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ON THE KOTTWITZ-SHELSTAD NORMALIZATION OF
TRANSFER FACTORS FOR AUTOMORPHIC

INDUCTION FOR GLn

KAORU HIRAGA and ATSUSHI ICHINO

To the memory of Professor Hiroshi Saito

Abstract. Automorphic induction for GLn is a case of endoscopic transfer, and
its character identity was established by Henniart and Herb, up to a constant of

proportionality. We determine this constant in terms of the Kottwitz-Shelstad
normalization of transfer factors, which involves certain ε-factors.
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Introduction

Let F be a nonarchimedean local field of characteristic zero. LetG=GLn,

and let

H=ResE/F GLm1 × · · · ×ResE/F GLmr ,
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98 K. HIRAGA AND A. ICHINO

where E is a cyclic extension of F of degree d and (m1+ · · ·+mr)d= n. Then

H is a twisted endoscopic group of G. Let G=G(F ), and let H =H(F ).

By a result of Waldspurger [20, corollaire 1.7], we have a map

TranGH : {virtual characters of H} −→ {ω-twisted virtual characters of G}

determined by matching orbital integrals. Here ω is a character of F× of

order d associated to E/F by class field theory.

Automorphic induction for GLn asserts that for each irreducible tem-

pered admissible representation πH of H , there exist an irreducible tem-

pered admissible representation π of G and a constant c ∈ C× such that

π⊗ ω ∼= π and

(0.1) TranGH
(
trace(πH)

)
= c · trace(π ◦Aω).

Here Aω : π ⊗ ω → π is an intertwining operator. This was established by

Henniart and Herb [7] when r = 1, and it is given by the composition of

the parabolic induction from H to GLm1+···+mr(E) with the automorphic

induction from GLm1+···+mr(E) to G in general. Henniart and Lemaire [8],

[9], [10] extended the fundamental lemma and the automorphic induction

to the case of positive characteristic. Also, the automorphic induction has

been extended to the case of inner forms of GLn in [11].

The purpose of this paper is to determine the constant c for automorphic

induction for GLn in the case of characteristic zero. To be precise, TranGH
depends on a transfer factor Δ which is well defined up to a scalar. Also,

Aω is well defined up to a scalar. In particular, we first need to normalize Δ

and Aω to determine the constant c. Following Kottwitz and Shelstad [13],

we can take Δ and Aω which depend only on an F -splitting splG of G and

a nontrivial character ψ of F since G is quasi-split. Hence, c is well defined.

For n= 2, Labesse and Langlands [14] proved that c= 1. For arbitrary n,

Henniart and Lemaire [9] proved that c does not depend on the represen-

tations and that c = 1 if E/F is unramified. In this paper, we will prove

that

c= 1

in general (see Theorem 1.4). We remark that the transfer factor Δ involves

a certain ε-factor which depends on the twisted endoscopic group H.

This paper is organized as follows. In Section 1, we recall the definition

of TranGH and state the main theorem. We prove standard reductions in

Sections 2–4 and recall a result of Henniart and Lemaire [9] on the product
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ON THE KOTTWITZ-SHELSTAD NORMALIZATION 99

formula for the constant c in Section 5. These imply that we may assume

that E/F is tamely ramified, H=ResE/F Gm, and πH = 1. To prove that

c= 1 in this case, we will compute the two sides of (0.1) explicitly. In Section

6, we construct the intertwining operator Aω by using a result of Shahidi

[17]. In Section 7, we compute the twisted character trace(π(fG) ◦ Aω) for

a certain fG ∈ C∞
c (G). Since πH = 1, it remains to compute the twisted

orbital integral for fG and the transfer factor Δ. Following Waldspurger

[19], we compute the twisted orbital integral and prove descent to topological

unipotent elements in Section 8. In Section 9, we compute the transfer factor

Δ explicitly. Using these and the fundamental lemma [19], we finish the proof

of the main theorem in Section 10.

Notation. Let F be a nonarchimedean local field of characteristic zero.

We fix an algebraic closure F̄ of F . Let Γ =Gal(F̄ /F ) be the absolute Galois

group of F , and let WF be the Weil group of F . Let o= oF be the maximal

compact subring of F , let p = pF be the maximal ideal of o, let � =�F

be a generator of p, and let q = qF be the cardinality of o/p. The valuation

ordF and the absolute value | · | on F are normalized so that ordF � = 1

and |�|= q−1. We extend | · | to the absolute value on F̄ .

If G is a connected reductive algebraic group defined over F , let G =

G(F ) be the group of rational points of G, let GSC be the simply connected

cover of the derived group of G, and let Ĝ be the Langlands dual group

of G. If T is a maximal torus of G, let Tsc be the preimage of T in GSC,

and let

DG(γ) =
∏

α∈R(G,T)

|α(γ)− 1|1/2

for γ ∈ T , where R(G,T) is the set of roots of T in G.

§1. Statement of the main theorem

Let G=GLn. Let splG = (B0,T0,{Xα}) be an F -splitting of G, and let

ψ be a nontrivial character of F . Then splG and ψ determine a character

χ of U0, where U0 is the unipotent radical of B0 and

χ
(
exp(xXα)

)
= ψ(x)

for x ∈ F and a simple root α of T0 in B0. We call (B0, χ) a Whittaker

datum for G.

Let a ∈H1(WF ,Z(Ĝ)), where Z(Ĝ) is the center of Ĝ. Let (H,H, s, ξ) be

an endoscopic datum for (G,1,a) (see [13, Section 2.1]).
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100 K. HIRAGA AND A. ICHINO

Since G is quasi-split over F , we have the absolute transfer factor Δ0

(see [15, Section 3.7], [13, Section 5.3]). Recall that Δ0 is a function on

{G-regular semisimple elements in H}

× {regular semisimple elements in G}

given by the product of five terms:

Δ0 =ΔI ·ΔII ·ΔIII1 ·ΔIII2 ·ΔIV.

To be precise, we implicitly fix an F -splitting splH = (BH,0,TH,0,{Yα}) of
H and a Γ-splitting splĜ = (B,T ,{Xα̌}) (resp., splĤ = (BH ,TH ,{Yα̌})) of

Ĝ (resp., Ĥ). Moreover, by replacing (H,H, s, ξ) by an endoscopic datum

(H,H, Int(g)(s), Int(g) ◦ ξ) with some g ∈ Ĝ if necessary, we assume that

ξ(BH) ⊂ B and that ξ(TH) = T . However, Δ0 depends only on splG. Fol-

lowing [13, Section 5.3], we define a normalized transfer factor Δ = ΔG,H

by

Δ= ε(V,ψ) ·Δ0,

where

(1.1) V =X∗(T0)⊗C−X∗(TH,0)⊗C

is a virtual representation of Γ of dimension zero and ε(V,ψ) is the local

constant as in [18, (3.6)]. Then Δ depends only on the Whittaker datum

(B0, χ) associated to splG and ψ.

Remark 1.1. By [11, Proposition A.2], the transfer factor given by Hen-

niart and Herb [7] agrees with Δ if E/F is unramified, and it agrees with

Δ up to a scalar in general.

Let ω be the character of F× associated to a. We write ω(g) = ω(detg)

for g ∈ G. Fix Haar measures dg and dh on G and H , respectively. For a

regular semisimple element γ ∈G such that Gγ ⊂ kerω and fG ∈ C∞
c (G),

put

Jω(γ, fG) =

∫
Gγ\G

ω(g)fG(g−1γg)
dg

dt
,

where Gγ is the centralizer of γ in G and dt is a Haar measure on Gγ .

Similarly, for a G-regular semisimple element γH ∈ H and fH ∈ C∞
c (H),

put

J(γH , fH) =

∫
HγH

\H
fH(h−1γHh)

dh

du
,
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where HγH is the centralizer of γH in H and du is a Haar measure on HγH . If

γH is a norm of γ, then we have HγH
∼=Gγ ⊂ kerω, and we take compatible

measures dt and du.

By a result of Waldspurger [20, corollaire 1.7], for each fG ∈C∞
c (G) there

exists fH ∈C∞
c (H) such that

J(γH , fH) =
∑
γ

Δ(γH , γ)Jω(γ, fG)

for all G-regular semisimple elements γH ∈H . Here the sum is taken over

a set of representatives for the conjugacy classes of γ ∈ G whose norm is

γH . We say that fG and fH have matching orbital integrals. For a virtual

character θ of H , we define an ω-invariant distribution TranGH(θ) on G by

TranGH(θ)(fG) = θ(fH)

for fG ∈C∞
c (G). Here we say that a distribution D on G is ω-invariant if

D
(
Ad(g)(fG)

)
= ω(g)−1D(fG)

for all g ∈G and fG ∈C∞
c (G).

On the other hand, by a result of Henniart and Herb [7, Theorem 1.3],

for each irreducible tempered admissible representation πH of H there exist

an irreducible tempered admissible representation π of G on a space Vπ and

a constant c ∈C× such that π⊗ ω ∼= π and such that

(1.2) TranGH
(
J(πH)

)
= c · Jω(π).

Here J(πH , fH) = trace(πH(fH)) for fH ∈ C∞
c (H), and Jω(π, fG) =

trace(π(fG) ◦ Aω) for f
G ∈C∞

c (G), where Aω : Vπ → Vπ is an isomorphism

such that

Aω ◦ (π⊗ ω)(g) = π(g) ◦Aω

for all g ∈G. We remark that Jω(π) and J(πH) depend on dg and dh, but

the constant c does not depend on the choice of Haar measures. Also, Jω(π)

depends on the choice of Aω. Since π is generic, we can normalize Aω so

that

λ ◦Aω = λ,

where λ : Vπ →C is a Whittaker functional with respect to χ.

We now recall a result of Henniart and Lemaire [9].
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102 K. HIRAGA AND A. ICHINO

Theorem 1.2 [9, théorème 4.11]. The constant c does not depend on πH .

Moreover, c= 1 if E/F is unramified.

Remark 1.3. Henniart [6, théorème 2] proved an analogous result for

F =R.

Our main result is as follows.

Theorem 1.4. We have

c= 1.

Remark 1.5. Arthur and Clozel [1] proved an analogous result for base

change for GLn. Also, assuming certain properties of tempered L-packets,

Waldspurger [21, lemme 4.8] proved an analogous result for special orthog-

onal groups.

§2. Reduction to the standard L-group structures

We retain the notation of Section 1. Let (H,H, s, ξ) be an endoscopic

datum for (G,1,a).

