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A B S T R A C T . We discuss t h e observat ional resul ts of cyclic variat ions of solar rota t ion 
and how these can be used as a means of probing the solar d y n a m o . We short ly describe 
two examples of d y n a m o models where t he α-effect has been modified, and compare the 
resul t ing flows to the observat ions. 

1. I n t r o d u c t i o n 

T h e observed t empora l dependence of t he solar differential ro ta t ion can be unders tood as 

an empirical constraint to the deep-seated tu rbu len t d y n a m o . In our opinion the la t te r 

forms t h e physical background for all t he various cyclic act ivi ty phenomena of the main 

sequence s ta rs . T h e construct ion of the stellar d y n a m o can only be cal ibrated by the Sun, 

which is t h e best observable s tar . As only surface features are observed, however, it is not a 

t r ivial t a sk t o solve t he inverse problem of finding ei ther t h e inner flow or field regime. We 

continue here t o probe the d y n a m o by means of t he cyclic var iat ions of t he solar rotat ional 

r a t e , Ω = Ω ( 0 , ί ) , in addi t ion t o t he butterfly d iagram and the magnet ic polar branch. As 

we have described in much detail (Rüdiger et al. , 1986, hereinafter referred t o as paper I) 

all t h e polynomial modes in the series expansion 

Ω = Ω 0 Σ c j n P , î ( c o s 0 ) / s i n 0 (1) 
η=1,3, · . 

proved t o b e periodically t ime-dependent . T h e modes wi th η > 5, i.e. t h e original torsional 

oscillation (Howard and LaBonte , 1980), form a 4-belt p a t t e r n in b o t h hemispheres migrat-

ing in 22 years from the poles to the equator . Tw o bel ts are faster ("accelerat ing") and 

two are slower ("decelerat ing") t h a n the large-scale modes . T h e main acceleration belt lies 

always equa torwards from the centre of t he belt of magnet ic activity. T h e pa t t e rn s tar ts 

i t s migra t ion a t t he poles dur ing the activity minimum — and reaches, after 22 years, the 

equa to r also a t the min imum. Additionally, also t he modes with η = 3 and η = 5 vary in 

phase wi th each o ther while their maxima occurs a t maximal activity. T h e full pa t t e rn of 

variable Ω looks somewhat different (Snodgrass and Howard, 1985). There is a speeding up 

of t h e ro ta t ion a t high la t i tudes dur ing and jus t after t h e act ivi ty m a x i m u m and a wave then 

emerges a t mid- la t i tudes dur ing the min imum and moves toward the equator . Compared 
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with the t empora l variat ion of the large-scale modes (n < 7) , t he torsional oscillation is the 

domina t ing effect, t he m a x i m u m contr ibut ion obta ined from the m o d e with abou t η = 9. 

A similar power law has recently been derived by Stenflo (1988) for the contr ibut ion of the 

polynomial modes of the radial magne t ic field over the cycle. Approximate ly according to 

t h e expec ta t ions ( the induced flow behaves quadrat ical ly wi th respect t o t he magnet ic field) 

it was found t h a t the polynomials with η = 5 and η = 7 provide t he largest contr ibution 

t o t h e solar radial magnet ic field. This finding is also an i m p o r t a n t empirical constraint for 

an op t imal d y n a m o model . 

These observat ions in mind we recall the results of Pap e r I in which t h e first published 

solar- type dynamos (Steenbeck and Krause , 1969) were analyzed by means of the solution of 

t he Navier-Stokes equat ion with mean-field Lorentz force. W h a t we found was t h a t indeed 

two accelerat ing and two decelerat ing bel ts of Ω exist for dynamos wi th a relatively deep 

convection zone. Also the location of t he lower fast belt was correct and even the other 

ment ioned proper t ies of Ω(0 , / ) could be reproduced, besides t he behaviour of ω$ which 

varied in ant i -phase relat ive to ω$. As t he old d y n a m o models were only t rac tab le in a 

very rough way and as new ideas on the inner profile of t he α-effect have meanwhile been 

formulated, we analyze with some recently established d y n a m o models (Brandenburg and 

Tuominen , 1988; Brandenburg , 1989) their associated magnetical ly induced mean flows. We 

adop t the theoret ical formalism of Pape r I, also wi th its shortcomings described there in 

detai l . We mainly change the two most impor t an t inpu t pa rame te r s of the d y n a m o theory, 

i.e. t h e α-effect and ro ta t ion law. W i t h respect to t he l a t t e r it was t he helioseismologically 

derived solar ro ta t ion law which is involved, so t h a t b o t h t h e radial and the la t i tudinal 

gradient of Ω cont r ibute as inducing effects t o the d y n a m o act ion. T h e fixing of α is more 

t roublesome. I t is certainly positive near the surface due to the domina t ing densi ty gradient , 

α « Mp, (2) 

where £ p = ( d l n p / d r ) - 1 is the density scale height. But deep in the convection zone the 

oppos i te velocity gradient may weaken its value unti l even the sign is changed, 

α « Ω ^ ( 1 - £ p / £ u ) , (3) 

with i u = ( d i n u t u r b / d r ) _ 1 (Krause , 1967). This considerat ion may especially hold in the 

overshoot region below the convectively uns tab le zone as t he densi ty scale length ip becomes 

larger t h a n i u (cf. P ida te l la and Stix, 1986). 

