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Abstract

A complete characterization of Boolean algebras which admit nonatomic
charges (i.e. finitely additive measures) is obtained. This also gives rise to a
characterization of superatomic Boolean algebras. We also consider the
problem of denseness of the set of all nonatomic charges in the space of all
charges on a given Boolean algebra, equipped with a suitable topology.

Subject classification (Amer. Math. Soc. (MOS) 1970): primary 28 A 60

1. Introduction

There are no satisfactory necessary and sufficient conditions for a Boolean sigma-
algebra to have a nonatomic measure defined on it. However, in certain topological
measure spaces such characterizations have been obtained (see Knowles (1967),
Theorem 1, p. 64, and Luther (1970), Corollary 3.5, p. 458). The central problem
tackled in this paper is to give characterizations of Boolean algebras admitting
nonatomic charges. In Section 2 we establish the notation and give some relevant
definitions. In Section 3 we give necessary and sufficient conditions for a Boolean
algebra to admit a nonatomic charge (Theorem 1). One interesting characterization
is that a Boolean algebra B admits a nonatomic charge if and only if B contains a
tree (for the definition of a tree see Section 2). Another condition is given in terms
of the Stone space of the Boolean algebra. These results give rise to a characteri-
zation of superatomic Boolean algebras (Corollary 2). In Section 4 we give necessary
and sufficient conditions for the collection of all nonatomic probability charges to
be dense in the collection of all probability charges with respect to an appropriate
topology (Theorem 2). The closure of all nonatomic probability charges in general
is also determined (Theorem 3). The main results obtained in this paper are based
on the results of Knowles (1967) and the Stone representation theorem for Boolean
algebras.
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2. Definitions and notation

For topological notions we generally follow Kuratowski (1966) and for notions
about Boolean algebras we follow Halmos (1963). More specifically, Boolean
algebras will be denoted by Roman capitals A,B,C,..., and elements of the
Boolean algebras by a, b, c, Fields and sigma-fields of subsets of a set are
denoted by script letters IF, &,..., and elements of these collections by F,G,....

A charge is a nonzero, real valued, nonnegative and finitely additive function
defined on a Boolean algebra vanishing at the zero element of the Boolean algebra
(see Taylor, 1958, p. 401). A measure is a countably additive charge whose domain
of definition is either a field or a sigma-field of subsets of a set. A nonzero element
a of a Boolean algebra A is called an atom for A if be A and b^a then b = a or
b — 0. If ft is a charge on A, an element a eA is called a /i-atom if fi(a) j= 0, and if
b < a then fi(b) = p(a) or fi(b) = 0. A charge /n is said to be nonatomic on A if A
contains no jti-atoms.

Two Boolean algebras A and B are said to be isomorphic if there exists a
one-to-one map from A onto B which preserves the operations of join and
complementation.

A collection of nonzero elements {a^,*,,...^: &>1 and iV)i%>...,ik is any finite
sequence of 0's and l's} in a Boolean algebra A is called a tree in A if

(i) aova1= 1,

,..,ii_1,i = flfe.v...4-i» a n d

3. Main results

The following lemma is used in Theorems 1 and 2.

LEMMA. Let p be a measure on a sigma-field 'S of subsets of a set X and let 3F be
afield on X which generates 'S.Iffi is nonatomic on 'S, then fi is nonatomic on &.

PROOF. This result follows from the Caratheodory extension theorem.

REMARK. The converse of this lemma is not true. The following is an example.
Let X= [0,1]. Let 3F be the field generated by {(a,b]«= [3/8,5/8]: O^a^b^l} on
X. Let fi be the restriction of the Lebesgue measure to the sigma-field ^ generated
by &. Then fi is nonatomic on ^ , but the set [0,3/8] u [5/8, l ] e ^ is clearly a
ju.-atom.

Let Y= {0,1}1*", the Cantor space of all sequences of 0's and l's, equipped with
the product topology, where each coordinate space {0,1} is equipped with the
discrete topology. Y is a perfect, compact, totally disconnected space (see Sikorski
(1964) (A) and (B) on p. 28). Let # be the field of all clopen subsets of Y. Then &
is a countable atomless Boolean algebra and any atomless countable Boolean
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algebra is isomorphic to ̂  (see Sikorski (1964) (C) on p. 28). For every finite
sequence of O's and l's, say, iltiz, ...,ik, define

<W,<* = ft}xft}x ... xft}x{0, l}x(O. l}x ....