Let γ ∈G be a regular semisimple element. Let γH ∈H be a G-regular

semisimple element. Assume that γH is the image of γ. Let T (resp., TH)

be the centralizer of γ (resp., γH) in G (resp., H). Let i0 :TH,0 →T0 be

the dual of ξ−1 : T → TH . We choose an admissible embedding

TH
i

Int(h−1)

T

Int(g−1)

TH,0
i0

T0

such that i(γH) = γ, where h ∈HSC(F̄ ) and g ∈GSC(F̄ ).

Let Δ be the transfer factor associated to (H,H, s, ξ).

Lemma 2.1. If Δ′ is the transfer factor associated to an endoscopic datum

(H,H, s′, ξ) with s′ ∈ Ĝ, then

Δ′ =Δ.

Proof. By [11, Section 10], we have

s′ ∈ s ·
(
Z(Ĥ)Γ

)0
.

Hence, the image of s′ in π0(T̂
Γ
ad) is equal to that of s. This completes the

proof.
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Recall that H is a split extension

1−→ Ĥ −→H−→WF −→ 1.

Let LH = Ĥ � WF denote the L-group of H with an action of Γ on Ĥ

determined by splĤ . Since the derived group of H is simply connected,

the identity map Ĥ → Ĥ gives rise to an L-isomorphism H→ LH (see [13,

Lemma 2.2.A]). This isomorphism is well defined up to a 1-cocycle of WF

in Z(Ĥ).

We now take H = LH . If b is a 1-cocycle of WF in Z(Ĥ), let ωb be the

character of H associated to b. Let ξb :
LH ↪→ LG be the L-embedding given

by

ξb(h×w) = ξ
(
b(w)h×w

)
for h ∈ Ĥ and w ∈ WF . Let Δb be the transfer factor associated to an

endoscopic datum (H,LH,s, ξb). Let cb be the constant for (H,LH,s, ξb)

given by (1.2).

Lemma 2.2. We have

Δb(γH , γ) = ωb(γH) ·Δ(γH , γ).

Proof. It is easy to see that ΔI, ΔII, ΔIII1 , ΔIV, and ε(V,ψ) do not depend

on b. Let ξT : LT → LG, and let ξTH
: LTH → LH be as in [15, Section 2.6].

We use the same χ-data to compute the transfer factor Δb. In particular,

ξT and ξTH
do not depend on b. Let ξ ◦ ξTH

= a · ξT , where a is a 1-cocycle

of WF in T . Then we have

ξb ◦ ξTH
= (ξ ◦ b) · a · ξT .

Thus, we obtain

ΔIII2,b(γH , γ) = ωb(γH) ·ΔIII2(γH , γ).

This completes the proof.

Lemma 2.3. The constant cb does not depend on b.

Proof. Let φH be a tempered Langlands parameter for H. Put φH,b =

b−1 · φH . Let πH (resp., πH,b) be the irreducible tempered admissible rep-

resentation of H associated to φH (resp., φH,b). By [3, Lemma VII.2.1], we

have

J(πH,b, γH) = ωb(γH)−1 · J(πH , γH).
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104 K. HIRAGA AND A. ICHINO

Hence, we have

TranGH,b

(
J(πH,b)

)
=TranGH

(
J(πH)

)
by Lemma 2.2. Here TranGH,b is the transfer for (H,LH,s, ξb). Since ξb ◦
φH,b = ξ ◦ φH , the assertion follows.

Letm= (m1, . . . ,mr) be a partition of n/d, and let (Hm,LHm, sm, ξm) be

an endoscopic datum for (G,1,a) defined in [11, Section 10]. To prove Theo-

rem 1.4, we may assume that (H,H, s, ξ) = (Hm,LHm, sm, ξm) by Lemmas

2.1 and 2.3.

For convenience, we recall the definition of (Hm,LHm, sm, ξm). Let ζ =

e2π
√
−1/n. Let a be the unique 1-cocycle of WF in Z(Ĝ) representing a. Let

E be the cyclic extension of F of degree d associated to kera by class field

theory. Let σ be the generator of Gal(E/F ) such that a(σ) = ζn/d. We fix

an element wσ ∈WF in the preimage of σ.

For each integer m, let Hm = ResE/F GLm, let Ĥm =GLm(C)d, and let
LHm = Ĥm �WF . Here WE acts on Ĥm trivially, and σ acts on Ĥm by

(g1, . . . , gd) �−→ (gd, g1, . . . , gd−1).

We take the standard splittings splHm
and splĤm

of Hm and Ĥm, respec-

tively. For x ∈C×, put

sm(x) = diag(x · 1m, ζn/dx · 1m, . . . , ζ(d−1)n/dx · 1m) ∈GLmd(C).

We define a homomorphism ξm,0 :
LHm →GLmd(C) by

ξm,0

(
(g1, . . . , gd)×w

)
= diag(g1, . . . , gd)

for (g1, . . . , gd) ∈ Ĥm and w ∈WE , and

ξm,0(1×wσ) =

⎛
⎜⎜⎜⎝

1m
1m

. . .

1m

⎞
⎟⎟⎟⎠ .

Let Hm =Hm1 × · · · ×Hmr , let Ĥm = Ĥm1 × · · · × Ĥmr , and let LHm =

Ĥm �WF . Put

sm = diag
(
sm1(x1), . . . , smr(xr)

)
∈GLn(C),
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where we choose x1, . . . , xr ∈C× such that

{xi, ζn/dxi, . . . , ζ(d−1)n/dxi} ∩ {xj , ζn/dxj , . . . , ζ(d−1)n/dxj}=∅

if i 
= j. We define a homomorphism ξm : LHm → LG by

ξm
(
(h1, . . . , hr)×w

)
= diag

(
ξm1,0(h1 ×w), . . . , ξmr ,0(hr ×w)

)
×w

for (h1, . . . , hr) ∈ Ĥm and w ∈WF . Note that the equivalence class of (Hm,
LHm, sm, ξm) does not depend on the choice of x1, . . . , xr.

§3. Reduction to the standard Whittaker data

We retain the notation of Section 1. Let (B0, χ) be the Whittaker datum

for G associated to splG and ψ, where splG is an F -splitting of G and ψ is a

nontrivial character of F . Let m be a partition of n/d, and let (H,H, s, ξ) =

(Hm,LHm, sm, ξm) be the endoscopic datum for (G,1,a) defined in Sec-

tion 2.

Let t̃ ∈ T0, and let spl′G = Int(t̃)(splG). Let Δ
′ be the transfer factor with

respect to spl′G and ψ.

Lemma 3.1. We have

Δ′ = ω(det t̃) ·Δ.

Proof. By replacing splG by its GSC-conjugate if necessary, we may

assume that splG is the standard splitting of G. Let TH be a maximal

torus of Hm which is maximally split. We choose an admissible embedding

TH →G, and let T be its image. We identify TH with T. Then we have

an exact sequence

1−→Tsc −→T
det−→Gm −→ 1

and its dual
1←− T̂ad ←− T̂ ←−C× ←− 1.

These induce long exact sequences

· · · −→H0(F,T)−→H0(F,Gm)
δ−→H1(F,Tsc)−→H1(F,T)−→ · · ·

and

· · · ←−H1(WF , T̂ )←−H1(WF ,C
×)

δ̂←−H0(WF , T̂ad)

←−H0(WF , T̂ )←− · · · .
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106 K. HIRAGA AND A. ICHINO

It is easy to see that

δ̂(the image of sm in T̂ad) = a.

Hence, we have

(3.1) 〈δ(x), sm〉= ω(x)

for x ∈ F×, where

〈·, ·〉 : H1(F,Tsc)× π0(T̂
Γ
ad)−→C×

is the Tate-Nakayama pairing.

For g̃ ∈ G, let g = z · g̃ ∈ GSC(F̄ ), where we choose z ∈ F̄× such that

det g̃ = z−n. Then we have Int(g) = Int(g̃) and z−n ∈ F×. Let z be the

element in H1(F,Z(GSC)) induced by

τ(g)−1g = τ(z)−1z · 1n

for τ ∈ Γ. We remark that the 1-cocycle of Γ as in [13, p. 33] is given by

τ �→ g−1τ(g), which is the inverse of ours. We can define 〈z, sm〉 by using the

natural homomorphism H1(F,Z(GSC))→ H1(F,Tsc). Since δ(zn) is equal

to the image of z in H1(F,Tsc), (3.1) implies that

(3.2) 〈z, sm〉= ω(zn) = ω(det g̃)−1.

Hence, the lemma follows from [13, Section 5.3] and (3.2).

Lemma 3.2. The constant c given by (1.2) does not depend on (B0, χ).

Proof. Let (B′
0, χ

′) be another Whittaker datum for G associated to spl′G
and ψ′, where spl′G is an F -splitting of G and ψ′ is a nontrivial character

of F . By [13, Section 5.3], Δ′ does not depend on the choice of spl′G and ψ′

giving rise to the same (B′
0, χ

′). By replacing spl′G and ψ′ if necessary, we
may assume that ψ′ = ψ. Moreover, by replacing spl′G by its GSC-conjugate

if necessary, we may assume that spl′G = Int(t̃)(splG) for some t̃ ∈ T0. By

Lemma 3.1, we have

Tran′ GH
(
J(πH)

)
= ω(det t̃) ·TranGH

(
J(πH)

)
for an irreducible tempered admissible representation πH ofH , where Tran′ GH
is the transfer with respect to (B′

0, χ
′).
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On the other hand, let π be the irreducible tempered admissible represen-

tation of G such that π ⊗ ω ∼= π. Let λ : Vπ →C be a Whittaker functional

with respect to χ. Since χ′(u) = χ(Int(t̃−1)u) for u ∈ U0, the map λ′ : Vπ →C

given by λ′ = λ ◦ π(t̃−1) is a Whittaker functional with respect to χ′. Thus,
we obtain

A′
ω = ω(det t̃) · Aω,

where A′
ω : Vπ → Vπ is the intertwining operator with respect to λ′. This

yields the lemma.

§4. Reduction to Levi subgroups

Let G=GLn, and let a ∈H1(WF ,Z(Ĝ)). Let ψ be a nontrivial character

of F . Let (H,LH,s, ξ) be an endoscopic datum for (G,1,a). We fix an

F -splitting splG = (B0,T0,{Xα}) (resp., splH = (BH,0,TH,0,{Yα})) of G

(resp., H) and a Γ-splitting splĜ = (B,T ,{Xα̌}) (resp., splĤ = (BH ,TH ,

{Yα̌})) of Ĝ (resp., Ĥ). We may assume that the image of WF in Ĝ under ξ

is bounded. Moreover, we may assume that ξ(BH)⊂B and that ξ(TH) = T .

We first prove descent to Levi subgroups of H. Let L be a Levi sub-

group of H, and let LL be the Levi subgroup of LH associated to L.

