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We study three quantities that can each be viewed as the time needed for a finite irreducible

Markov chain to ‘forget’ where it started. One of these is the mixing time, the minimum

mean length of a stopping rule that yields the stationary distribution from the worst starting

state. A second is the forget time, the minimum mean length of any stopping rule that yields

the same distribution from any starting state. The third is the reset time, the minimum

expected time between independent samples from the stationary distribution.

Our main results state that the mixing time of a chain is equal to the mixing time of the

time-reversed chain, while the forget time of a chain is equal to the reset time of the reverse

chain. In particular, the forget time and the reset time of a time-reversible chain are equal.

Moreover, the mixing time lies between absolute constant multiples of the sum of the forget

time and the reset time.

We also derive an explicit formula for the forget time, in terms of the ‘access times’

introduced in [11]. This enables us to relate the forget and reset times to other mixing

measures of the chain.

1. Introduction

Consider a finite, irreducible, discrete-time Markov chain. How long does it take to

‘forget’ the state in which the chain was started? The following three quantities can each

be interpreted as the answer to this question.

The mixing time is defined as the least number Tmix such that, for every starting state,

there is a stopping rule that stops the chain in expected time at most Tmix, such that

the distribution of the final state is the stationary distribution. This quantity plays an

important role in the analysis of many randomized algorithms that use Markov chains to

generate a random sample point from (approximately) the stationary distribution.
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The forget time is the smallest number Tforget such that, for some distribution µ (not

necessarily stationary) and every starting state, there exists a stopping rule that stops the

chain at a state drawn from µ in expected time at most Tforget.

The third quantity, which we call reset time, will turn out to be closely related to the

forget time. If the chain is started at a state drawn from the stationary distribution, how

long must the chain be run to get another stationary state, independent of the first? The

minimum mean time for a stopping rule for this task is denoted by Treset.

For our purposes, a ‘stopping rule’ is a randomized algorithm for stopping a Markov

chain, according to what has been observed so far; a more precise definition is given below

in Section 3. A rule which stops at some particular distribution (usually the stationary

distribution) and whose expected number of steps is minimal subject to that condition, is

said to be optimal.

One of our main results is the following.

Theorem 1.1. If the Markov chain is time-reversible, then Tforget = Treset.

To generalize this identity to all Markov chains, we need the following notion. Given a

Markov chain with transition probabilities pij , and stationary distribution π, consider the

reverse chain with transition probabilities p̂ij = πjpji/πi. In what follows, the ‘hat’ over a

symbol means that it concerns this reverse chain. It is clear that this chain has the same

stationary distribution. We prove the following connections between our mixing quantities

defined for the forward and the reverse chain.

Theorem 1.2. For every finite Markov chain, Tmix = T̂mix.

Theorem 1.3. For every finite Markov chain, Tforget = T̂reset and Treset = T̂forget.

Of these, our proof of Theorem 1.3 is harder. It is possible that this theorem also has a

direct probabilistic proof, but at this time we can only offer a derivation through a more

complicated, explicit formula for the forget time (Theorem 6.1). We also show that the

best target distribution µ in the definition of the forget time is uniquely determined, and

find an explicit formula for it.

Sections 4 and 7 contain a number of further facts relating reverse chains that follow

from our techniques. In particular, we show that the worst starting states for mixing are

also worst for forgetting, and also relate the best starting states for mixing to the forget

distribution.

The mixing time is in general different from the forget (or reset) times even for time-

reversible chains, but there are quite tight inequalities relating them. It is clear that

Tforget 6 Tmix, and Treset 6 Tmix.

The following inequality is noted in [5]:

Tmix 6 2(Treset + Tforget). (1.1)
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Thus it follows that max{Tforget, Treset} is between Tmix and Tmix/4. We are going to

show by an example that min{Tforget, Treset}/Tmix can be arbitrarily close to 0.

