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Abstract

It is becoming evident that nutrients and metabolic intermediates derived from such nutrients regulate cellular function by activating a

number of cell-surface G-protein coupled receptors (GPCRs). Until now, members of the GPCR family have largely been considered as

the molecular targets that communicate cellular signals initiated by hormones and neurotransmitters. Recently, based on tissue expression

patterns of these receptors and the concept that they may elicit the production of a range of appetite- and hunger-regulating peptides, such

nutrient sensing GPCRs are attracting considerable attention due to their potential to modulate satiety, improve glucose homeostasis and

supress the production of various pro-inflammatory mediators. Despite the developing interests in these nutrients sensing GPCR both as

sensors of nutritional status, and targets for limiting the development of metabolic diseases, major challenges remain to exploit their poten-

tial for therapeutic purposes. Mostly, this is due to limited characterisation and validation of these receptors because of paucity of selective

and high-potency/affinity pharmacological agents to define the detailed function and regulation of these receptors. However, ongoing

clinical trials of agonists of free fatty acid receptor 1 suggest that this receptor and other receptors for free fatty acids may provide a

successful strategy for controlling hyperglycaemia and providing novel approaches to treat diabetes. Receptors responsive to free fatty

acid have been of particular interest, and some aspects of these are considered herein.
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G protein-coupled receptors (GPCRs), sometimes also called

7-transmembrane domain receptors, are the largest family of

cell-surface, signal-transducing polypeptides. As the molecular

targets for a vast range of water-soluble hormones and neuro-

transmitters, they regulate the physiology and function of

essentially all cells and tissues. Because of this, they have

also been, by far, the most effectively targeted group of

proteins for small-molecule therapeutic medicines designed

to modulate or mask pathophysiological manifestations of

diseases. Because of the high affinity of many peptides and

other hormones for their GPCRs, initial reports of the ability

of members of this family to be activated by relatively high

concentrations of various nutrients and metabolic intermedi-

ates were inferred to have limited physiological relevance.

Despite this, it is now widely accepted that molecules

including lactate, succinate and free fatty acids are the physio-

logical regulators of specific GPCRs and that as nutritional

sensors these receptors can also be targeted therapeutically

in areas including metabolic diseases.

Receptors for free fatty acids, FFA1–3

A group of three GPCRs three of which are encoded by

the genes of which are closely linked on chromosome 19 in

man, respond to free fatty acids of varying chain lengths.

FFA1

FFA1 (previously designated as GPR40)(1) is activated by both

saturated and unsaturated medium-chain (carbon chain length

8–12) and longer-chain (carbon chain length 14–22) fatty

acids. The activation of this receptor, which is expressed by

b-cells of the pancreas as well as other tissues, including

enteroendocrine cells of the gut(2), results in enhanced

glucose-dependent secretion of insulin(1). The contribution

of enteroendocrine cells to the function of FFA1 is likely to

be substantial as each of the L(3), I(4) and K(5) cells has been

reported to express this receptor. Based on such studies, a

number of preclinical and clinical development programmes

are exploring the therapeutic potential of agonists of this
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receptor. The most advanced programme has been carried out