Let (L,LL,sL, ξL) be the endoscopic datum for (G,1,a), where sL = s · z
with some z ∈ ξ(Z(L̂)0) such that the connected centralizer of sL in Ĝ

is ξ(L̂), and ξL = ξ|LL. We take the F -splitting splL of L and the Γ-

splitting splL̂ of L̂ given by splL = (BH,0∩L,TH,0,{Yα}α∈S(L)) and splL̂ =

(BH ∩ L̂,TH ,{Yα̌}α∈S(L)), respectively. Here S(L) is the set of simple roots

of TH,0 in BH,0∩L. Let ΔG,H and ΔG,L be the transfer factors with respect

to splG and ψ as in Section 1.

Lemma 4.1. Let γ ∈G be a regular semisimple element. Let γH ∈ L be a

G-regular semisimple element. If γH is the image of γ with respect to the

endoscopic datum (L,LL,sL, ξL) for (G,1,a), then we have

ΔG,L(γH , γ) =ΔG,H(γH , γ) · DH(γH)

DL(γH)
.

Proof. Assume that γH is the image of γ with respect to L. Let T

(resp., TH) be the centralizer of γ (resp., γH) in G (resp., L). Let i0 :
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TH,0 →T0 be the dual of ξ−1 : T → TH . We choose an admissible embed-

ding

TH
i

Int(h−1)

T

Int(g−1)

TH,0
i0

T0

with respect to L such that i(γH) = γ, where h ∈ LSC(F̄ ) and g ∈GSC(F̄ ).

We identify h with its image in HSC(F̄ ) and regard i as an admissible

embedding with respect to H. We can take a-data {aα} and χ-data {χα}
so that aα = 1 and χα = 1 for α ∈R(H,TH)−R(L,TH) since such an α is

asymmetric (see [15, Section 2.1]).

By definition, we have ΔG,L,I(γH , γ) =ΔG,H,I(γH , γ) and ΔG,L,III1(γH , γ)

=ΔG,H,III1(γH , γ) = 1. Since χα = 1 for α ∈R(H,TH)−R(L,TH), we have

ΔG,L,II(γH , γ) =ΔG,H,II(γH , γ).

Let •= L or H. Let ξ•T and ξ•TH
be as in [15, Section 2.6] with respect to

•. By definition, we have ξLT = ξHT . Let n(ω•
TH

(σ)) be as in [15, Section 2.6]

with respect to •. Then we have ω•
TH

(σ) ∈ Ω(L,TH,0) = Ω(L̂,TH), so that

n(ωL
TH

(σ)) = n(ωH
TH

(σ)) by the definition of splL̂. Let r•p0 and s•p/p0 be as

in [15, Section 2.6] with respect to •, where p0 and p are gauges as in [15,

p. 235] and [15, p. 238], respectively. To be precise, we identify R(•,TH)

with R(•,TH,0) = Ř(•̂,TH), where Ř(•̂,TH) is the set of coroots of TH in •̂,
and we take gauges p•0 on R(•,TH) so that the restriction of pH0 to R(L,TH)

is equal to pL0 . If α ∈R(H,TH)−R(L,TH), then α does not contribute to

rHp0 since χα = 1, and α does not contribute to sHp/p0 since α is asymmetric.

Indeed, we have p0(τ
−1(α)) = p0(α) and p(τ−1(α)) = p(α) for τ ∈ Γ and

α ∈R(H,TH)−R(L,TH). Hence, we have rLp0 = rHp0 and sLp/p0 = sHp/p0 . Thus,

we obtain ξLTH
= ξHTH

, and hence ΔG,L,III2(γH , γ) = ΔG,H,III2(γH , γ). This

completes the proof.

Let φL be a tempered Langlands parameter for L. Let φH be the com-

position of φL with the embedding LL ⊂ LH . Put φG = ξL ◦ φL. Let πL,

πH , πG be the irreducible tempered admissible representations of L, H , G

associated to φL, φH , φG, respectively. As in (1.2), we define cL and cH by

TranGL (J(πL)) = cL ·Jω(πG) and TranGH(J(πH)) = cH ·Jω(πG), respectively.

Lemma 4.2. We have

cL = cH .
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Proof. By [11, Lemma 8.8] and Lemma 4.1, we have TranGL (J(πL)) =

TranGH(J(πH)). This completes the proof.

We next prove descent to Levi subgroups of G. Let M be a Levi sub-

group of G, and let LM be the Levi subgroup of LG associated to M.

Assume that ξ(LH) ⊂ LM . We may regard (H,LH,s, ξ) as an endoscopic

datum for (M,1,a). We take the F -splitting splM of M and the Γ-splitting

splM̂ of M̂ given by splM = (B0 ∩M,T0,{Xα}α∈S(M)) and splM̂ = (B ∩
M̂,T ,{Xα̌}α∈S(M)), respectively. Here S(M) is the set of simple roots of T0

in B0 ∩M. Let ΔG,H (resp., ΔM,H) be the transfer factor with respect to

splG and ψ (resp., splM and ψ) as in Section 1.

Lemma 4.3. Let γ ∈M be a G-regular semisimple element. Let γH ∈H

be a G-regular semisimple element. If γH is the image of γ with respect to

the endoscopic datum (H,LH,s, ξ) for (M,1,a), then we have

ΔM,H(γH , γ) =ΔG,H(γH , γ) · DM (γ)

DG(γ)
.

Proof. Assume that γH is the image of γ with respect to M. Let T

(resp., TH) be the centralizer of γ (resp., γH) in M (resp., H). Let i0 :

TH,0 →T0 be the dual of ξ
−1 : T → TH . We choose an admissible embedding

TH
i

Int(h−1)

T

Int(g−1
M )

TH,0
i0

T0

with respect to M such that i(γH) = γ, where h ∈ HSC(F̄ ) and gM ∈
MSC(F̄ ). We regard i as an admissible embedding with respect to G by

using the image gG of gM in GSC(F̄ ). We can take a-data {aα} and χ-data

{χα} so that aα = 1 and χα = 1 for α ∈R(G,T)−R(M,T) since such an

α is asymmetric (see [15, Section 2.1]).

By definition, we have ΔM,H,III1(γH , γ) = ΔG,H,III1(γH , γ) = 1. Since

χα = 1 for α ∈R(G,T)−R(M,T), we haveΔM,H,II(γH , γ) =ΔG,H,II(γH , γ).

Let •=M or G. Let T•
sc (resp., T

•
0,sc) be the preimage of T (resp., T0) in

•SC. Let m(σT •
sc
) = x(σT •

sc
)n(ωT •

sc
(σ)) and λ(T•

sc) ∈H1(F,T•
sc) be as in [15,

Section 2.3]. Then the image of ωTM
sc
(σ) = Int(g−1

M σ(gM )) ∈ Ω(MSC,T
M
0,sc)
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in Ω(GSC,T
G
0,sc) is equal to ωTG

sc
(σ) = Int(g−1

G σ(gG)), so that the image of

n(ωTM
sc
(σ)) in GSC(F̄ ) is equal to n(ωTG

sc
(σ)) by the definition of splM .

Since aα = 1 for α ∈ R(G,T)−R(M,T), the image of x(σTM
sc
) in TG

sc(F̄ )

is equal to x(σTG
sc
). Hence, the image of m(σTM

sc
) in GSC(F̄ ) is equal to

m(σTG
sc
), so that the image of λ(TM

sc ) in H1(F,TG
sc) is equal to λ(TG

sc). Let

s•T ∈ π0((T̂ /Z(•̂))Γ) be the image of s ∈ T under

T = T̂0 T̂ T̂ /Z(Ĝ) T̂ /Z(M̂)

π0
(
(T̂ /Z(Ĝ))Γ

)
π0

(
(T̂ /Z(M̂))Γ

)
In particular, the image of sGT in π0((T̂ /Z(M̂))Γ) is equal to sMT . Thus, we

obtain

ΔM,H,I(γH , γ) = 〈λ(TM
sc ), s

M
T 〉= 〈λ(TG

sc ), s
G
T 〉=ΔG,H,I(γH , γ).

Let ξ•T and ξ•TH
be as in [15, Section 2.6] with respect to •. By definition,

we have ξMTH
= ξGTH

. Let n(ω•
T (σ)) be as in [15, Section 2.6] with respect

to •. Then the image of ωM
T (σ) ∈Ω(M,T0) = Ω(M̂,T ) in Ω(Ĝ,T ) is equal

to ωG
T (σ), so that n(ωM

T (σ)) = n(ωG
T (σ)) by the definition of splM̂ . Let

r•p0 and s•p/p0 be as in [15, Section 2.6] with respect to •. To be precise,

we take gauges p•0 on R(•,T) so that the restriction of pG0 to R(M,T) is

equal to pM0 . If α ∈R(G,T)−R(M,T), then α does not contribute to rGp0
since χα = 1, and α does not contribute to sGp/p0 since α is asymmetric.

Hence, we have rMp0 = rGp0 and sMp/p0 = sGp/p0 . Thus, we obtain ξMT = ξGT and

ΔM,H,III2(γH , γ) =ΔG,H,III2(γH , γ). This completes the proof.

Let φH be a tempered Langlands parameter for H. Put φG = ξ ◦φH . We

may regard φG as a tempered Langlands parameter φM for M. Let πH ,

πM , πG be the irreducible tempered admissible representations of H , M , G

associated to φH , φM , φG, respectively.

Let U0 be the unipotent radical of B0, and let χ be the generic character

associated to splG and ψ. Put χM = χ|U0∩M . Then χM is the generic char-

acter associated to splM and ψ. Let AM
ω : VπM → VπM be the intertwining
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operator such that AM
ω ◦ (πM ⊗ ω) = πM ◦ AM

ω and λM ◦ AM
ω = λM , where

λM : VπM →C is a Whittaker functional with respect to χM .

We now construct the intertwining operator AG
ω : VπG → VπG explicitly.

We may assume that

M=
{
diag(g1, . . . , gr) | g1 ∈GLm1 , . . . , gr ∈GLmr

}
,

where m1+ · · ·+mr = n. We can take the standard splittings splG and splM
of G and M, respectively. Then we have πG = IndGP (πM ), where P=MN is

the standard parabolic subgroup of G and the space VπG consists of locally

constant VπM -valued functions Φ on G such that

Φ(mng) = δ
1/2
P (m)πM (m)Φ(g)

for m ∈M , n ∈N , g ∈G. Here δP is the modulus character of P . We define

AG
ω by

(AG
ωΦ)(g) = ω(g)AM

ω Φ(g)

for Φ ∈ VπG and g ∈G. Then we have AG
ω ◦ (πG ⊗ ω) = πG ◦AG

ω .