Then {Citliti tt : k^l and ilt i2 i* is any finite sequence of O's and l's} is a tree
intf.

THEOREM 1. Let B be a Boolean algebra. The following statements are equivalent.
(i) There is a nonatomic charge on B.

(ii) B contains a tree.
(iii) B has a countable atomless subalgebra A.
(iv) The Stone space X ofB contains a perfect subset.
(v) B contains an ideal I such that B/I is an atomless Boolean algebra.

PROOF, (i) implies (ii) is obvious.
(ii) implies (iii). Let {6^.. . ,^: k> 1 and /1;/2, ...,ik is any finite sequence of O's

and l's} be a tree in B. Let A be the Boolean algebra generated by this tree. Note
that A is comprised of finite disjoint joins of elements of the tree. Then A is a
countable atomless subalgebra of B.

(iii) implies (iv). Let Zbe the Stone space of B. In view of the observation made
in the paragraph preceding Theorem 1, we may identify A with <€. Consequently,
there is a natural homomorphism from the Boolean algebra ^ into B which is
also one-to-one. Hence there exists a continuous function/from the Stone space
X of B onto the Stone space 7 of ̂  (for this result see the discussion in Sikorski
(1964), first three paragraphs on p. 34).

Now, we claim that there exists a minimal closed set P contained in X such that
f(P) = Y. The collection £ = {E <= X: E is closed in X and /(£") = Y} is nonempty
and is partially ordered by set inclusion. Let {Ea: aeD} be a chain in S. Then we
claim that naeDEaeSl. For, let ye Y. There exists xaeEa such t h a t / ( x j = y.
Since Xis compact, there exists a subnet of {xa: <xeD} converging to some element
xin X. Since {Ea: aeD) is a chain in $, we havexfieEaifp^ a. It is therefore clear
that xeEa for every <xeD and/(x) = y. By Zorn's lemma there exists a minimal
closed set ? c X with the property that/(P) = Y.

We also claim that P is a perfect set. Suppose not. Let x be an isolated point of P.
Since P—{x} is compact, we have that f(P—{x}) = Y—{f(x)} is compact. Hence
f(x) is an isolated point of Y. This implies that Y is not perfect, and we have a
contradiction.

(iv) implies (i). If X contains a perfect subset, by Theorem 1 of Knowles (1967),
p. 64, there exists a regular nonatomic measure on the Borel sigma-field of X.
By the lemma in Berberian (1962, p. 221), the restriction of this nonatomic measure
to the Baire sigma-field of JSTis also nonatomic. By the Stone-Weierstrass theorem
the field & of all clopen subsets of X generates the Baire sigma-field on X (see
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Halmos (1950), Exercise (7), p. 223). By the lemma at the beginning of this section,
the restriction of this nonatomic measure on the Baire sigma-field o n l t o # " is
nonatomic. Since IF and B are isomorphic, we may transfer this restriction to B,
and thereby obtain a nonatomic charge on B.

(i) implies (v). Let /x be a nonatomic charge on B. Let / be the ideal of all /*-null
elements of B. Then Bjl is an atomless Boolean algebra.

(v) implies (iv). Let Z be the Stone space of Bjl. Since B/I is atomless, Z is
perfect (see Sikorski (1964) (̂ 4) on p. 28). Since the natural homomorphism from
B to B/I is onto, there exists a continuous function/from Z to X which is one-to-one
(see Sikorski (1964), first three paragraphs on p. 34). Then/(Z) is a perfect subset
of X.

COROLLARY 1. There exists a nonatomic charge on every infinite Boolean sigma-
algebra.

PROOF. Let B be an infinite Boolean sigma-algebra. Let bvb2,... be a sequence
of nonzero pairwise disjoint elements in B such that Vis i^ i = 1- Let N be the set
of positive integers. Let No and Nx be a decomposition of N into two infinite
disjoint subsets. Define b0 = V< SJV,A

 anc* ^i = VieJVi^i- Applying this technique
of decomposition at every stage we can easily obtain a tree in B. Theorem 1
completes the proof.

