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Introduction. For a finite group G and a non-negative integer t, let PG(t) be the
probability that a randomly chosen ordered t-tuple from G generates G. In [7] P. Hall
gave an explicit formula for PG(t), exhibiting the latter as a finite Dirichlet series∑

n ann−t, with an ∈ � and an = 0 unless n divides |G|; that is,

PG(t) =
∑

H≤G

µ(G, H)
|G : H|t ,

where µ is the Möbius function of the subgroup lattice of G.
In view of Hall’s formula, we can speak of PG(s) for any arbitrary complex number

s. The function PG(s) is the multiplicative inverse of a zeta function for G, as described
by Mann [9] and Boston [2]. If N is a normal subgroup of G and t is an integer with
PG/N(t) �= 0, we define PG,N(t) = PG(t)/PG/N(t); this is the probability that a t-tuple
generates G, given that it generates the G module N. W. Gaschütz (see [5]) gave a
formula for PG,N(t), generalizing Hall’s formula. As noted in [3], although Gaschütz
avoided explicit mention of the Möbius function, his formula can be written as

PG,N(t) =
∑

HN=G

µ(G, H)
|G : H|t .

The identity PG(s) = PG,N(s)PG/N(s) holds initially for sufficiently large positive
integers t, but it remains valid as an identity in the ring of Dirichlet series. In [4],
E. Detomi and A. Lucchini gave the following factorization, which is independent of
the choice of the chief series,

PG(t) =
∏

A

∏

1≤i≤δG(A)

PLA,i(t),

where A runs over the set of irreducible G-groups G-equivalent to a non-Frattini chief
factor of G and δG(A) is the number of non-Frattini chief factors G-equivalent to A,
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76 PAZ JIMÉNEZ–SERAL

given a chief series of G. The monolithic primitive group associated with A is defined as
LA = (G/CG(A))[A] if A is abelian and LA = G/CG(A) otherwise. The factors PLA,i(t)
are defined in [4] as follows. Let L be a monolithic group, and let N be its socle. Then

PL,1(t) = PL,N(t)

and for i > 1 it is

PL,i(t) = PL,N(t) −
(
1 + qN + · · · + qi−2

N

)
γN

|N|t ,

where γN = |CAut(N)(L/N)| and qN = |EndL(N)|, if N is abelian and qN = 1 otherwise.
Using this factorization the coefficients of PG(t) can be given in terms of those

of PL,soc(L)(t) for a monolithic group L. The present paper arose from an attempt
to describe the coefficients of PL,soc(L)(t) by means of PX,soc(X)(t) for certain almost
simple groups X . More precisely, let G be a monolithic primitive group whose socle
is nonabelian, S a simple component of soc(G) and N = NG(S). Consider the almost
simple group X = N/CG(S). In Theorem 5 for those integers m with |S| � m we describe
the coefficients am of PG,soc(G)(t) in terms of those of PX,soc(X)(t).

It was proved in [3] that PG(−1) is precisely the Euler characteristic of the coset
poset of G. (This was first noticed by Bouc; see [3].) In the same paper, certain divisibility
properties of PG(−1) were studied. Our Theorem 5 provides a relationship between
divisibility properties of PG(−1) and of PX (−1).

The following theorem, proved by Gross–Kovács [6], will be essential to the proof
of Proposition 3.

THEOREM 1. (See [6] and 1.1.35 of [1].) Let G be a group in which there exists
a normal subgroup M of G such that M = S1 × · · · × Sn, where {S1, . . . , Sn} is the
set of all conjugate subgroups of a normal subgroup S1 of M. Write N = NG(S1) and
K = S2 × · · · × Sn.

(1) Let L/K be a supplement of M/K in N/K. Then, there exists a supplement H of
M in G satisfying the following properties.

(a) L = (H ∩ N)K and H ∩ M = (H ∩ S1) × · · · × (H ∩ Sn). Further, H ∩ S1 =
L ∩ S1.

(b) Suppose that H0 is a supplement of M in G such that

(H0 ∩ N)K/K ≤ L/K.

Then there exists k ∈ K such that Hk
0 ≤ H.

(c) H is unique up to conjugacy under K.
(2) There is a bijection between, on the one hand, the conjugacy classes in G of

supplements H of M in G such that H ∩ M = (H ∩ S1) × · · · × (H ∩ Sn) and,
on the other hand, the conjugacy classes in N/K of supplements L/K of M/K in
N/K.

(3) Under the bijection above the maximal subgroups of G are in correspondence with
maximal subgroups of N/M.