Lemma 4.4. We have

λG ◦AG
ω = λG,

where λG : VπG →C is a Whittaker functional with respect to χ.

Proof. By [16, Proposition 3.1], we may assume that the Whittaker func-

tional λG is given by

λG(Φ) =

∫
U ′

λM
(
Φ(w0u

′)
)
χ(u′)du′

for Φ ∈ VπG , where

w0 =

⎛
⎜⎝

1m1

. .
.

1mr

⎞
⎟⎠

and

U′ =

⎧⎪⎨
⎪⎩
⎛
⎜⎝
1mr ∗ ∗

. . . ∗
1m1

⎞
⎟⎠
⎫⎪⎬
⎪⎭ .
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Since πM ⊗ ω ∼= πM , the order of ω divides m1, . . . ,mr, so that ω(w0) = 1.

Hence, we have

λG(AG
ωΦ) =

∫
U ′

λM
(
AG

ωΦ(w0u
′)
)
χ(u′)du′

=

∫
U ′

λM
(
AM

ω ω(w0u
′)Φ(w0u

′)
)
χ(u′)du′

=

∫
U ′

λM
(
AM

ω Φ(w0u
′)
)
χ(u′)du′

=

∫
U ′

λM
(
Φ(w0u

′)
)
χ(u′)du′

= λG(Φ).

As in (1.2), we define cM and cG by TranMH (J(πH)) = cM · Jω(πM ) and

TranGH(J(πH)) = cG · Jω(πG), respectively.

Lemma 4.5. We have

cM = cG.

Proof. By [11, Lemma 8.6] and Lemmas 4.3 and 4.4, TranMH (J(πH)) =

cM · Jω(πM ) implies that

TranGH
(
J(πH)

)
= cM · Jω(πG).

This completes the proof.

§5. Reduction to tamely ramified cyclic extensions

Let E be a cyclic extension of F of degree d. We first refine a result of

Henniart [4, lemme 3.6], [5, Section 3].

Lemma 5.1. There exist a cyclic extension E of a number field F of degree

d and a place v0 of F such that

• v0 is inert in E, and Ev0/Fv0 is isomorphic to E/F ;

• Ew/Fv is tamely ramified if v 
= v0 is a nonarchimedean place of F and w

is a place of E lying above v; and

• Fv
∼=C if v is an archimedean place of F.

Proof. We first recall the Grunwald-Wang theorem, from which the lemma

follows. Let F be a number field. For each positive integer r, fix a primitive

2rth root of unity ξr such that ξ2r+1 = ξr. Put ηr = ξr+ξ−1
r . Note that η2 = 0.
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Let s≥ 2 be the integer such that ηs ∈ F but ηs+1 /∈ F. Let S0 be the set of

places v of F lying above 2 such that −1, 2 + ηs, −(2 + ηs) are not square

in Fv. Let S be a finite set of places of F, and let d be a positive integer.

We say that we are in the special case if

• −1, 2 + ηs, −(2 + ηs) are not square in F,

• 2s+1 | d,
• S0 ⊂ S.

For v ∈ S, let ωv be a character of F×
v of order dividing d. Assume that

(5.1)
∏
v∈S0

ωv(2 + ηs)
d/2 = 1

if we are in the special case. Then, by the Grunwald-Wang theorem, there

exists a character ω of A×
F /F

× of order dividing d such that ωv = ωv for

v ∈ S (see [2, Chapter X, Section 2, Theorem 5]).

Let p be the residual characteristic of F . Fix a character ω of F× of order

d associated to E/F by class field theory.

We first assume that p 
= 2. By the weak approximation theorem and

Krasner’s lemma, we can take a number field F and a place v0 of F so that

Fv0
∼= F and Fv

∼=C if v is an archimedean place of F. Let S∞ be the set of

archimedean places of F, and let S′ the set of nonarchimedean places v of F

such that the residual characteristic of Fv divides 2d. Put S = S∞∪S′∪{v0}.
Then we have S0 ⊂ S and v0 /∈ S0. We take

ωv =

{
ω if v = v0,

1 if v 
= v0.

Then (5.1) holds, and hence there exists a character ω of A×
F /F

× of order

d such that ωv = ωv for v ∈ S. Let E be the cyclic extension of F of degree

d associated to ω by class field theory. By construction, v0 is inert in E,

Ev0/Fv0 is isomorphic to E/F , and Ew
∼= Fv for v ∈ S − {v0}. Here w is a

place of E lying above v. If v /∈ S, then the residual characteristic of Fv does

not divide d, so that Ew/Fv is tamely ramified.

We next assume that p= 2. We modify the argument above as follows.

Let F̆ be the unramified extension of Q2 of degree [F :Q2]. Since Q2(ξr)

is a totally ramified extension of Q2 of degree 2r−1, we have ηr /∈ F̆ if r ≥ 3.

Also, −1, 2, −2 are not square in F̆ . Recall that 2 is split in Q(
√
−7).

By the weak approximation theorem and Krasner’s lemma, we can take an

extension F of Q(
√
−7) and two places v0, v1 of F so that Fv0

∼= F , Fv1
∼= F̆ ,
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and Fv
∼= C if v is an archimedean place of F. In particular, s = 2 and

v1 ∈ S0. Put S = S∞ ∪S′ ∪{v0}. Then we have S0 ⊂ S. Moreover, we are in

the special case if and only if 8 | d.
For v ∈ S, we choose a character ωv of F×

v as follows. Fix an unramified

character ω̆ of F̆× of order d. Note that ω̆(2)d/2 =−1 if d is even. If we are

in the special case, v0 ∈ S0, and ω(2)d/2 =−1, we take

ωv =

⎧⎪⎨
⎪⎩
ω if v = v0,

ω̆ if v = v1,

1 if v /∈ {v0, v1}.

Otherwise, we take

ωv =

{
ω if v = v0,

1 if v 
= v0.

Then (5.1) holds if we are in the special case. Indeed, if we are in the special

case and v0 ∈ S0, then we have∏
v∈S0

ωv(2 + ηs)
d/2 = ω(2)d/2 · ωv1(2)

d/2 = 1.

Hence, there exists a character ω of A×
F /F

× of order d such that ωv = ωv

for v ∈ S. Let E be the cyclic extension of F of degree d associated to ω

by class field theory. By construction, if we are in the special case, v0 ∈ S0,

and ω(2)d/2 = −1, then v1 is inert in E and Ev1/Fv1 is unramified. This

completes the proof.

Let ω be a character of F× of order d associated to E/F by class field

theory. Fix a character ω of A×
F /F

× of order d associated to E/F by class

field theory such that ωv0 = ω. Let G=GLd, and let H=ResE/F Gm. We

fix an F-splitting splG of G and a nontrivial character ψ of AF/F. For each

place v of F, splG and ψ induce an Fv-splitting splG of GLd and a nontrivial

character of ψv of Fv, respectively.

We now recall a special case of a result of Henniart and Lemaire [9] on

the product formula for the constant.

Proposition 5.2 [9, section 4.6]. Let πH be a unitary character of E×.
Then there exists a unitary character ΠH =

⊗
vΠH,v of A×

E /E
× such that

ΠH,v0 = πH and ∏
v∈S

cv = 1
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for a sufficiently large finite set S of places of F which contains v0. Here

cv ∈C× is the constant for ΠH,v given by (1.2).

§6. Intertwining operators

To prove Theorem 1.4, we may assume that

• E is a tamely ramified cyclic extension of F of degree d,

• G=GLd,

• (H,H, s, ξ) = (ResE/F Gm,LHm, sm, ξm) with m= (1),

• splG is standard,

• ψ is of order zero, and

• πH = 1

by Theorem 1.2, Proposition 5.2, and Lemmas 2.1, 2.3, 3.2, 4.2, 4.5, and

5.1. The rest of this paper is devoted to the proof of Theorem 1.4 under

this assumption. In this section, we construct the intertwining operator Aω

explicitly.

Let e and f be the ramification index and the residual degree of E/F ,

respectively. Note that d= ef . Fix a character ω of F× of order d associated

to E/F by class field theory. Then ω is trivial on 1 + p and the restriction

of ω to o× is of order e.

Recall that B0 =T0U0 is the standard Borel subgroup of G, where T0

is the subgroup of diagonal matrices and

U0 =
{
u= (ui,j) ∈G | ui,i = 1, ui,j = 0 if i > j

}
.

The generic character χ of U0 associated to splG and ψ is given by

χ(u) = ψ(u1,2 + · · ·+ ud−1,d)

for u ∈ U0.

Let μ be the character of T0 defined by

μ= 1⊗ ωe ⊗ · · · ⊗ ωe(f−1) ⊗ ω⊗ ωe+1 ⊗ · · · ⊗ ωe(f−1)+1 ⊗ · · · ⊗ ωe−1

⊗ ω2e−1 ⊗ · · · ⊗ ωef−1.

For s= (s1, . . . , sd) ∈Cd, we put

μs = μ| · |s,

where |t|s = |t1|s1 · · · |td|sd for t= diag(t1, . . . , td) ∈ T0. Let

πs = IndGB0
(μs)
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be the principal series representation of G on the space Vs of locally constant

functions Φs such that

Φs(tug) = δ
1/2
B0

(t)μs(t)Φs(g)

for t ∈ T0, u ∈ U0, g ∈G. Here δB0 is the modulus character of B0, and G

acts on Vs by right translation. Let

λs : Vs −→C

be the Whittaker functional given by

λs(Φs) =

∫
U0

Φs(w0u)χ(u)du,

where

w0 =

⎛
⎜⎜⎜⎝
0 · · · 0 1

0 · · · 1 0
... . .

. ...
...

1 · · · 0 0

⎞
⎟⎟⎟⎠

and du is the Haar measure on U0 such that vol(U0(o)) = 1. We write

π = π0, V = V0, λ= λ0.

Then π is the automorphic induction of the trivial representation of H .

Let μ′ be the character of T0 defined by

μ′ = ω⊗ ωe+1 ⊗ · · · ⊗ ωe(f−1)+1 ⊗ · · · ⊗ ωe−1 ⊗ ω2e−1 ⊗ · · · ⊗ ωef−1 ⊗ ωe

⊗ · · · ⊗ ωe(f−1) ⊗ 1.

Note that μ′ = μω. For s ∈ Cd, we put μ′
s = μ′| · |s. We define a principal

series representation π′
s = IndGB0

(μ′
s) of G on the space V ′

s and a Whittaker

functional

λ′
s : V

′
s −→C

similarly. We write

π′ = π′
0, V ′ = V ′

0 , λ′ = λ′
0.