These facts relate our results to studies important for the analysis of certain randomized

algorithms for sampling. Aldous [3, 1] proved the surprising and powerful result that, for

time-reversible chains, essentially all reasonable ‘mixing parameters’ are within absolute

constant factors of each other. These parameters include, besides Tmix, the times Ttv and

Tfill. Ttv is defined as the least t such that, for every starting state, there is a stopping rule

that stops the chain in expected time at most t, such that the distribution of the final

state is closer than (say) 1/4 to the stationary distribution in total variation distance; Tfill

is defined analogously, except that the requirement for the final distribution is that the

probability of each state i be at least 3/4 of its stationary probability.

The case of non-reversible chains is only a little more complicated. It is shown in

[5] that most ‘mixing parameters’ of a Markov chain fall into one of two groups, and

parameters in the same group differ only by a constant factor. One group contains the

time Ttv (along with other mixing parameters). The other group contains the mixing time

Tmix, and also the time Tfill. It is also shown in [5] that Tmix 6 (log(1/π0))Ttv, where

π0 = mini πi (the factor log (1/π0) is best possible up to a constant).

The forget time, which may also be considered as a mixing parameter, fits this pattern.

In the time-reversible case, Tforget = Treset is between Tmix and Tmix/4, by inequality (1.1).

It is proved in [5] that in the general case, Tforget is within a constant factor of Ttv. On

the other hand, the reset time, which seems to be conceptually closer to the mixing time,

belongs to a new group. In fact, it follows that the ‘mixing time group’ is self-reverse, but

the ‘forget time group’ is not.

The organization of this paper is as follows. In Section 2, we use several examples to

illustrate mixing, forgetting, and chain reversal; we shall return to one of the examples

in Section 8, to show some implications of our results. In Section 3, we recall from

[11, 12] a calculus of ‘access times between distributions’ and properties of optimal

stopping rules. Section 4 contains some elementary facts about reversed Markov chains.

Section 5 collects some known and (perhaps) not-quite-known relations between hitting

times and the transition matrix. Section 6 contains the main formula for the forget time,

and a linear programming formulation of this quantity. Section 7 contains several other

relations between mixing parameters, and Section 8 returns to one of the examples.

2. Examples

The following examples should help to clarify the mixing parameters described above. We

will return later to Example 4, the ‘winning streak’, to show how our results verify or

disprove some natural guesses concerning optimal mixing and forgetting.

Example 1. Consider a path on n nodes 0, 1, . . . , n−1, and assume, for the sake of

simplicity, that n is odd. Consider a simple random walk on the nodes. The stationary

distribution is proportional to the degrees, i.e., πi = 1/(2(n−1)) for i = 0 and i = n−1,

and πi = 1/(n−1) otherwise. To generate a stationary state, we may use a very simple

brute-force approach: pick the state in advance and walk until it is hit. The worst starting
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states are 0 and n−1, and the average number of steps it takes to reach node i from 0

is i2. Hence this naive stopping rule takes

1

2(n−1)
· 0 +

1

n−1
· 1 +

1

n−1
· 4 + · · ·

· · ·+ 1

n−1
· (n−2)2 +

1

2(n−1)
· (n−1)2 =

2n2 − 4n+ 3

6

steps.

It turns out that this rule is optimal (subject to generating the stationary distribution)

when the walk is begun at 0 or n−1. Optimal rules for mixing when starting from

another node of the path are more complicated and not described here, but if we apply

one of them and average over all starting nodes according to the stationary distribution

(which means that, given a stationary node, we want to generate another stationary node

independent from the first), we get a mean stopping time of (n−1)2/4.

If we want to forget the starting node, it turns out that the best choice is to walk until

we hit the midpoint of the path. This takes on average (n−1)2/4 steps, starting from an

endpoint. The results in this paper easily imply that this simple ‘forgetting rule’ is optimal.

Example 2. Let us add the edge between 0 and n−1 to make a cycle; now the stationary

distribution is uniform. Starting from 0, we can describe a stopping rule as follows: select

a random node i uniformly, and walk until either i or n− i is reached. This rule (which

is optimal, as is easily shown using the results in Section 3) takes an expected number of

(n2 + 2)/12 steps if n is even and (n2−1)/12 steps if n is odd.

Trivially this value is the same for all starting nodes, and hence Treset = Tmix. The

chain is time-reversible, so it also follows that Tforget = Tmix. (But in fact it follows

from the uniqueness statement in Theorem 6.1 that, for a chain with a state-transitive

automorphism group, the best way to forget is to go to the uniform distribution, so

Tforget = Tmix.)