for the synthetic ligand TAK-875 ([(3S)-6-({20,60-dimethyl-40-[3-

(methylsulphonyl)propoxy]biphe-nyl-3-yl}meth-oxy)-2,3-dihy-

dro-1-benzofuran-3-yl]acetic acid hemi-hydrate) (Fig. 1)(6,7),

which has shown a capacity to reduce the levels of

HbA(1c), a marker of improved glycaemic control, in diabetics

without a propensity to promote hypoglycaemic episodes

as it (similar to other FFA1 agonists) only stimulates insulin

secretion in a glucose-dependent manner. Moreover, at least

in humans, TAK-875 does not significantly alter the secretion

of glucagon(8). These studies have attracted useful commen-

taries and generally positive analyses(9,10), although questions

remain in terms of the sustainability of effects during long-term

treatment. Interestingly, although both the clinical candidate

FFA1 agonists TAK-875 and AMG-837 ((S)-3-(4-((40-(trifluoro-

methyl)biphenyl-3-yl)methoxy)phenyl)hex-4-ynoic acid) (Fig. 1),

similar to the free fatty acids, have carboxylate functions that

are anticipated to interact with the same pair of arginine residues

in FFA1 that have been shown to be integral for the binding and

function of the endogenous ligands(11,12), the situation appears

to be more complex now. Recently, Lin et al.(13) have shown

convincingly that not all FFA1 agonist ligands are equivalent

in this regard and some may bind in a different manner to the

free fatty acids. Furthermore, different synthetic FFA1 agonists

also vary markedly in efficacy (a measure of the maximal

effect that they are able to produce). Given this information,

it is possible that a difference in clinical effectiveness may

be observed between different ligands, although it is currently

impossible to predict a priori if a full agonist of FFA1 or a

ligand that binds in a distinct, allosteric manner might offer

advantages over a partial agonist such as AMG-837.

FFA2 and FFA3

Although also acting as receptors for free fatty acids, both FFA2

(previously designated as GPR43) and FFA3 (previously desig-

nated as GPR41)(1) selectively bind to and are activated by

the short chain fatty acids (SCFAs) (carbon chain length 1–6),

particularly acetate (C2), propionate (C3) and butyrate (C4).

These SCFAs also fulfil much of the nutritional requirements

of colonocytes. The SCFAs are generated predominantly in

the gut by microbial fermentation of non-digestible carbo-

hydrates. Importantly, from a nutritional perspective, different

non-digestible carbohydrates are fermented to produce signifi-

cantly different levels of C2, C3 and C4. The capacity of the

intestinal microflora to generate C3, for example, is defined

by the proportions and contributions of different bacterial

groups and species as these utilise at least three distinct meta-

bolic pathways to produce C3 as an end product. As alterations

in the makeup and extent of the microbiota are associated with

inflammation and gut health state(14–16), there is considerable

interest in both prebiotic and probiotic strategies to modulate

the population and hence the effectiveness of SCFA pro-

duction(14–16). As well as being expressed in the distal ileum

and colon, close to the site of SCFA production, FFA2 is well

expressed by a range of immune cells, including peripheral

blood leucocytes, neutrophils and eosinophils, as well as by

adipocytes(1). This expression pattern has also promoted inter-

est in targeting FFA2 as a means to modulate adiposity and to

restrict the development of chronic metabolic diseases by lim-

iting sustained, low-grade inflammation. Moreover, the antag-

onism of this receptor has been suggested as a means to limit

the infiltration of neutrophils into the gut and hence counter

inflammatory gut conditions such as Crohn’s disease and

ulcerative colitis. Despite this, mouse FFA2 ‘knockout’

models have provided contradictory evidence as to the likely

effectiveness of this approach(17,18), and further analysis is

clearly warranted and required. Although clinical development

of FFA2-selective ligands is currently at a very early stage, a

number of patents describing both FFA2-selective agonists

and FFA2-selective antagonists have appeared(19,20) and pre-

liminary data on the effects of FFA2 agonists on the promotion

of neutrophil chemotaxis(21) and regulation of glucose uptake

in adipocytes(19) have been reported. Moreover, the SCFA-

mediated release of glucagon-like peptide 1 from enteroendo-

crine cells appears to be mediated via FFA2(22).