We define an isomorphism

A : V −→ V ′
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as vector spaces by

A(Φ)(g) = Φ(g)ω(g)

for Φ ∈ V and g ∈G. Here we write ω(g) = ω(detg) for g ∈G.

Lemma 6.1. We have

A ◦ (π⊗ ω) = π′ ◦A.

Proof. Let Φ ∈ V , and let g, g′ ∈G. Then we have

A
(
(π⊗ ω)(g′)Φ

)
(g) =A

(
π(g′)Φ

)
(g)ω(g′) = π(g′)Φ(g)ω(g)ω(g′)

= Φ(gg′)ω(gg′)

and

π′(g′)A(Φ)(g) =A(Φ)(gg′) = Φ(gg′)ω(gg′).

Lemma 6.2. We have

λ′ ◦ A= ω(−1)d(d−1)/2 · λ.

Proof. Let Φ ∈ V . Then we have

λ′(A(Φ)
)
=

∫
U0

A(Φ)(w0u)χ(u)du

=

∫
U0

Φ(w0u)ω(w0u)χ(u)du

= ω(w0)

∫
U0

Φ(w0u)χ(u)du

= ω(w0) · λ(Φ).

Let P be the standard parabolic subgroup of G with Levi factor

L=

{(
g1 0

0 g2

)∣∣∣∣g1 ∈GLd−f , g2 ∈GLf

}
.

Let

L1 =
{
diag(g1,1f ) ∈ L | g1 ∈GLd−f

}
,

L2 =
{
diag(1d−f , g2) ∈ L | g2 ∈GLf

}
.
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For i= 1,2, put

π′
s,i = IndLi

B0∩Li
(μ′

s,i),

where μ′
s,i = μ′

s|B0∩Li . We write π′
i = π′

0,i and μ′
i = μ′

0,i. Note that

π′
s
∼= IndGP (π

′
s,1 ⊗ π′

s,2)

and that

μ′
1 = ω⊗ ωe+1 ⊗ · · · ⊗ ωe(f−1)+1 ⊗ · · · ⊗ ωe−1 ⊗ ω2e−1 ⊗ · · · ⊗ ωef−1,

μ′
2 = ωe ⊗ · · · ⊗ ωe(f−1) ⊗ 1.

For s= (s1, . . . , sd) ∈ Cd, put s′ = (sd−f+1, . . . , sd, s1, . . . , sd−f ). For Φ′
s ∈

V ′
s and g ∈G, put

Ms(Φ
′
s)(g) =

∫
Mf,d−f (F )

Φ′
s

(
w

(
1f x

0 1d−f

)
g

)
dx,

where

w =

(
0 1d−f

1f 0

)
and dx is the Haar measure on Mf,d−f (F ) such that vol(Mf,d−f (o)) = 1. This

integral is absolutely convergent for Re(s1)� Re(s2)� · · · � Re(sd)� 0,

has a meromorphic continuation to Cd, and defines an intertwining operator

Ms : V
′
s −→ Vs′ .

Then we have Ms ◦ π′
s = πs′ ◦Ms. By [17, Theorem 5.1], we have

λ′
s = γ(0, π′

s,1 × π̌′
s,2,ψ) · λs′ ◦Ms,

where π̌′
s,2 is the contragredient representation of π′

s,2. We remark that π′
s,2

is unramified.

We define a normalized intertwining operator

N : V ′ −→ V

by

N = lim
s→0

γ(0, π′
s,1 × π̌′

s,2,ψ)Ms.
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Then we have

(6.1) N ◦ π′ = π ◦N

and

(6.2) λ′ = λ ◦N .

We define an isomorphism

Aω : V −→ V

as vector spaces by

Aω = ω(−1)d(d−1)/2 · N ◦A.

By Lemma 6.1 and (6.1), we have

Aω ◦ (π⊗ ω) = π ◦Aω.

Lemma 6.3. We have

λ ◦Aω = λ.

Proof. By Lemma 6.2 and (6.2), we have

λ ◦ Aω = ω(−1)d(d−1)/2 · λ ◦N ◦A= ω(−1)d(d−1)/2 · λ′ ◦A= λ.

§7. Calculation of a twisted character

We retain the notation of Section 6. In this section, we compute the

twisted character Jω(π, fG) for a certain fG ∈C∞
c (G).

Let K =GLd(o). Let I be the parahoric subgroup of G given by

I =
{
g ∈K | gi,j ∈Mf (p) if i > j

}
.

Here we write g = (gi,j)1≤i,j≤e with gi,j ∈Mf (F ). We take a Haar measure

dg on G so that vol(K) = 1.

Put

κ(g) = ω(g2,2)ω
2(g3,3) · · ·ωe−1(ge,e)

for g = (gi,j)1≤i,j≤e ∈ I with gi,j ∈Mf (F ). Here we write ω(gi,i) = ω(detgi,i)

for gi,i ∈GLf (F ). Since ω is trivial on 1+ p, κ is a character of I . Note that

κ(g) = 1 if g ∈ I is topologically unipotent. We define fG ∈C∞
c (G) so that
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• suppfG = η−1I ,

• fG(η−1g) = κ−1ω−1(g) · vol(I)−1 for g ∈ I ,

where

η =

(
0 1d−f

� · 1f 0

)
.

Note that fG does not depend on the choice of �.

Lemma 7.1. We have

fG(g1gg2) = κ−1(g1)κ
−1ω−1(g2)f

G(g)

for g ∈G and g1, g2 ∈ I.

Proof. Since ηIη−1 = I , it suffices to show that

κ−1ω−1(ηgη−1) = κ−1(g)

for g ∈ I . We write ηgη−1 = (g′i,j)1≤i,j≤e ∈ I for g = (gi,j)1≤i,j≤e ∈ I . Then

we have

g′i,i =

{
gi+1,i+1 if 1≤ i < e,

g1,1 if i= e.

Hence, we have

κ−1ω−1(ηgη−1) = ω−1(g3,3) · · ·ω−e+2(ge,e)ω
−e+1(g1,1)

· ω−1(g2,2) · · ·ω−1(ge,e)ω
−1(g1,1)

= ω−1(g2,2)ω
−2(g3,3) · · ·ω−e+1(ge,e)

= κ−1(g).

Let

V κ
s =

{
Φs ∈ Vs | Φs(gg

′) = Φs(g)κ(g
′) for all g ∈G, g′ ∈ I

}
.

We define V κω
s and V ′,κω

s similarly. We write V κ = V κ
0 , V κω = V κω

0 , and

V ′,κω = V ′,κω
0 .

Lemma 7.2. We have

dimC V
κ
s = dimC V

κω
s = dimC V

′,κω
s = 1.
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Proof. We only consider V κ
s . We have an Iwasawa decomposition G =

B0K. Let P′ be the standard parabolic subgroup of G with Levi factor

L′ =
{
diag(g1,1, . . . , ge,e) | gi,i ∈GLf

}
.

Let Ω and Ω′ be the Weyl groups of G and L′, respectively. We take per-

mutation matrices in G and L′ as representatives of elements in Ω and Ω′,
respectively. Then we have a Bruhat decomposition

K =
∐

w′∈Ω/Ω′

(B0 ∩K)w′I.

Let Φs ∈ Vs such that suppΦs ⊂ B0w
′I . Since ωe is unramified, the

restriction of μs to T0 ∩K is given by

1⊗ · · · ⊗ 1︸ ︷︷ ︸
f

⊗ω⊗ · · · ⊗ ω︸ ︷︷ ︸
f

⊗· · · ⊗ ωe−1 ⊗ · · · ⊗ ωe−1︸ ︷︷ ︸
f

.

Hence, we have

Φs(w
′t) = Φs(w

′tw′−1 ·w′) =
e−1∏
i=0

f∏
j=1

ωi(tw′(if+j)) ·Φs(w
′)

for t= diag(t1, . . . , td) ∈ T0 ∩K. If Φs ∈ V κ
s , then we have

Φs(w
′t) = Φs(w

′) ·
e−1∏
i=0

f∏
j=1

ωi(tif+j)

for t= diag(t1, . . . , td) ∈ T0 ∩K. Since the restriction of ω to o× is of order

e, Φs(w
′) = 0 unless w′ ∈Ω′.

We define

Φκ
s ∈ V κ

s , Φκω
s ∈ V κω

s , Φ′,κω
s ∈ V ′,κω

s

so that

suppΦκ
s =B0I, Φκ

s (1) = 1,

suppΦκω
s =B0w

−1I, Φκω
s (w−1) = 1,

suppΦ′,κω
s =B0I, Φ′,κω

s (1) = 1.
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Here

w =

(
0 1d−f

1f 0

)
.

We write Φκ =Φκ
0 , Φ

κω =Φκω
0 , Φ′,κω =Φ′,κω

0 .

Lemma 7.3. We have

A(Φκ) = Φ′,κω.

Proof. We have A(Φκ) ∈ V ′,κω and

A(Φκ)(1) = Φκ(1)ω(1) = 1.

Lemma 7.4. We have

Ms(Φ
′,κω
s ) = q−(e−1)f2 ·Φκω

s′ .

Proof. We have Ms(Φ
′,κω
s ) ∈ V κω

s′ and

Ms(Φ
′,κω
s )(w−1) =

∫
Mf,d−f (F )

Φ′,κω
s

(
w

(
1f x

0 1d−f

)
w−1

)
dx

=

∫
Mf,d−f (F )

Φ′,κω
s

((
1d−f 0

x 1f

))
dx.

Since (
1d−f 0

x 1f

)
∈B0I

if and only if x ∈ Mf,d−f (p), this integral is equal to vol(Mf,d−f (p)) =

q−f(d−f).

Let

λ(E/F,ψ) =

f−1∏
i=0

e−1∏
j=1

ε(1/2, ωie+j ,ψ)

denote the Langlands λ-factor.

Lemma 7.5. We have

λ(E/F,ψ)f = ω(−1)((e−1)e/2)[(f+1)/2]λ(E/F,ψ)−1.
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Proof. Note that ωe(−1) = 1. If f is even, then we have

λ(E/F,ψ) =

f/2−1∏
i=0

e−1∏
j=1

ε(1/2, ωie+j ,ψ)ε(1/2, ω(f−i)e−j ,ψ)

=

f/2−1∏
i=0

e−1∏
j=1

ωie+j(−1)

=

e−1∏
j=1

ωj(−1)f/2

= ω(−1)(e−1)ef/4.

In particular, λ(E/F,ψ) =±1. If f is odd, then we have

λ(E/F,ψ)2 =

f−1∏
i=0

e−1∏
j=1

ε(1/2, ωie+j ,ψ)ε(1/2, ω(f−i)e−j ,ψ)

=

f−1∏
i=0

e−1∏
j=1

ωie+j(−1)

=

e−1∏
j=1

ωj(−1)f

=
e−1∏
j=1

ωj(−1)

= ω(−1)(e−1)e/2.