Example 3. Next, we add a new node n and connect it to all nodes on the cycle, to get a

wheel. Assume that n is odd and replace each edge on the rim by (n−1)/2 parallel edges,

so that we get a regular graph, and the stationary distribution is again uniform. The

interesting point in this example is that if we start from the centre, in less than one move

we can reach the stationary distribution (make one move with probability n
n+1

). Starting

from any other node, we can walk until we hit the centre and then (with probability n
n+1

)

make one more move, taking on average n+ n
n+1

moves. It turns out that this rule is almost

optimal, so the reset time is only slightly less than the mixing time.

Example 4. Let us consider the ‘winning streak’ chain, where states are 0, . . . , n−1 and

all transition probabilities are zero except pi,0 = 1/2 for all 0 6 i 6 n−1, pi,i+1 = 1/2 for

0 6 i < n−1, and pn−1,n−1 = 1/2. Here the stationary distribution is given by πi = 2−i−1

(0 6 i < n−1) and πn−1 = 2−(n−1).

At every state, we have probability 1/2 of ‘falling back’ to 0. If we want to forget where

we started, then a natural idea is to wait until we get to 0; at worst this takes an average
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of 2 moves. A computation based on Theorem 6.1 (see Section 8) will show that this

strategy is almost optimal.

To get a stationary state takes much more time. If we start at any state, we have the

following strategy: walk n−1 steps and stop. It is not difficult to see that this rule leads

to the stationary distribution from any starting point (we end up at i if and only if the

number of tailing ‘forward’ moves is i). This stopping rule will turn out optimal if we start

at 0 or n−1. Starting from other nodes, this strategy will no longer be optimal, but will

be close to it.

Now look at the reverse of the winning streak chain. Here the transition probabilities

are pi,i−1 = 1 for 1 6 i < n−1, pn−1,n−2 = pn−1,n−1 = 1/2, p0,i = 2−i−1 for 0 6 i 6 n−2

and p0,n−1 = 2−(n−1) (and 0 otherwise). A step from state 0 goes directly to the stationary

distribution. From any other state i, we can walk to 0 and then make one more move,

which takes i + 1 moves if i < n−1, and n + 1 steps (on average) if we start in the last

state. This strategy will turn out optimal unless we start at the last state. Starting from

the last state, the following strategy is better: walk for n−1 steps. So the mixing time is

at most n−1; it will turn out to be exactly n−1.

If we want to generate a stationary state independent of the (stationary) starting state,

we can follow the rule described above; this takes, on average,

1

2
· 1 +

1

4
· 2 +

1

8
· 3 + · · ·+ 1

2n−1
(n−1) +

1

2n−1
(n−1) = 2− 1

2n−2

steps. So this is an upper bound on the reset time; again, it will turn out to be the exact

value. To forget, we can again walk to node 0; in this chain, it will take n−1 steps from

the worst starting node. It will turn out that this rule is nearly optimal.

Example 5. A classic example of mixing occurs in shuffling a deck of playing cards. Here

the states of the chain are the 52! permutations of the deck; in the Gilbert–Shannon–

Reeds model [10, 14] of the riffle (or ‘dovetail’) shuffle, the reverse of a shuffle is described

elegantly as follows. Each card is randomly, uniformly, and independently assigned a bit

from {0, 1}. All cards assigned the same bit are kept in the same order, but all cards with

‘0’ are placed above all cards with ‘1’.

In a series of t such ‘unshuffles’, each card receives a string of t bits which we interpret

as a binary number; the final order of the deck is then determined by the natural order

of these numbers, with all ties broken in favour of the initial order. If there are no ties,

then the final order is perfectly uniformly random, thus the following stopping rule yields

perfect mixing: unshuffle repeatedly until all 52 binary numbers are distinct.