2 . D y n a m o s w i t h n e g a t i v e α 

We have thus analyzed first a model with a lower region wi th a negat ive α-effect (cf. Fig. 2b 

in Gla tzmaier , 1985). T h e results for this model are given in Fig. 1. T h e butterfly diagram 

indeed exhibi ts a very solar-like behaviour . T h e toroidal field bel ts s t a r t a t l a t i tude 60° and 

reach m a x i m u m at 15°. T h e phase relation between Br and Β φ, however, does not agree 

as b o t h components are varying in phase , in opposi te t o observat ions (Stix, 1976). Indeed, 

as a consequence t he accelerarion bel t is located above the act ivi ty zone, cont rary t o the 

observat ions. Fur the rmore , ω\ varies much too strongly. T h a t clearly reveals t he existence 

of too large contr ibut ions of the lower polynomial modes in t he magnet ic field representat ion 

https://doi.org/10.1017/S0074180900044387 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900044387


389 

(cf. Stenflo, 1988). On t h e o ther hand , also t h e o ther modes in Eq. (1) have "wrong" 

proper t ies : ω3 and u 5 and are out of phase . We have thus t o s t a t e serious contradict ions 

between the model and t h e real observations, in par t icular of t h e t ime-dependence of the 

ro ta t iona l r a t e (1) . Similar difficulties have been described by Gla tzmaier (1986) for jus t 

this t y p e of d y n a m o . 

Fig. 1. Left panel: Butterfly diagrams for the Br- and Βφ-fiela for the dynamo model with negative 

or. Right panel The corresponding torsional wave pattern with η > 5. Note that in the right panel 

the ordinate is linear in θ and the abscissa goes from 0 to 1.5π. The shaded areas define faster 

rotation. 

3 . H i g h e r o r d e r t e r m s i n α 

We suggest thus t o reject the idea of negative α a t the b o t t o m of the convection zone and 

tu rn to another modification of the t radi t ional a-profile. As is well known from the theory 

of differential ro ta t ion , it is not enough to consider only the turbulence correlat ions which 

are l inear in the ro ta t ion r a t e Ω. As the Sun is not a slow ro ta to r in t h e sense of the 

turbulence theory ("slow" means rrot < τ ω Γ Γ ) also higher order te rms mus t be involved in 

the calculations (cf. Rüdiger , 1989). T h e same a rguments , of course, hold for t h e α-effect: 

Higher order te rms also exist with quite another l a t i tude dependence, 

α = oto — <*2 c ° s 2 0 (4) 

(Rüdiger , 1980, Schmit t , 1987), so t ha t it even may change i ts sign at some la t i tude . For 

oto = « 2 t he α-effect vanishes at the poles. We want t o favour this case r a the r t h a n t ha t 

where there is a node at a certain la t i tude , e.g. a t 30° as Schmit t suggests, which seems 

to be too ext reme. Our choice only concentrates the α-effect to lower la t i tudes instead 

having max imum at the pole. T h e hydrodynamical resul ts of this procedure are ra ther 

surprising (Fig. 2). T h e butterfly diagram and polar branch have the right proper t ies and 

also the phase relation agrees with the observations, i.e. ΒΓΒφ < 0. In addi t ion the Stenflo 

constra int is fulfilled, i.e. t he lowest modes do not cont r ibute too strongly. T h e torsional 

oscillation belts have the correct location in the la t i tude- t ime-diagram, compared to the 

magnet ic field, but they s ta r t at the activity maximum (reaching the equa tor after a whole 

22-year cycle also a t the max imum) . T h a t is a first contradict ion while the second one 
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is the out-of-phase variation of u>3 and u>5. But the behaviour of ω$ itself corresponds to 

the observations, it has maximum at the activity maximum and minimum at the activity 

minimum. Obviously, only the term ω$ is still out of correspondence. 

Fig. 2. Left panel: Butterfly diagrams for the Br- and 2?^-neld for the dynamo model with û r o = < * 2 · 

Right panel: The corresponding torsional wave pattern. 

We unders tand these examples as an improvement of the prel iminary analysis presented in 

Pape r I, where only the dep th of the convection zone resulted from the comparison of the 

calculations and t h e observations. It seems possible t o use t h e observed flow pa t t e rn as a 

precise tool for analyzing t he inner turbulent regime of stellar convection. 
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