Although also activated by the same group of SCFAs as FFA2

and with a broadly similar expression profile, FFA3 is less well

characterised than FFA2. Despite early work(23) suggesting that

it may provide a means to regulate leptin release, this receptor

does not appear to be attracting the same level of interest as a

therapeutic target as FFA2. To date, there have been no reports

of highly selective synthetic ligands of FFA3 that target the

same binding site as the SCFAs and, as such, understanding

of the detailed function of this receptor lags behind. Despite

this, the noted selectivity of a number of small carboxylic

acids for either FFA2 or FFA3(24) indicates that, as for FFA2,

it should be possible to identify selective, high-potency/affi-

nity ligands for FFA3. Interestingly, the markedly higher

potency of C2 to activate human FFA2 v. FFA3, which has

resulted in the use of acetate as a selective activator of

FFA2(22,25), is not preserved in the rat and mouse ortholo-

gues(26) (Fig. 2). These observations reflect differences in

the extent of ligand-independent constitutive activity(26) and
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Fig. 1. Structures of FFA1 receptor agonist ligands currently undergoing clinical trials. (a) TAK-875 ([(3S)-6-({20,60-dimethyl-40-[3-(methylsulphonyl)propoxy]biphe-

nyl-3-yl}meth-oxy)-2,3-dihydro-1-benzofuran-3-yl]acetic acid hemi-hydrate) and (b) AMG-837 ((S)-3-(4-((40-(trifluoromethyl)biphenyl-3-yl)methoxy)phenyl)hex-4-

ynoic acid).
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clearly demonstrate that C2 cannot be used in the absence of

‘knockout’ or ‘knockdown’ approaches to implicate a specific

role for FFA2 in rodent-derived cell lines and tissues.

Additional questions related to how species orthologue vari-

ation might affect the function of SCFA receptors arose with

the observation that the relative activity of various SCFAs are

entirely different at bovine FFA2 than either human or

rodent orthologues of FFA2(27). In particular, the substantially

lower potency of C2 as an agonist for bovine FFA2 may reflect

underlying physiological differences, with high levels of C2

and the other SCFAs being produced in the rumen and

marked expression of the receptor detected in the rumen(28).

Together, these observations suggest significant species ortho-

logue variation in the pharmacology of the SCFA receptors

with regard to their endogenous ligands, which probably

will translate to some degree of species selectivity in the phar-

macology of synthetic ligands targeting these receptors. This,

in turn, may hinder further validation of these receptors as

therapeutic targets.

Other G protein-coupled receptors activated by free
fatty acid

GPR84

Although recognised as a receptor responsive to medium-chain

saturated free fatty acid(29), GPR84 remains, by far, the least

studied and understood of the currently described receptors

for free fatty acid. Expressed predominantly by various

immune cells(29), interest in GPR84 has recently increased

due to studies in which co-culture of model macrophages and

adipocytes has been found to result in marked up-regulation

of GPR84 expression by the adipocytes(30). As there is consider-

able interest in the contribution of infiltrating macrophages

to adipose tissue function, such regulation of GPR84 might be

a target to limit the effects of increased fat mass and adiposity

in metabolic and other co-morbid diseases, but detailed assess-

ment of this will not be possible without the development of

useful pharmacological regulators for this receptor.

GPR120

A second receptor activated by medium-chain and long-chain

free fatty acids is GPR120. GPR120 is sometimes described as a

receptor for the n-3 group of PUFAs(31,32) that are present in

good amounts in oily fish(33) and have clear health benefits

in areas ranging from cardiovascular function to inflammation.

However, it is clear that such PUFAs have a wide range of

other molecular targets, including FFA1, and that other, less-

health-beneficial fatty acids can also activate this receptor.

Despite these issues, a number of observations have suggested

that the activation of GPR120 could have therapeutic benefits.