In fact, this rule is optimal for mixing in the reverse riffle shuffle chain (because

the inverse of the starting permutation is a ‘halting state’ (see Section 3; it cannot be

achieved unless the binary labels are, indeed, all distinct). A calculation based on the

‘birthday problem’ shows that the expected time for this rule is about 11 3
4

unshuffles, so

by Theorem 1.2 we have for the original riffle shuffle chain that:

Tmix = T̂mix ≈ 11 3
4
.

https://doi.org/10.1017/S0963548397003349 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548397003349


194 L. Lovász and P. Winkler

It is interesting to compare this figure with the famous 7 riffle shuffles recommended by

Bayer and Diaconis [6]. Their need for a fixed-time stopping rule seems to be much more

than compensated by sufficiency of approximate mixing. In fact Doyle [8] has devised a

game he calls ‘New Age Solitaire’, which has a winning probability of 50% for a random

deck but about 80% for a 7-times riffle-shuffled fresh deck of Bicycle brand playing cards.

Fortunately Doyle’s game is not one which is likely to replace standard forms of

solitaire. It is clear that if the public really could be persuaded to shuffle as many as

7 times, then perceived differences (well known to tournament bridge players) between

hand-shuffled and computer-shuffled decks would disappear.

3. Access times between distributions

Let w0, w1, . . . , wk, . . . be a finite irreducible Markov chain with state space V and transition

probabilities pij . We denote by π its stationary distribution. Let σk denote the distribution

of wk; we often denote the starting distribution σ0 by σ.

A stopping rule is a map Γ from V ∗ (the set of finite strings of states) to [0, 1]: for

w = w0w1 . . . wt, the value of Γ(w) is the probability of continuing given that w is the

walk so far observed. (Each such stop-or-go decision is made independently.) It is useful

sometimes to regard a stopping rule Γ as a stopping time, i.e., a random variable whose

value is the actual number of steps made before stopping (so we stop at wΓ). We assume

that, with probability 1, the rule stops the chain, i.e., the stopping time is finite. We denote

the distribution of the final state by σΓ. A stopping rule Γ for which σΓ equals τ is also

called a stopping rule from σ to τ.

Let σ and τ be two distributions on the set V of states. We define the access time H(σ, τ)

from σ to τ as the infimum of the mean lengths of all stopping rules that produce the

distribution τ, when the chain starts from σ. A stopping rule is optimal if it achieves this

infimum. In the case when σ and τ are concentrated on single states s and t respectively

(we abuse notation by writing σ = s and τ = t), we have that H(s, t) is the hitting time

from s to t, i.e., the expected number of steps of the Markov chain before state t is

reached, when started from state s.

It turns out that the access times are always well defined (optimal stopping rules exist

for any two distributions) and possess many useful algebraic properties. In this paper, we

shall need the following facts. First, there is an explicit formula for the access times. If

the target distribution is a single state t, then of course there is only one optimal stopping

rule (walk until state t is hit), and hence

H(σ, t) =
∑
i

σiH(i, t). (3.1)

(No similar linearity property holds for the target distribution.) For two arbitrary distri-

butions σ and τ, we have the following formula:

H(σ, τ) = max
j

(
H(σ, j)−H(τ, j)

)
. (3.2)

Given any stopping rule Γ that produces τ from σ, we define the exit frequency xi
(i ∈ V ) for Γ as the expected number of times the walk leaves state i before stopping.
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Exit frequencies are related to the starting and ending distributions by a simple formula,

found in Pitman [13]: ∑
i

pi,jxi − xj = τj − σj. (3.3)

This equation implies that the exit frequencies are almost determined by σ and τ in the

sense that the exit frequencies of two rules from the same starting distribution σ to the

same target distribution τ differ by Kπi, where K is the difference between the expected

lengths of these stopping rules.

In particular, the exit frequencies of an optimal stopping rule from σ to τ are uniquely

determined by σ and τ only. They are denoted by xi(σ, τ).

It is sometimes more convenient to consider the scaled exit frequencies

yi(σ, τ) =
1

πi
xi(σ, τ).

The following formula (see [11, 12]) expresses exit frequencies in terms of the access times:

yk(σ, τ) = H(τ, k)−H(σ, k) +H(σ, τ). (3.4)

It follows easily from formulas (3.2) and (3.4) that for every σ and τ there exists a

state k with xk(σ, τ) = 0. Such a state is called a halting state, since it has the property

that every optimal stopping rule halts if it ever reaches state k. In fact, a stopping rule is

optimal if and only if it has a halting state [12]. The halting states achieve the maximum

on the right-hand side of (3.2).