A Boolean algebra B is said to be superatomic if the Stone space X of B is
scattered, that is, if no subset of Xis perfect (see Sikorski (1964), p. 35).

COROLLARY 2. A Boolean algebra B is superatomic if and only if there is no
nonatomic charge on B.

PROOF. Use the equivalence of (i) and (iv) of Theorem 1.

REMARK. The collection of all countable Boolean algebras which admit no
nonatomic charges (that is, which are superatomic) has been characterized by
Mazurkiewicz and Sierpinski. Each such algebra is isomorphic to the field of all
clopen subsets of [0, a], for some countable ordinal a. (see the introduction in Pierce
(1970), p. 1).

4. Conditions for the denseness of the set of all nonatomic probability charges
in the space of all probability charges

Let B be a Boolean algebra and let 8P be the collection of all probability charges
on B. Equip &P with a topology by defining the convergence as follows. A net
Ha of probability charges in SP converges to a probability charge p if fijib) converges
to ii(b) for every b in B. Let Xbe the Stone space of B, and let & be the collection of
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all regular probability measures on the Borel sigma-field on X. We equip 0t with
the weak* topology, that is, a net rja in 0t converges to an •>? in ^? if J/Vfr?a converges
to jfdrj for every real-valued continuous function / on X (see Knowles (1967),
Section 2). Corresponding to every charge JU, in 0* we associate a (unique) measure
7) in 01 as follows. Using the isomorphism between B and the field IF of all clopen
sets of X we may transfer /J. from 5 to &. Let /^ denote this charge on #". Since
any charge on J5" is a measure, we may extend /L^ to a measure r\x on the Baire
sigma-field of X. Then ^ can be extended uniquely to a regular Borel measure
i? on the Borel sigma-field on X. In fact, this correspondence T between 01 and 8&
is a homeomorphism. This follows from the fact that, by the Stone-Weierstrass
theorem, the collection of all finite linear combinations of indicator functions of
clopen subsets of X is dense in the space of all continuous functions on A'equipped
with the supremum norm.

THEOREM 2. Let B be a Boolean algebra. The following statements are equivalent.
(i) The collection of all nonatomic probability charges on B is dense in 0>.
(ii) B is atomless.

(iii) The Stone space of B is perfect.

PROOF. The equivalence of (ii) and (iii) is well known (see Sikorski (1964), (A)
on p. 28).

(i) implies (ii). Suppose that B contains an atom b. Let /x be the unique probability
charge supported on b, that is, /j.(d) = 1 if b ̂  d and /x(cf) = 0 otherwise. Since (i)
holds, there exists a net fia of nonatomic probability charges converging to ji/..
But because b is an atom we must have (ia(b) = 0 for every a, while fi(b) = 1.
This contradiction shows that there can be no atoms in B.

(iii) implies (i). Knowles (1967, p. 65) remarked that if X is perfect, the set Q
of all nonatomic regular probability measures on the Borel sigma-field of X is a
dense Gs subset of 0t. By the lemma proved in Section 3, T'1 Q <= the set of all
nonatomic probability charges on B. So (i) follows.

Using Theorem 2 we prove the following result.

THEOREM 3. Let B be a Boolean algebra and let & be the set of all probability
charges on B. Let I = nA 1^, where the intersection is taken over the set J of all
nonatomic charges /x in & and the set IM is the ideal of all fi-null elements in B.
Then the closure of J in 0* is the set of all charges in 0* which vanish on I.

PROOF. First, we note that B/Iis atomless. For, if the equivalence class containing
b, in B/I, is not equal to /, then b$I. There exists a / i i n / such that p(b)>0.
We can find deB such that d^b and 0<n(d)<fi{b). Clearly I^[d]<[b]. Now
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note that the collection of all probability charges on B which vanish on / is
homeomorphic to the collection of all probability charges on B/I. Under this
homeomorphism a nonatomic probability charge on B corresponds to a nonatomic
probability charge on B/I. Theorem 2 completes the proof.
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