Key among these are reports that GPR120 may have a specific

capacity to mediate the action of long-chain fatty acids in

promoting the secretion of the incretin glucagon-like peptide 1

from enteroendocrine cells of the gut(34) and indications that the

activation of GPR120 produces extensive anti-inflammatory and

resulting insulin-sensitising effects(31). Specifically, the activation

of GPR120 has been reported to suppress the release of

pro-inflammatory cytokines from macrophages, which, given

the importance of inflammation in obesity-related insulin resist-

ance, has led to the speculation that the activation of GPR120

may therapeutically improve insulin resistance(34). Although

potentially of great importance, the studies demonstrating

these effects of GPR120 activation have been based on the

use of non-selective or poorly selective fatty acids or synthetic

ligands as agonists. Hence, although supported in part by

mRNA knockdown and/or knockout studies, these require

replication using highly selective pharmacological ligands

before GPR120 can be truly validated as a viable therapeutic

target. Furthermore, the pattern of expression of GPR120 in

enteroendocrine cells appears to be similar to that of FFA1

with at least L(3) and K(5) cells being shown to co-express the

two receptors. This further highlights the need for highly selec-

tive ligands to probe the function of GPR120. Although a

number of patents(35,36) describing GPR120-selective ligands

have been described, only recently has a series of potent and

specific ligands for GPR120 been described in the primary

literature(37). Hopefully, these and other ligands will now

allow such ideas to be re-examined.

A recent pair of publications has provided further physio-

logical and potential genetic support to favour agonism of

GPR120 as a potential therapy in diabetes. In the studies

carried out by Taneera et al.(38), the GPR120 receptor gene

(FFAR4 ) was identified as a gene strongly associated with dia-

betes and FFAR4 mRNA levels were reported to be substan-

tially lower in islets isolated from cadavers of diabetics than
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Fig. 2. Differing potencies of SCFAs at human FFA2 and FFA3. The responses to C2 (acetate, ), C3 (propionate, ) and C4 (butyrate, ) at FFA2 (a) or FFA3 (b)

are plotted as the percentage of maximal ligand response as measured in HEK-293 cells using an extracellular signal-regulated kinase 1/2 phosphorylation assay.

At FFA2, C2 and C3 are equipotent, while C4 displays lower potency. In contrast, C3 and C4 have similar potency at FFA3, while lower potency is observed for C2.
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in those from non-diabetic controls. Moreover, the studies car-

ried out by Ichimura et al.(39) identified a non-synonomous

SNP (Arg270His) in the open reading frame of human FFAR4

that was linked to obesity in a European population. In vitro

assays have indicated that this polymorphism results in virtual

abolition of receptor-mediated elevation of intracellular Ca2þ

levels(39). However, a number of caveats must be noted

about these studies. Humans are apparently the only higher

species in which an additional, longer, isoform of the

GPR120 receptor has been described alongside the short iso-

form that is found in both humans and other species(40). More-

over, careful in vitro studies have shown the major allele of the

long isoform to be unable to mediate the elevation of Ca2þ

levels(41). As the Arg270His position reported for the poly-

morphic variant indicates that it must have been the long iso-

form that was employed in these studies (the polymorphism

would correspond to Arg254His in the shorter isoform), it is

unclear as to how the minor allele SNP could result in the abla-

tion of a function that is reportedly already lacking for the

major allele. This discrepancy may simply reflect a sequence

position reporting error, but clearly requires further and

additional verification. Despite such concerns, the current

body of evidence suggests many positive and mutually reinfor-

cing reasons to promote GPR120 as a promising therapeutic

target. The potential capacity to regulate glucagon-like

peptide 1 secretion in the gut, to promote insulin release, prob-

ably via paracrine effects, from the pancreas and to constrain

adiposity and reduce insulin resistance via anti-inflammatory

mechanisms is favourable. Although recent efforts in medicinal

chemistry have been focused on improving the selectivity of

ligands between FFA1 and GPR120(37), there is also a strong

argument to be made that combined FFA1/GPR120 agonists

might display greater anti-diabetic efficacy than targeting

either receptor selectively. This, however, remains to be tested.

Conclusions

GPCR responsive to longer-chain free fatty acid function as

nutrient sensors for this important group of ligands. Because

of this, they are being explored as therapeutic targets to regu-

late metabolic diseases. Furthermore, growing recognition of

the ability of the gut microbiota to influence health via the

production of SCFAs as a consequence of the fermentation of

non-digestible carbohydrate has led to further attention being

paid to the association between nutrition and the development

of long-term chronic disorders that are among the most urgent

to target therapeutically. Such appreciation is rapidly resulting

in a new focus on the interrelationship between nutrients, the

microbiota and long-term human health.
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