In terms of access times, the mixing time of the chain can be defined by

Tmix = max
σ
H(σ, π) = max

s
H(s, π),

where s varies over the state space V . A state s maximizing H(s, π) is called mixing-pessimal,

or simply pessimal.

While this quantity seems to be much less relevant for the applications, we can also say

something about

Tbestmix = min
s
H(s, π).

A state s minimizing H(s, π) is called mixing-optimal.

We can also express the forget time by

Tforget = min
τ

max
σ
H(σ, τ) = min

τ
max
s
H(s, τ).

We call the distribution τ minimizing the right-hand side the forget distribution and denote

it by µ. (It will turn out that the forget distribution is uniquely determined.) The starting

state achieving the maximum for τ = µ will be called forget-pessimal.

For the reset time, we have

Treset =
∑
j

πjH(j, π),

showing that it can also be viewed as an ‘average mixing time’.
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We denote by Thit the average hitting time between two states drawn from the stationary

distribution, i.e.,

Thit =
∑
i

∑
j

πiπjH(i, j).

Using the notion of access times, we can write this definition as

Thit =
∑
j

πjH(π, j).

(This is only formally similar to the definition of Treset; in general, Thit is much larger.)

The very useful ‘Random Target Lemma’ (sometimes called the ‘right averaging princi-

ple’) asserts that Thit does not depend on the distribution of the starting point: for every

state i, ∑
j

πjH(i, j) = Thit. (3.5)

4. Reverse chains

Given a Markov chain with transition probabilities pij , we define the reverse chain as the

Markov chain on the same set of states, with transition probabilities p̂ij = πjpji/πi. Recall

that the ‘hat’ over a symbol means that it concerns this reverse chain.

We start with the trivial but important remark that the reverse chain has the same

stationary distribution as the original. This follows by straightforward calculation.

The key to the proof of many properties of the reverse chain is the following general

‘duality formula’.

Lemma 4.1. Let σ, τ, φ, ρ be four distributions on the states. Then∑
i

(τi − σi)ŷi(φ, ρ) =
∑
i

(ρi − φi)yi(σ, τ).

Proof. Let v0, v1, . . . be a walk in the forward chain started from σ, and consider the

random variables

Yt = ŷvt+1
(φ, ρ)− ŷvt (φ, ρ) + (φvt − ρvt )/πvt .

From the conservation equation (3.3) for exit frequencies applied to the reverse chain, we

have

ŷi(φ, ρ)− (φi − ρi)/πi =
1

πi

∑
j

p̂jix̂j(φ, ρ)

=
∑
j

pij

πj
x̂j(φ, ρ)

=
∑
j

pij ŷj(φ, ρ),
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and therefore

E(Yt|v0 = i0, . . . , vt−1 = it−1, vt = i) =
∑
j

pij ŷj(φ, ρ)−
∑
j

pij ŷj(φ, ρ) = 0

for each i, thus E(Yt) = 0 a priori. In particular, if T is the number of steps taken by

some optimal stopping rule from σ to τ, then the sum
∑T−1

t=0 Yt has zero expectation; but

T−1∑
t=0

Yt = ŷvT
(φ, ρ)− ŷv0

(φ, ρ) +
∑
i

(
φi − ρi
πi

)
Xi

where Xi is the number of times state i is exited. Taking expectations, the lemma follows.

We derive some corollaries of this lemma.

Corollary 4.1. For every state j, we have

H(π, j) = Ĥ(π, j).

Hence also T̂hit = Thit.

Proof. Choose σ = φ = π and τ = ρ = j in Lemma 4.1.

Now, from (3.2), we have the following corollary.

Corollary 4.2. For every Markov chain, we have

T̂mix = Tmix.

Moreover, if s is a pessimal state for the first chain and z is a halting state from s to π, then

z is a pessimal state for the reverse chain and s is a halting state from z to π in the dual

chain.

Remark. For time-reversible chains, the first assertion does not say anything, but the

second translates into an interesting fact: every time-reversible chain has at least two

mixing-pessimal starting states.

