^{n-1}$ and $\quad\left|K: N_{K}(H)\right|=|K:(K \cap H)|=|S|^{n-1} /|Y \cap \operatorname{Inn}(S)|^{n-1}=|\operatorname{Inn}(S) Y: Y|^{n-1}=$ $|X: Y|^{n-1}$.

Hence we get

$$
P_{G, \mathrm{soc}(G)}(t)=\sum_{H N=G} \frac{\mu(G, H)}{|G: H|^{t}}=\sum_{Y S=X} \frac{|X: Y|^{n-1} \mu(X, Y)}{\left(|X: Y|^{n}\right)^{t}}
$$

As

$$
P_{X, S}(t)=\sum_{Y S=X} \frac{\mu(X, Y)}{|X: Y|^{t}}
$$

we deduce that

$$
P_{G, \mathrm{soc}(G)}(t)=\sum_{Y S=X} \frac{\mu(X, Y)}{|X: Y|^{n t-n+1}}=P_{X, S}(n t-n+1)
$$

From this we see that if we put

$$
P_{G, \mathrm{soc}(G)}(s)=\sum_{m \in \mathbb{N}} a_{m} m^{-s}
$$

and

$$
P_{X, s o c X}(s)=\sum_{m \in \mathbb{N}} b_{m} m^{-s},
$$

then $a_{l^{n}}=l^{n-1} b_{l}$.

Theorem 5. Let G be a finite monolithic group with nonabelian $\operatorname{soc}(G), S$ a simple component of $\operatorname{soc}(G), N=N_{G}(S), X=N / C_{G}(S)$ and $n=|G: N|$. Set

$$
P_{G, \operatorname{soc}(G)}(s)=\sum_{m \in \mathbb{N}} a_{m} m^{-s} \text { and } P_{X, s o c X}(s)=\sum_{m \in \mathbb{N}} b_{m} m^{-s}
$$

Let m be an integer such that $|S|$ does not divide m. If $m=l^{n}$, then $a_{l^{n}}=l^{n-1} b_{l}$, and $a_{m}=0$, otherwise.

Proof. Let m be an integer such that $m=|G: H|,|S| \nmid m$ and $\mu(G, H) \neq 0$. Assume that $H \leq U<G$ for any maximal U of type a or \mathbf{c}. Then

$$
|G: H|=|G: U||U: H|,
$$

but $|S|$ divides $|G: U|$, so that $|S|$ divides m, which is a contradiction. Then H can be contained only in maximal subgroups of type \mathbf{b} and so, by Proposition 3, $\mu(G, H)=$ $\mu(X, \varphi(H))$ and $|G: H|=|X: \varphi(H)|^{n}$. Thus we get $m=l^{n}$. The same arguments as in the previous result prove that

$$
|\{H \in \Omega \mid \varphi(H)=Y\}|=|X: Y|^{n-1}
$$

and so we finally have

$$
a_{m}=\sum_{\substack{H \operatorname{soc}(G)=G,|G:: H|=m}} \mu(G, H)=\sum_{\substack{Y S=X,|X: Y|=I}}|X: Y|^{n-1} \mu(X, Y)=l^{n-1} b_{l} .
$$

Acknowledgement. I thank Andrea Lucchini for the comments on these ideas.

REFERENCES

1. A. Ballester-Bolinches and L. M.Ezquerro, Classes of finite groups (Springer-Verlag, 2006).
2. N. Boston, A probabilistic generalization of the Riemann zeta functions, Analytic number theory I (1996), 155-162.
3. K. S. Brown, The coset poset and probabilistic zeta function of a finite group, J. Algebra 225 (2000), 989-1012.
4. E. Detomi and A. Lucchini, Crowns and factorization of the probabilistic zeta function of a finite group, J. Algebra 265 (2003), 651-668.
5. W. Gaschütz, Die Eulersche Funktion endlicher ausflösbarer Gruppen, Illinois J. Math. 3 (1959), 469-476.
6. F. Gross and L. G. Kovács, On normal subgroups which are direct products, J. Algebra 90 (1984), 133-168.
7. P. Hall, The Eulerian functions of a group, Quart. J. Math. Oxford 7 (1936), 134-151.
8. L. G. Kovács, Maximal subgroups in composite finite groups, J. Algebra 99 (1986), 114-131.
9. A. Mann, Positively finitely generated groups, Forum Math 8 (4) (1996), 429-459.

[^0]: *Partially supported by DGICYT, MTM2004-08219-C02-01.