Lemma 7.6. We have

N (Φ′,κω) = q−(e−1)f2/2ω(−1)((e−1)e/2)[(f+1)/2]λ(E/F,ψ)−1 ·Φκω.

Proof. We have

γ(0, π′
1 × π̌′

2,ψ) =

f−1∏
i=0

e−1∏
j=1

f−1∏
k=0

γ(0, ωie+j · ω−ke,ψ).

Since ω is of order ef , we have

f−1∏
i=0

γ(0, ωie+j · ω−ke,ψ) =

f−1∏
i=0

γ(0, ωie+j ,ψ)
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for fixed j, k. Hence, we have

γ(0, π′
1 × π̌′

2,ψ) =

f−1∏
i=0

e−1∏
j=1

γ(0, ωie+j ,ψ)f .

Let 0≤ i≤ f − 1, and let 1≤ j ≤ e− 1. Since ψ is of order zero and ωie+j

is ramified with conductor 1, we have

γ(0, ωie+j ,ψ) = ε(0, ωie+j ,ψ) = q1/2 · ε(1/2, ωie+j ,ψ).

Thus, we obtain

γ(0, π′
1 × π̌′

2,ψ) = q(e−1)f2/2
f−1∏
i=0

e−1∏
j=1

ε(1/2, ωie+j ,ψ)f = q(e−1)f2/2λ(E/F,ψ)f .

Hence, the lemma follows from Lemmas 7.4 and 7.5.

Lemma 7.7. We have

π(fG)Φκω = q(e−1)f2/2ω(�)−d(f−1)/2 ·Φκ.

Proof. By Lemma 7.1, we have π(fG)Φκω ∈ V κ and

π(fG)Φκω(1) =

∫
G
fG(g)Φκω(g)dg

=

∫
I
fG(η−1g)Φκω(η−1g)dg

= fG(η−1)Φκω(η−1) · vol(I).

We have fG(η−1) = vol(I)−1 and

Φκω(η−1) = Φκω

((
�−1 · 1f 0

0 1d−f

)
w−1

)
= q(e−1)f2/2ω(�)−ef(f−1)/2.

Proposition 7.8. We have

Jω(π, fG) = λ(E/F,ψ)−1×

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
1 if e and f are odd,

ω(�)d/2 if e is odd and f is even,

ω(−1)e(f−1)/4 if e is even and f is odd,

ω(−1)ef/4ω(�)d/2 if e and f are even.
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Proof. By Lemma 7.1, we have Im(π(fG) ◦Aω)⊂ V κ. Since dimC V
κ = 1

by Lemma 7.2, we have

Jω(π, fG) =C,

where C ∈ C is a constant such that π(fG)Aω(Φ
κ) = C ·Φκ. It remains to

compute C = π(fG)Aω(Φ
κ)(1). By Lemmas 7.3, 7.6, and 7.7, we have

π(fG)Aω(Φ
κ)(1)

= ω(−1)d(d−1)/2π(fG)N (A(Φκ))(1)

= ω(−1)d(d−1)/2π(fG)N (Φ′,κω)(1)

= q−(e−1)f2/2ω(−1)d(d−1)/2+((e−1)e/2)[(f+1)/2]λ(E/F,ψ)−1π(fG)Φκω(1)

= ω(−1)d(d−1)/2+((e−1)e/2)[(f+1)/2]ω(�)−d(f−1)/2λ(E/F,ψ)−1Φκ(1)

= ω(−1)d(d−1)/2+((e−1)e/2)[(f+1)/2]ω(�)−d(f−1)/2λ(E/F,ψ)−1.

Since ωe(−1) = 1, we have

ω(−1)d(d−1)/2 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
1 if e and f are odd,

1 if e is odd and f is even,

ω(−1)e/2 if e is even and f is odd,

1 if e and f are even

and

ω(−1)(e(e−1)/2)[(f+1)/2] =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
1 if e and f are odd,

1 if e is odd and f is even,

ω(−1)e(f+1)/4 if e is even and f is odd,

ω(−1)ef/4 if e and f are even.

Since ωd(�) = 1, we have ω(�)−d(f−1)/2 = 1 if f is odd. If f is even, then

ω(�)d/2 =±1, so that ω(�)−d(f−1)/2 = ω(�)d/2. This completes the proof.

§8. Calculation of a twisted orbital integral

We retain the notation of Sections 6 and 7. In this section, we compute

the twisted orbital integral Jω(γ, fG) for fG ∈C∞
c (G) defined in Section 7.
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For each 0≤ i < d, let Li,G be the lattice of F d given by

Li,G = o⊕ · · · ⊕ o︸ ︷︷ ︸
d−i

⊕p⊕ · · · ⊕ p︸ ︷︷ ︸
i

.

For each integer i= jd+k with 0≤ k < d, let Li,G =�jLk,G. Then we have

I =
{
g ∈G | gLif,G ⊂Lif,G for all i

}
.

Fix an isomorphism φ :E → F d as vector spaces over F such that

φ(piE) = Lif,G

for all i. Let ι :H→G be the embedding induced by φ. Then we have

ι(H)∩ I = ι(o×E).

We identify H with the image in G and suppress ι from the notation.

Let γ ∈G be a regular semisimple element, and let T be the centralizer

of γ in G. Then Jω(γ, fG) = 0 unless γ is conjugate to an element in H . If

γ ∈H is G-regular, then T=H.

Lemma 8.1. Let γ ∈H be a G-regular semisimple element. If Jω(γ, fG) 
=
0, then we have

ordE γ =−1.

Proof. Then, since suppfG = η−1I , we have Jω(γ, fG) = 0 unless

ordF detγ =−f .

Let γ ∈H be a G-regular semisimple element such that ordE γ =−1. By

[12] and [19, section VII.1], there exist δ, γ′ ∈E× such that

• γ = δγ′,
• γ′ ∈ 1 + pE ,

• δ is F (δ)/F -cuspidal (see [19, section VI.2]).

Put F ′ = F (δ). Note that F ′ does not depend on the choice of δ, γ′.

Lemma 8.2. We have ordF ′ δ =−1. Moreover, E/F ′ is unramified.

Proof. Let e′ be the ramification index of E/F ′. Then we have

ordE γ = ordE δ = e′ ordF ′ δ.

Hence, e′ = 1.
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Note that the ramification index of F ′/F is e. Let f ′ be the residual degree
of F ′/F . Put d′ = d/ef ′. Let G′ = ResF ′/F GLd′ , and let K ′ = GLd′(oF ′).

We take a Haar measure dg′ on G′ so that vol(K ′) = 1. Fix an isomorphism

φ′ : F ′d′ → F d such that φ′(Li,G′) = Lif ′,G for all i. Let ι :G′ →G be the

embedding induced by φ′. Then we have

ι(G′)∩ I = ι(K ′), ι(G′)∩ η−1I = ι(δK ′).

For simplicity, we will suppress ι from the notation. We may also regard H

as a subgroup of G′ via φ and φ′.

Lemma 8.3. Let g ∈G such that g−1γg ∈ η−1I. Then we have

g ∈G′I.

Proof. The lemma follows from [19, lemme VI.3].

Lemma 8.4. We have suppfG ∩ G′ = δK ′. Thus, let g ∈ G′ such that

g−1γ′g ∈K ′. Then we have

fG(g−1γg) = fG(δ).

Proof. The first assertion is obvious. Since γ′ ∈ 1 + pE , g
−1γ′g ∈ K ′ is

topologically unipotent, and hence κ−1ω−1(g−1γ′g) = 1. Thus, we obtain

fG(g−1γg) = fG(δg−1γ′g) = fG(δ)κ−1ω−1(g−1γ′g) = fG(δ).

Let ω′ = ω ◦NF ′/F be an unramified character of F ′× of order d′ associ-
ated to E/F ′ by class field theory. Let 1K′ ∈ C∞

c (G′) be the characteristic

function of K ′. Put

Jω′
(γ′,1K′) =

∫
T\G′

ω′(g′)1K′(g′−1γ′g′)dg′.

Note that T is also the centralizer of γ′ in G′.

Lemma 8.5. Let γ ∈ H be a G-regular semisimple element such that

ordE γ =−1. Let δ, γ′ ∈H as above. Then we have

Jω(γ, fG) = vol(I)fG(δ) · Jω′
(γ′,1K′).
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Proof. The lemma follows from [19, lemme VI.4] with slight modifica-

tions. We include the proof for the sake of completeness.

Note that

ω(g)fG(g−1γg) = ω(g)κ(g)κ−1ω−1(g)fG(γ) = fG(γ)

for g ∈ I . By Lemma 8.3, we have

Jω(γ, fG) =
∑
g∈Γ

vol(T\TgI)ω
(
ι(g)

)
fG(g−1γg).

Here Γ is a set of representatives of equivalence classes of G′ for the equiv-

alence g1 ∼ g2 if and only if g1 ∈ Tg2I . Then Γ is also a set of representatives

of T\G′/K ′. As in the proof of [19, lemme VI.4], we have

vol(T\TgI) = vol(I) vol(T\TgK ′) and ω(ι(g)) = ω′(g) for g ∈ Γ . By

Lemma 8.4, fG(g−1γg) = 0 for g ∈ Γ unless g−1γ′g ∈K ′, and hence

Jω(γ, fG) = vol(I)
∑
g∈Γ

vol(T\TgK ′)ω′(g)fG(g−1γg)1K′(g−1γ′g)

= vol(I)fG(δ)
∑
g∈Γ

vol(T\TgK ′)ω′(g)1K′(g−1γ′g)

= vol(I)fG(δ) · Jω′
(γ′,1K′).

§9. Calculation of the transfer factor

LetG=GLd, and letH=ResE/F Gm, where E is a tamely ramified cyclic

extension of F of degree d. Let (H,H, s, ξ) = (ResE/F Gm,LHm, sm, ξm) be

the endoscopic datum for (G,1,a) with m = (1) as in Section 2. In this

section, we compute the transfer factor Δ(γ, ι(γ)) for G-regular semisimple

elements γ ∈H , where ι :H→G is the embedding defined in Section 8.

Let e and f be the ramification index and the residual degree of E/F ,

respectively. Let ω be the character of F× of order d associated to a. Let σ

be the generator of Gal(E/F ) as in [11, Section 10]. Let ηE be the unramified

quadratic character of E×. If d is even, let σ+ = σd/2, and let E+ be the

subfield of E corresponding to the subgroup {1, σ+} of Gal(E/F ). Let ω+ =

ω ◦ NE+/F be the quadratic character of E×
+ corresponding to E/E+ by

class field theory. If e is odd and f is even, then E/E+ is unramified and

the restriction of ηE to E×
+ is ω+.