Proof. Let s be a pessimal starting state for the primal chain and let z be a halting state

from s to π. Apply the lemma with σ = s, φ = z, and τ = ρ = π. Then we get

Ĥ(z, π)− ŷs(z, π) = H(s, π)− yz(s, π) = H(s, π).

Hence

T̂mix > Ĥ(z, π) > H(s, π) = Tmix.

The reverse inequality follows similarly.
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Corollary 4.3. For every two states i and j, we have

Ĥ(i, j) = H(j, i)−H(π, i) +H(π, j).

(A consequence worth mentioning – although not used in this paper – is the following:

if the Markov chain has a state-transitive automorphism group, then, for all i and j,

Ĥ(i, j) = H(j, i).)

Proof. Apply the lemma with σ = j, τ = π, φ = i and ρ = j. Then we get

Ĥ(i, j) = yj(j, π)− yi(j, π). (4.1)

Now (3.4) implies the assertion.

Corollary 4.4. Let s be any state. A state z is a halting state from s to π if and only if

Ĥ(z, s) > Ĥ(u, s) for every state u. In this case,

Ĥ(z, s) = H(s, π) +H(π, s).

Proof. By (4.1),

Ĥ(u, s) = ys(s, π)− yu(s, π).

It follows that the left-hand side is maximized when u is a halting state z from s to π.

Note that then

Ĥ(z, s) = ys(s, π). (4.2)

Now apply the lemma with σ = ρ = s and τ = φ = π. Then we get

Ĥ(π, s) = ys(s, π)−H(s, π).

Combining with Corollary 4.1, and (4.2), we get the second statement of the corollary.

Remark. Several results about reversible Markov chains can be extended by using the

notion of reverse chain. For example, the ‘cycle reversing’ identity of [7] can be generalized

(with a virtually identical proof) as

H(i, j) +H(j, k) +H(k, i) = Ĥ(i, k) + Ĥ(k, j) + Ĥ(j, i)

for any three states i, j and k. (From here we could get another way of deriving, among

others, Corollary 4.3 above.)

5. Matrix formulas for hitting and mixing times

We describe some useful formulas connecting the transition matrix M with the matrix H

whose entry in position (i, j) is the hitting time H(i, j). So, in particular, the diagonal of

H is 0. We denote by R the diagonal matrix with the expected return time 1/πi in the ith

position of the diagonal.

It is easy to see that these matrices satisfy the equation

(I −M)H = J − R, (5.1)
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where J is the n×n matrix of all 1s. Unfortunately, the matrix I−M is singular, and so (5.1)

does not uniquely determine H . But the only left eigenvector of I −M with eigenvalue

0 is πT, and the only right eigenvector with eigenvalue 0 is 1; hence I −M + 1πT is

nonsingular. Moreover, we have

(I −M + 1πT)(I − 1πT) = I −M

(using that M1 = 1 and πT1 = 1). Hence

(I −M + 1πT)(I − 1πT)H = (I −M)H = J − R

and thus

H = (I −M + 1πT)−1(J − R) + 1πTH = G+ 1πTH. (5.2)

For convenience, let us denote the matrix (I−M+1πT)−1(J−R) = J−(I−M+1πT)−1R

by G; this matrix turns out to carry a lot of information about combinatorial properties of

the random walk. It is not difficult to see that, for time-reversible walks, G is a symmetric

matrix.

Equation (5.2) is still not the desired formula for H , since H also occurs on the right-

hand side. But we can determine πTH by looking at the diagonal: 0 = Gii + (πTH)i and

hence

(πTH)i = −Gii.
So the negative of the ith diagonal entry of G gives the expected time H(π, i) needed to

hit state i, starting from the uniform distribution. But then we can express H purely from

the matrix G. In fact, (5.2) implies that

Hij = Gij − Gjj .

Now consider the mixing time. Using (3.2), we get

H(s, π) = max
t

(H(s, t)−H(π, t)) = max
t

(Gst − Gtt + Gtt) = max
t
Gs,t.

Hence the mixing time is the largest entry of G.