Let G be a monolithic group with soc(G) nonabelian and S a simple component
of M = soc(G). Consider the projection p : M → S. The maximal subgroups not
containing soc(G) can be classified in terms of their intersection with soc(G) as follows.
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Type a: maximal subgroups H with p(H ∩ M) = S.
Type b: maximal subgroups H with 1 < p(H ∩ M) < S.
Type c: maximal subgroups H with H ∩ M = 1.

The next result can be found in some of the proofs of the O’Nan Scott Theorem.

PROPOSITION 2. (See 1.1.52 and 1.1.53 of [1]). Let G be a monolithic group with
M = soc(G) = S1 × · · · × Sn nonabelian.

(a) If H is a maximal subgroup of type b, then

H ∩ M = (H ∩ S1) × · · · × (H ∩ Sn) �= 1.

(b) There exists a bijection between the set of all conjugacy classes of maximal
subgroups of N/(S2 × · · · × Sn) that supplement but do not complement
M/(S2 × · · · × Sn) and the set of all conjugacy classes of core–free maximal
subgroups of N/CG(S1).

(c) Let L/(S2 × · · · × Sn) be a maximal subgroup of N/(S2 × · · · × Sn)
supplementing M/(S2 × · · · × Sn). Then S2 × · · · × Sn < L ∩ M if and only if
CG(S1) ≤ L. (See the proof of 1.1.53 of [1].)

In 4.3 of [8], Kovács determines the number of conjugacy classes of maximal
subgroups with a trivial core. Any monolithic group with nonabelian soc(G) has
maximal subgroups of type b and it may happen that these are the only maximal
subgroups not containing soc(G). For intersections of such maximal subgroups we
have the following result.

PROPOSITION 3. Let G be a monolithic primitive group with soc(G) nonabelian. Let S
be a simple component of soc(G), N = NG(S), X = N/CG(S) and n = |G : N|. Suppose
that H is a supplement of soc(G) in G such that all maximal subgroups containing H are
of type b. Finally denote by ϕ(H) = (H ∩ N)CG(S)/CG(S) ≤ X. If µ(G, H) �= 0, then
we have

µ(G, H) = µ(X, ϕ(H)).

Moreover |G : H| = |X : ϕ(H)|n and |H ∩ S| = |ϕ(H) ∩ Inn(S)|.
Proof. Write M = soc(G) = S1 × · · · × Sn, S = S1 and K = S2 × · · · × Sn.

Set

� = {H < G | HM = G, H ∩ M = (H ∩ S1) × · · · × (H ∩ Sn)}
and

� = {K ≤ Y < N | (Y/K)(M/K) = N/K}.
We can define a map ϕ : � → � by ϕ(H) = (H ∩ N)K. Let H ∈ �. As HM =

G, H acts transitively on the components of M and thus the subgroups H ∩ Si are
conjugated. Hence |H ∩ M| = |H ∩ S|n. Let R = H ∩ S. We have

ϕ(H) ∩ M = (H ∩ N)K ∩ M = (H ∩ N ∩ M)K = (H ∩ M)K = (H ∩ S) × K = R × K.

It follows that ϕ(H) ∩ S = H ∩ S and |R| = |(ϕ(H) ∩ M)/K|. Hence

|G : H| = |M : M ∩ H| = (|S| : |R|)n = (|M/K| : |(ϕ(H)/K ∩ (M/K)|)n = |N : ϕ(H)|n.

https://doi.org/10.1017/S0017089507004053 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089507004053


78 PAZ JIMÉNEZ–SERAL

Now we prove that if Hi ∈ � and H = ∩Hi ∈ �, then ϕ(H) = ∩ϕ(Hi). By
definition, it is clear that if H1 ≤ H2, then

ϕ(H1) ≤ ϕ(H2).

Therefore ϕ(H) ≤ ∩ϕ(Hi).
Let Ri = Hi ∩ S. Note that ∩Ri = H ∩ S and hence ϕ(H) ∩ M = (∩Ri) × K . We

also have ϕ(Hi) ∩ M = Ri × K and

(∩ϕ(Hi)) ∩ M = (∩Ri)K = ϕ(H) ∩ M.

Since ϕ(H) ≤ ∩ϕ(Hi) and both groups supplement M/K with the same
intersection, counting orders, we get that ϕ(H) = ∩ϕ(Hi). Note that � contains all
the maximal subgroups of types b and c. Consider now the sets

� = {H ∈ � | H is an intersection of maximals subgroups of type b}

and

� = {Y ≤ X | YS = X with Y an intersection of maximal subgroups}.