We fix a primitive (qf −1)th root of unity ζ in E. We choose �E and �F

so that �e
E =�F ζ

a with some integer a. If e is odd and f is even, then we
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may assume that �E ∈ E+ since the ramification index of E+/F is e and

E/E+ is unramified. Then we have

σ+(�E) =

{
�E if e is odd and f is even,

−�E if e is even.

We take {�i
Eζ

j | 0≤ i < e,0≤ j < f} as a basis of oE over oF . Put

�u= (ζf−1, ζf−2, . . . , ζ,1) ∈Ef

and

�v = (�e−1
E · �u,�e−2

E · �u, . . . ,�E · �u,�u) ∈Ed.

We may assume that the embedding ι :H→G is given by

x · �v = �v · ι(x)

for x ∈H . Put

g =

⎛
⎜⎜⎜⎝

�v

σ(�v)
...

σd−1(�v)

⎞
⎟⎟⎟⎠ ∈GLd(E).

Then we have

gι(x)g−1 = diag
(
x,σ(x), σ2(x), . . . , σd−1(x)

)
for x ∈H .

We will compute detg.

Lemma 9.1. Let xi = diag(x(i−1)f+1, x(i−1)f+2, . . . , xif ). Then we have

det

⎛
⎜⎜⎜⎜⎜⎝

1f 1f · · · 1f
x1 x2 · · · xe

x2
1 x2

2 · · · x2
e

...
...

. . .
...

xe−1
1 xe−1

2 · · · xe−1
e

⎞
⎟⎟⎟⎟⎟⎠=

f∏
k=1

∏
0≤i<j≤e−1

(xjf+k − xif+k).

Proof. See the Vandermonde determinant.
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Put

u=

⎛
⎜⎜⎜⎝

�u

σ(�u)
...

σf−1(�u)

⎞
⎟⎟⎟⎠ ∈GLf (E).

Since σf (�u) = �u, we have g = g′g′′, where g′ = (g′i,j)1≤i,j≤e, with

g′i,j = diag
(
σ(i−1)f (�E)

e−j , σ(i−1)f+1(�E)
e−j , . . . , σif−1(�E)

e−j
)
∈Mf (E),

and g′′ = diag(u,u, . . . ,u). We have

detg′ = (−1)(e−1)ef/2
f∏

k=1

∏
0≤i<j≤e−1

(
σjf+k−1(�E)− σif+k−1(�E)

)

=

f∏
k=1

∏
0≤i<j≤e−1

(
σif+k−1(�E)− σjf+k−1(�E)

)
and

detg′′ =
(
(−1)(f−1)f/2

∏
1≤i<j≤f

(
σj−1(ζ)− σi−1(ζ)

))e

=
( ∏
1≤i<j≤f

(
σi−1(ζ)− σj−1(ζ)

))e
.

Hence, we have

detg =

f∏
k=1

∏
0≤i<j≤e−1

(
σif+k−1(�E)− σjf+k−1(�E)

)
×

( ∏
1≤i<j≤f

(
σi−1(ζ)− σj−1(ζ)

))e
.

We define h ∈GLd(E) so that

(9.1) h−1 =

⎛
⎜⎜⎜⎝

b1 · �v
b2 · σ(�v)

...

bd · σd−1(�v)

⎞
⎟⎟⎟⎠ ,
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where

bjf+k =
∏

0≤i<j

(
σif+k−1(�E)− σjf+k−1(�E)

)−1

×
∏

1≤i<k

(
σi−1(ζ)− σk−1(ζ)

)−1

for 0 ≤ j ≤ e− 1, 1 ≤ k ≤ f . Then we have deth = 1; that is, h ∈GSC(E)

and

h−1ι(x)h= diag
(
x,σ(x), σ2(x), . . . , σd−1(x)

)
for x ∈H .

Let TH = H, and let T = ι(TH). We choose an admissible embedding

TH →T induced by ι. Then we have

(9.2) ΔIII1

(
γ, ι(γ)

)
= 1.

Let αi,j be the root ofT inG corresponding to the coroot ti,it
−1
j,j of T in Ĝ.

Here ti,i is the cocharacter of T given by ti,i(z) = diag(1, . . . ,1, z
i
,1, . . . ,1) for

z ∈C×. Then αi,j is symmetric (resp., asymmetric) if and only if |i−j|= d/2

(resp., |i− j| 
= d/2). We choose a-data {aα} and χ-data {χα} as follows.

For simplicity, we write ai,j = aαi,j and χi,j = χαi,j .

We require that σ(ai,j) = ai+1,j+1 and aj,i =−ai,j . Put

a1,jf+k =

{
ν(σjf (�E)−�E) if k = 1,

σk−1(ζ)− ζ if k 
= 1,

where

ν =
∏

1≤i<f

(
σi(ζ)− ζ

)−1
.

Note that σf (ν) = ν.

Lemma 9.2. We have

σd+1−i(a1,i) =−a1,d+2−i

for 1< i≤ d/2 + 1. In particular, {a1,i} determines a-data {aα} uniquely.
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Proof. Note that i ≡ 1 mod f if and only if d + 2 − i ≡ 1 mod f . Let

i= jf + k. If k = 1, then we have

σd+1−i(a1,i) = σd−jf (a1,jf+1) = ν
(
�E − σd−jf (�E)

)
=−a1,d−jf+1 =−a1,d+2−i.

If k 
= 1, then we have d+ 2− i= (d− jf − f) + (f + 2− k) and

σd+1−i(a1,i) = σd−jf−k+1(a1,jf+k) = ζ − σf−k+1(ζ) =−a1,d+2−i.

Put χ1,i = 1 for 1< i < d/2+1. If d is even, let χ1,d/2+1 be a character of

E× whose restriction to E×
+ is ω+. Note that χ1,d/2+1 ◦σ+ = χ−1

1,d/2+1. If e is

odd and f is even, then we can take χ1,d/2+1 = ηE . Then {χ1,i} determines

χ-data {χα} uniquely.

Lemma 9.3. If e and f are odd, then we have

ΔII

(
γ, ι(γ)

)
ΔIII2

(
γ, ι(γ)

)
= 1.

If e is odd and f is even, then we have

ΔII

(
γ, ι(γ)

)
ΔIII2

(
γ, ι(γ)

)
= ηE

(
γ − σ+(γ)

)
.

If e is even and f is odd, then we have

ΔII

(
γ, ι(γ)

)
ΔIII2

(
γ, ι(γ)

)
= ω(−1)e(f−1)/4 · ω+

(γ − σ+(γ)

2�−1
E

)
.

If e and f are even, then we have

ΔII

(
γ, ι(γ)

)
ΔIII2

(
γ, ι(γ)

)
= ω+

( γ − σ+(γ)

2�−1
E (σf/2(ζ)− ζ)

)
.

Proof. We only consider the case when d is even. By [11, Appendix A],

we have

ΔII

(
γ, ι(γ)

)
= χ1,d/2+1

(α1,d/2+1(γ)− 1

a1,d/2+1

)
= χ1,d/2+1

(γσ+(γ)−1 − 1

a1,d/2+1

)
and

ΔIII2

(
γ, ι(γ)

)
= χ1,d/2+1(γ)

−1.

Since σ+(a1,d/2+1) =−a1,d/2+1, we have

ΔII

(
γ, ι(γ)

)
ΔIII1

(
γ, ι(γ)

)
= χ1,d/2+1

(σ+(γ)−1 − γ−1

a1,d/2+1

)
= ω+

(γ − σ+(γ)

a1,d/2+1

)
.
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Note that ω+(xσ+(x)) = 1 for x ∈E×.
If e is odd, then f is even and

a1,d/2+1 = a1,(e−1)f/2+f/2+1 = σf/2(ζ)− ζ ∈ o
×
E ,

so that

χ1,d/2+1(a1,d/2+1) = ηE
(
σf/2(ζ)− ζ

)
= 1.

Assume that e is even. Then we have

a1,d/2+1 = a1,ef/2+1 = ν
(
σef/2(�E)−�E

)
=−2�E · ν

and

χ1,d/2+1(−�E) = χ1,d/2+1

(
σ+(�E)

)
= χ1,d/2+1(�

−1
E ).

Since σi(ζ)− ζ ∈E×
+ and

ω+

(
σ(x)

)
= ω

(
NE+/F (σ(x))

)
= ω

(
NE+/F (x)

)
= ω+(x)

for x ∈E×
+ , we have

ω+

(
σi(ζ)− ζ

)
= ω+

(
σf−i(σi(ζ)− ζ)

)
= ω+

(
ζ − σf−i(ζ)

)
= ω(−1)d/2ω+

(
σf−i(ζ)− ζ

)
.

If f is odd, then we have

ω+(ν) =
∏

1≤i≤(f−1)/2

ω+

(
σi(ζ)− ζ

)−1 ·
∏

(f+1)/2≤i≤f−1

ω+

(
σi(ζ)− ζ

)−1

= ω(−1)d(f−1)/4
∏

1≤i≤(f−1)/2

ω+

(
σi(ζ)− ζ

)−2

= ω(−1)d(f−1)/4

= ω(−1)e(f−1)/4.

If f is even, then we have

ω+(ν) =
∏

1≤i≤f/2−1

ω+

(
σi(ζ)− ζ

)−1 · ω+

(
σf/2(ζ)− ζ

)−1

·
∏

f/2+1≤i≤f−1

ω+

(
σi(ζ)− ζ

)−1
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=ω(−1)d(f−2)/4
∏

1≤i≤f/2−1

ω+

(
σi(ζ)− ζ

)−2 · ω+

(
σf/2(ζ)− ζ

)−1

=ω(−1)d(f−2)/4 · ω+

(
σf/2(ζ)− ζ

)
=ω+

(
σf/2(ζ)− ζ

)
.

This completes the proof.

Lemma 9.4. We have

ΔI

(
γ, ι(γ)

)
= 1.

Proof. Let h ∈ GSC(E) be given by (9.1). Let m(σT ) = x(σT )n(ωT (σ))

be as in [15, Section 2.3]. Then we have

x(σT ) = diag
( ∏
1<i≤d

a1,i, a
−1
1,2, a

−1
1,3, . . . , a

−1
1,d

)

and

n(ωT (σ)) =

(
0 1

−1d−1 0

)
.

Hence, we have

m(σT )σ(h
−1) = x(σT ) ·

⎛
⎜⎜⎜⎝

σ(bd) · �v
−σ(b1) · σ(�v)

...