All these formulas also relate nicely to the reverse chain. Clearly this has transition

matrix M̂ = RMTR−1, and simple substitution gives Ĝ = GT. We could use this fact to

derive the results of the previous section in an algebraic way.

6. Forget time and reset time

Now we turn to the forget time. First, we describe a reformulation of Tforget as the

optimum value of a linear program, and derive a few consequences. Let us rewrite the

definition, using equation (3.2):

Tforget = min
τ

max
s
H(s, τ)

= min
τ

max
s

max
j

(H(s, j)−H(τ, j))

= min
τ

max
j

(H(j ′, j)−H(τ, j)),
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where j ′ is an ‘antipode’ of j, i.e., a state for which H(j ′, j) is maximal among all values

H(k, j). We can write this expression as a linear program:

Tforget = minimize t

subject to τi > 0 (i ∈ V ),∑
i τi = 1,

t+
∑

i τiH(i, j) > H(j ′, j) (j ∈ V ).

(6.1)

Let us formulate the dual program. We have a variable r for the equation and a variable

ρj for each j ∈ V , and then the dual program is:

Tforget = maximize r +
∑

j ρjH(j ′, j)

subject to ρj > 0 (j ∈ V ),∑
j ρj = 1

r +
∑

j ρjH(i, j) 6 0 (i ∈ V ).

(6.2)

So ρ is a probability distribution; moreover, the best value of r is clearly

r = min
i

−∑
j

ρjH(i, j)

 , (6.3)

and so

Tforget = max
ρ

min
i

∑
j

ρj
(
H(j ′, j)−H(i, j)

)
. (6.4)

Any probability distribution ρ gives a lower bound on Tforget. An attractive choice is

ρ = π, in which case we can use the Random Target Lemma (3.5) to see that r = −Thit

and the minimum in (6.3) is attained for all i. Hence

Tforget >
∑
j

πj(H(j ′, j)−H(π, j)). (6.5)

The main result of this paper is that equality holds in (6.5).

Theorem 6.1. For every Markov chain,

Tforget =
∑
j

πj(H(j ′, j)−H(π, j)).

Moreover, the forget distribution µ is uniquely determined and is given by the formula

µj = πj(1−H(j ′, j) +H(π, j)) +
∑
m

pmjπm(H(m′, m)−H(π, m)). (6.6)

Remark. Using the reverse chain and Corollaries 4.1 and 4.4, we can write these formulas

in the following neater forms:

Tforget =
∑
j

πjĤ(j, π) = T̂reset,
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and

µj = πj

(
1− Ĥ(j, π) +

∑
m

p̂jmĤ(m, π)

)
. (6.7)

In particular, Theorem 6.1 will imply Theorem 1.3 and hence also Theorem 1.1.

Proof. It suffices to show that ρ = π and r = −Thit form an optimal solution of (6.2).

For this, it suffices to exhibit a solution (µ, t) of the primal such that the complementary

slackness conditions hold:

µi > 0 ⇒ −Thit +
∑
j

πjH(i, j) = 0, (6.8)

and

πj > 0 ⇒ t+
∑
i

µiH(i, j) = H(j ′, j). (6.9)

We choose t =
∑

j πj(H(j ′, j)−H(π, j)) (recall that we want equality in (6.5)). To choose

the right µ, observe the first set of conditions is fulfilled by the Random Target Lemma

(3.5), independently of the choice of µ. Since π > 0, the second set applies for every j.

This gives n = |V | linear equations on µ (and we have one more from the original system,

namely
∑

i µi = 1)). We show that this (seemingly overdetermined) system has a unique

solution, which is nonnegative, and hence is a solution of the linear program (6.1). This

will prove the theorem.

Let hj = H(j ′, j). Then (6.9) can be rewritten as

HTµ = h− t1, (6.10)

and we must also have

1Tµ = 1. (6.11)

We know from (5.2) that

H = J − (I −M + 1πT)−1R + 1πTH,

and hence

HTµ = Jµ− R(I −MT + π1T)−1µ+HTπ1Tµ = 1− R(I −MT + π1T)−1µ+HTπ.