Let H ∈ �, H = ∩Hi and Hi maximal of type b. We have ϕ(H) = ∩ϕ(Hi) and,
by Proposition 2 (c), CG(S) ≤ ϕ(Hi) and so CG(S) ≤ ϕ(H). Therefore, we can define a
map ϕ : � → � with

ϕ(H) = (H ∩ N)CG(S)/CG(S) = ϕ(H)/CG(S).

As ϕ(H) ∩ S = H ∩ S, we have |H ∩ S| = |ϕ(H) ∩ Inn(S)|.
Let Y/CG(S) ∈ �. By Theorem 1, there exists H ∈ � such that ϕ(H) = Y . Assume

that Y = ∩Yi, where the subgroups Yi are maximal in N. Then for each index i there
exists Ui ∈ � such that ϕ(Ui) = Yi. As ϕ(H) = Y ≤ Yi by Theorem 1, we can find
some k ∈ K with Hk ≤ Ui. Hence we get H ≤ Uk−1

i and ϕ(Uk−1

i ) = Yi.
This means that, changing notation, we can choose for each i a subgroup Ui

maximal in G such that H ≤ Ui and ϕ(Ui) = Yi. By Proposition 2, Ui is of type b and
so it belongs to �. We have

ϕ(H) = Y = ∩Yi = ∩ϕ(Ui) = ϕ(∩Ui).

Using Theorem 1 we deduce that H and ∩Ui are conjugated and since H ≤ ∩Ui ∈ �,
we have H = ∩Ui and H ∈ �. Therefore ϕ(H) = ϕ(H)/CG(S) = Y/CG(S).

This means that ϕ is surjective. Clearly if H1, H2 ∈ � and H1 < H2, then ϕ(H1) <

ϕ(H2).
Let H be a supplement of soc(G) in G such that all maximal subgroups containing

H are of type b. Suppose µ(G, H) �= 0. Then H ∈ �. Recall that if µ(G, U) �= 0, then U
is the intersection of maximal subgroups of G. It follows that if H ≤ U and µ(G, U) �=
0, then U ∈ �.

Take H1, H2 ∈ � such that H < H1 and H < H2. Assume that ϕ(H1) = ϕ(H2).
Then H ≤ U = H1 ∩ H2 and so U ∈ �. Applying ϕ we get ϕ(U) = ϕ(H1) ∩ ϕ(H2) and
as ϕ(H1) = ϕ(H2), we have

ϕ(U) = ϕ(H1) = ϕ(H2).
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We have already seen that |G : U| = |N : ϕ(U)|n and so now we obtain
|G : U| = |G : H1| = |G : H2|. Also as U ≤ H1, we deduce that H1 = U . Analogously
U = H2. Hence H1 = H2.

For any H ∈ �, ϕ is injective when restricted to {U ∈ � | H < U} and its image is
{Y ∈ � | ϕ(H) < Y}.

Recall that the Möbius function is defined by µS(G) = 1 and
∑

K≥H

µS(K) = 0

for H < G. Using the bijection above we finally get

µ(G, H) = µ(X, ϕ(H)).

�
THEOREM 4. Let G be a monolithic finite group with nonabelian soc(G). Let S be a

simple component of soc(G), N = NG(S), X = N/CG(S) and n = |G : N|. Suppose that
all the maximal subgroups of G supplementing soc(G) are of type b. Then

PG,soc(G)(t) =
∑

Hsoc(G)=G

µ(G, H)
|G : H|t =

∑

YS=X

|X : Y |n−1µ(X, Y )
(|X : Y |n)t

= PX,S(nt − n + 1)

Moreover, denoting

PG,soc(G)(s) =
∑

m∈�

amm−s and PX,socX (s) =
∑

m∈�

bmm−s,

we have

aln = ln−1bl.

Note that for any simple group S, any X with S < X ≤ Aut(S) and any transitive
permutation group Pn of degree n, the group G = X 	 Pn satisfies the hypothesis of the
theorem above.

Proof. Let M = soc(G) = S1 × · · · × Sn, S = S1 and K = S2 × · · · × Sn. Take a
subgroup H of G such that Hsoc(G) = G and µ(G, H) �= 0.

By Proposition 3 it is µ(G, H) = µ(X, ϕ(H)) and |G : H| = |X, ϕ(H)|n. Let Y ≤ X
such that YS = X and µ(X : Y ) �= 0. We need to check that

|{H ∈ � | ϕ(H) = Y}| = |X : Y |n−1,

where � is the same as in Proposition 3.
By Proposition 1, the subgroups {H ∈ � | ϕ(H) = Y} are conjugated under an

element of K and so we have to check that |K : NK (H)| = |X : Y |n−1. Observe that
|NK (H)| is the same for every H such that ϕ(H) = Y .

As in the proof of Theorem 1, G can be seen in a natural way as a subgroup of
X 	 Pn, where Pn is the permutation group associated to the permutation action of G
over the n components of soc(G); that is Pn 
 G/ ∩ NG(Si).

(To be more precise: first we choose a family (1, g2, . . . , gn) of representatives of
the left cosets of N in G such that Sgi = Si. For g ∈ G let gig = ci,ggiα , where α is the
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projection of g in Pn and c∗
i,g is the projection of ci,g ∈ N. It is easy to check that the

map g �→ (c∗
1,g, c∗

2,g, . . . , c∗
n,g)α is a monomorphism.)

Note that N projects surjectively on the first component. Let H ∈ �. As

(H ∩ N)K ≤ X × (X 	 Pn−1) and CG(S1) ≤ (H ∩ N)K,

ϕ(H) is the projection in the first component. Choose Y ≤ X supplementing S and
consider

H = (Y 	 Pn) ∩ G.

It is easy to check that ϕ(H) = Y .
Let t = (1, t2, . . . , tn) ∈ K such that t ∈ NK (H). For any (y1, . . . , yn)α ∈ H,

[(y1, . . . , yn)α]t ∈ H; that is,

(
y1t1α , t−1

2 y2t2α , . . .
)
α ∈ H.

In particular y1t1α ∈ Y and t1α ∈ Y . As H acts transitively on {1, . . . , n}, for any i
there is some α with t1α = ti and so we obtain t ∈ H ∩ K . Obviously H ∩ K ∈ NK (H)
and this implies that NK (H) = H ∩ K . Moreover H ∩ M = (H ∩ S1) × · · · × (H ∩ Sn).
Thus |H ∩ K| = |H ∩ S|n−1.

By Proposition 3, |H ∩ S| = |Y ∩ Inn(S)|. Therefore |H ∩ K| = |Y ∩ Inn(S)|n−1

and |K : NK (H)| = |K : (K ∩ H)| = |S|n−1/|Y ∩ Inn(S)|n−1 = |Inn(S)Y : Y |n−1 =
|X : Y |n−1.

Hence we get

PG,soc(G)(t) =
∑

HN=G

µ(G, H)
|G : H|t =

∑

YS=X

|X : Y |n−1µ(X, Y )
(|X : Y |n)t

.

As

PX,S(t) =
∑

YS=X

µ(X, Y )
|X : Y |t ,

we deduce that

PG,soc(G)(t) =
∑

YS=X

µ(X, Y )
|X : Y |nt−n+1

= PX,S(nt − n + 1).

From this we see that if we put

PG,soc(G)(s) =
∑

m∈�

amm−s

and

PX,socX (s) =
∑

m∈�

bmm−s,

then aln = ln−1bl. �
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THEOREM 5. Let G be a finite monolithic group with nonabelian soc(G), S a simple
component of soc(G), N = NG(S), X = N/CG(S) and n = |G : N|. Set

PG,soc(G)(s) =
∑

m∈�

amm−s and PX,socX (s) =
∑

m∈�

bmm−s.

Let m be an integer such that |S| does not divide m. If m = ln, then aln = ln−1bl, and
am = 0, otherwise.

Proof. Let m be an integer such that m = |G : H|, |S| � m and µ(G, H) �= 0. Assume
that H ≤ U < G for any maximal U of type a or c. Then

|G : H| = |G : U||U : H|,
but |S| divides |G : U|, so that |S| divides m, which is a contradiction. Then H can be
contained only in maximal subgroups of type b and so, by Proposition 3, µ(G, H) =
µ(X, ϕ(H)) and |G : H| = |X : ϕ(H)|n. Thus we get m = ln. The same arguments as in
the previous result prove that

|{H ∈ � | ϕ(H) = Y}| = |X : Y |n−1,

and so we finally have

am =
∑

Hsoc(G)=G,

|G:H|=m

µ(G, H) =
∑

YS=X,

|X :Y |=l

|X : Y |n−1µ(X, Y ) = ln−1bl.

�
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6. F. Gross and L. G. Kovács, On normal subgroups which are direct products, J. Algebra
90 (1984), 133–168.

7. P. Hall, The Eulerian functions of a group, Quart. J. Math. Oxford 7 (1936), 134–151.
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