Equating the two expressions for HTµ and rearranging, we can express µ:

µ = (I −MT + π1T)R−1
(
(1 + t)1 +HTπ − h) = π + (I −MT)R−1(HTπ − h). (6.12)

Substitution shows that this µ satisfies (6.10) and (6.11). The fact that it is nonnegative

follows by noting that (6.12) is equivalent to equation (6.6), which in turn is equivalent to

(6.7), where the nonnegativity of the right-hand side is trivial:

Ĥ(j, π) 6 1 +
∑
m

p̂jmĤ(m, π),

since making one step from j and then following an optimal rule to π is a (not necessarily

optimal) stopping rule from j to π.
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Thus we have a feasible solution of (6.1), which satisfies, together with (r, π), the

complementary slackness conditions. Our argument also proves the uniqueness of the

optimizing distribution, as well as the optimality of π as a dual solution.

7. Optimal and pessimal starting states

We continue with some further links between the forget time and mixing-optimal and

mixing-pessimal states.

Lemma 7.1. The scaled exit frequencies from the stationary distribution π to the forget

distribution µ, and vice versa, can be expressed by the formulas

yi(π, µ) = Ĥ(i, π)− T̂bestmix,

and

yi(µ, π) = Tmix − Ĥ(i, π).

Proof. By equation (6.7), we have

µi = πi

1 +
∑
j

p̂ijĤ(j, π)− Ĥ(i, π)


and hence ∑

j

pjiπjĤ(j, π)− πiĤ(i, π) = µi − πi. (7.1)

This equation means that the scaled exit frequencies of any stopping rule from π to

µ differ from the numbers yi = Ĥ(i, π) by an additive constant, and so the numbers

Ĥ(i, π)− T̂bestmix are the scaled exit frequencies of an optimal stopping rule.

Equation (7.1) can also be written in the form∑
j

pjiπj(Tmix − Ĥ(j, π))− πi(Tmix − Ĥ(i, π)) = πi − µi.

Hence the second equation in the lemma follows.

The previous lemma has the following corollaries.

Corollary 7.1. A state z is a halting state from π to the ‘forget distribution’ µ if and only

if it is a mixing-optimal state for the reverse chain. Moreover, for the reverse mixing time

from z we have

T̂bestmix = Tforget −H(π, µ).

Corollary 7.2. A state z is a halting state from µ to π if and only if it is a mixing-pessimal

state for the reverse chain. Moreover, for the mixing time we have

Tmix = Tforget +H(µ, π).
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So from a mixing-pessimal state, a best stopping rule to get to π is to follow an optimal

stopping rule to the forget distribution µ, and then follow a mixing-optimal rule from

there. It also follows that

Corollary 7.3. Every mixing-pessimal state is forget-pessimal.

8. The ‘winning streak’ revisited

We conclude with a discussion of one of our introductory examples, the ‘winning streak’

chain (Example 4). The stopping rules from each fixed state to π exhibited for the reverse

chain are optimal, since each has a halting state. Hence

T̂mix = Tmix = n−1.

To compute the forget time for the forward chain, we use Theorem 6.1. It can easily be

checked that H(0, i) = 2i+1 − 2 for all i and H(j, i) = 2i+1 for all i < j 6 n−1. It is clear

that a state i′ which maximizes H(i′, i) is i+ 1 (mod n). Using the Random Target Lemma

we have that, for any state i,

Thit =

n−1∑
j=0

πjH(i, j) =

n−1∑
j=0

πjH(0, j) = n−1

and
n−1∑
j=0

πjH(j ′, j) = n+ 1− 2−(n−2),

so that, by Theorem 6.1,

Tforget = 2− 2−(n−2).

This is indeed the value for T̂reset calculated in the Introduction. The forget distribution

µ is given by

µi =


1− 2−(n−1), if i = 0,

2−(n−1), if i = n−1,

0, otherwise.

In fact, H(i, µ) = 2 − 2−(n−2) for all i (walk until state 0 is hit or n−1 steps have been

made).

A more tedious calculation shows that

T̂forget = n− k + 1− n− k
2k
− 1

2n−1
,

where k is the largest integer with 2k 6 n−k+1 (so k ∼ log2 n; H(i, µ) behaves differently

for i < k and i > k). This value is strictly smaller than Tmix, but still asymptotically n.
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