−σ(bd−1) · σd−1(�v)

⎞
⎟⎟⎟⎠=

⎛
⎜⎜⎜⎜⎝

∏
1<i≤d a1,i · σ(bd) · �v
−a−1

1,2σ(b1) · σ(�v)
...

−a−1
1,dσ(bd−1) · σd−1(�v)

⎞
⎟⎟⎟⎟⎠ .

Let i= jf + k ≥ 2 with 0≤ j ≤ e− 1, 1≤ k ≤ f . If k = 1, then we have

−a−1
1,iσ(bi−1) =−a−1

1,jf+1σ(b(j−1)f+f )

= ν−1
(
�E − σjf (�E)

)−1
∏

0≤i<j−1

(
σ(i+1)f (�E)− σjf (�E)

)−1

×
∏

1≤i<f

(
σi(ζ)− ζ

)−1

=
∏

0≤i<j

(
σif (�E)− σjf (�E)

)−1

= bjf+1

= bi.

https://doi.org/10.1017/S0027763000010606 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000010606


ON THE KOTTWITZ-SHELSTAD NORMALIZATION 135

If k 
= 1, then we have

−a−1
1,iσ(bi−1) =− a−1

1,jf+kσ(bjf+k−1)

=
(
ζ − σk−1(ζ)

)−1
∏

0≤i<j

(
σif+k−1(�E)− σjf+k−1(�E)

)−1

×
∏

1≤i<k−1

(
σi(ζ)− σk−1(ζ)

)−1

=
∏

0≤i<j

(
σif+k−1(�E)− σjf+k−1(�E)

)−1

×
∏

1≤i<k

(
σi−1(ζ)− σk−1(ζ)

)−1

=bjf+k

=bi.

Since ∏
2≤i≤d

a1,i = νe−1
∏

1≤i≤e−1

(
σif (�E)−�E

)
·
( ∏
1<k≤f

(
σk−1(ζ)− ζ

))e

= ν−1
∏

1≤i<e

(
σif (�E)−�E

)
and

σ(bd) =
∏

0≤i<e−1

(
σ(i+1)f (�E)−�E

)−1 ·
∏

1≤i<f

(
σi(ζ)− ζ

)−1

= ν
∏

1≤i<e

(
σif (�E)−�E

)−1
,

we have ∏
2≤i≤d

a1,i · σ(bd) = 1 = b1.

Thus, we obtain

m(σT )σ(h
−1) = h−1,

so that the 1-cocycle λ(Tsc) as in [15, Section 2.3] is trivial. This yields the

lemma.
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Proposition 9.5. If e and f are odd, then we have

Δ
(
γ, ι(γ)

)
= λ(E/F,ψ)−1 ·ΔIV

(
γ, ι(γ)

)
.

If e is odd and f is even, then we have

Δ
(
γ, ι(γ)

)
= λ(E/F,ψ)−1 · ηE

(
γ − σ+(γ)

)
·ΔIV

(
γ, ι(γ)

)
.

If e is even and f is odd, then we have

Δ
(
γ, ι(γ)

)
= λ(E/F,ψ)−1 · ω(−1)e(f−1)/4 · ω+

(γ − σ+(γ)

2�−1
E

)
·ΔIV

(
γ, ι(γ)

)
.

If e and f are even, then we have

Δ
(
γ, ι(γ)

)
= λ(E/F,ψ)−1 · ω+

( γ − σ+(γ)

2�−1
E

(
σf/2(ζ)− ζ

)) ·ΔIV

(
γ, ι(γ)

)
.

Proof. Let V be the virtual representation of Γ given by (1.1). Then we

have

ε(V,ψ) = λ(E/F,ψ)−1.

Hence, the proposition follows from (9.2) and Lemmas 9.3 and 9.4.

§10. Proof of Theorem 1.4

In this section, we finish the proof of Theorem 1.4. We may keep the

assumption of Section 6.

We fix a primitive (qf − 1)th root of unity ζ in E and choose �E , �F as

in Section 9. Let ι :H→G be the embedding defined in Section 9.

Let γ ∈H be a G-regular semisimple element such that ordE γ =−1. As

in Section 8, we write γ = δγ′ so that δ is F (δ)/F -cuspidal and γ′ ∈ 1+ pE .

Put F ′ = F (δ), and put δ′ =�Eδ. By Lemma 8.2, E/F ′ is unramified and

δ′ ∈ o
×
E . We may assume that δ′ is a root of unity in E.

Let G′ =ResF ′/F GLd′ , where d′ = d/ef ′ and f ′ is the residual degree of

F ′/F . Let ι′ :H→G′ be the embedding as in Section 9. By Proposition 9.5,

we have

(10.1) ΔG′,H
(
γ′, ι′(γ′)

)
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
ΔG′,H,IV(γ

′, ι′(γ′))

if d′ is odd,

ηE(γ
′ − σ+(γ

′)) ·ΔG′,H,IV(γ
′, ι′(γ′))

if d′ is even.

Note that γ′ is G′-regular.
Let F ′′ ⊂E be the unramified extension of F of degree f . Then δ′ ∈ F ′′.
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Lemma 10.1. Assume that e is odd and that f is even. Then d′ is even

if and only if δ′ ∈E+.

Proof. Since E/F is cyclic, d′ is even if and only if F ′ ⊂E+. Since F ′ =
F (δ) and �E ∈E+, the assertion follows.

Lemma 10.2. Assume that e is even. Then d′ is odd and δ′ ∈E+.

Proof. We have F ′′ ⊂ E+ since e is even. Hence, E/E+ is ramified, so

that d′ must be odd since E/F ′ is unramified.

Lemma 10.3. We have

ΔG,H

(
γ, ι(γ)

)
=λ(E/F,ψ)−1 ·ΔG′,H

(
γ′, ι(γ′)

)

×

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
1 if e and f are odd,

ω(�F )
d/2 if e is odd and f is even,

ω(−1)e(f−1)/4 · ω+(δ
′) if e is even and f is odd,

ω+(σ
f/2(ζ)− ζ) · ω+(δ

′) if e and f are even.

Proof. By [19, lemme VII.3], we have

ΔG,H,IV

(
γ, ι(γ)

)
=ΔG′,H,IV

(
γ′, ι′(γ′)

)
.

By Proposition 9.5, (10.1), and Lemmas 10.1 and 10.2, it suffices to show

that

ηE
(
γ − σ+(γ)

)
= ω(�F )

d/2

×
{
ηE(γ

′ − σ+(γ
′)) if e is odd, f is even, and δ′ ∈E+,

1 if e is odd, f is even, and δ′ /∈E+

and that

ω+

(γ − σ+(γ)

2�−1
E

)
= ω+(δ

′)

if e is even.

We first assume that e is odd and f is even. Then we have

ηE
(
γ − σ+(γ)

)
= ηE(�

−1
E ) · ηE

(
δ′γ′ − σ+(δ

′γ′)
)
.

Since η2E = 1 and e is odd, we have

ηE(�
−1
E ) = ηE(�E)

e = ηE(�F ζ
a).
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Since ηE is unramified, we have ηE(ζ
a) = 1. Hence, we have

ηE(�
−1
E ) = ηE(�F ) = ω

(
NE+/F (�F )

)
= ω(�

d/2
F ).

If δ′ ∈E+, then we have

ηE
(
δ′γ′ − σ+(δ

′γ′)
)
= ηE(δ

′) · ηE
(
γ′ − σ+(γ

′)
)
= ηE

(
γ′ − σ+(γ

′)
)
.

If δ′ /∈E+, then σ+(δ
′) 
= δ′, so that

δ′γ′ − σ+(δ
′γ′)≡ δ′ − σ+(δ

′) 
≡ 0 mod pE .

Hence, we have δ′γ′ − σ+(δ
′γ′) ∈ o

×
E , so that ηE(δ

′γ′ − σ+(δ
′γ′)) = 1.

We next assume that e is even. Then we have

γ − σ+(γ)

2�−1
E

=
�−1

E δ′(γ′ + σ+(γ
′))

2�−1
E

=
δ′(γ′ + σ+(γ

′))

2
.

Since E/F is tamely ramified and e is even, we have 2 � q, so that (γ′ +
σ+(γ

′))/2 ∈ 1 + pE+ . Hence, we have

ω+

(γ′ + σ+(γ
′)

2

)
= 1.

Let fG ∈ C∞
c (G) be as in Section 7. By [19] and [20], there exists fH ∈

C∞
c (H) such that fG and fH have matching orbital integrals. Then fH is

determined by

fH(γ) =ΔG,H

(
γ, ι(γ)

)
· Jω(γ, fG)

for G-regular semisimple elements γ ∈H . By Lemma 8.1, fH(γ) = 0 unless

ordE γ =−1.

Lemma 10.4. Let γ ∈H be a G-regular semisimple element such that that

ordE γ =−1. Then we have

fH(γ) = λ(E/F,ψ)−1 ×

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
1 if e and f are odd,

ω(�F )
d/2 if e is odd and f is even,

ω(−1)e(f−1)/4 if e is even and f is odd,

ω+(σ
f/2(ζ)− ζ) if e and f are even.
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Proof. By the definition of ι, we have

ι(�E) = η ·
(
g1,1 0

0 1d−f

)
with some g1,1 ∈GLf (oF ) and

ι(δ′) = diag(g′, g′, . . . , g′)

with some g′ ∈GLf (oF ) such that detg′ =NF ′′/F (δ
′). Hence, we have

fG(δ) = fG(�−1
E δ′) = vol(I)−1 · ω

(
NF ′′/F (δ

′)
)−e(e+1)/2

.

If e is odd, then we have

ω
(
NF ′′/F (δ

′)
)−e(e+1)/2

= ωe
(
NF ′′/F (δ

′)
)−(e+1)/2

= 1.

If e is even, then we have

ω
(
NF ′′/F (δ

′)
)−e(e+1)/2

= ω
(
NE+/F (δ

′)
)−(e+1)

= ω+(δ
′)−(e+1) = ω+(δ

′).

By Lemmas 8.5 and 10.3, we have

ΔG,H

(
γ, ι(γ)

)
· Jω(γ, fG)

= λ(E/F,ψ)−1 ·ΔG′,H
(
γ′, ι′(γ′)

)
· Jω′

(γ′,1K′)

×

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
1 if e and f are odd,

ω(�F )
d/2 if e is odd and f is even,

ω(−1)e(f−1)/4 if e is even and f is odd,

ω+(σ
f/2(ζ)− ζ) if e and f are even.

By the fundamental lemma [19, théorème VIII.5], we have

ΔG′,H
(
γ′, ι′(γ′)

)
· Jω′

(γ′,1K′) = 1.

This completes the proof.

Thus, we obtain

J(πH , fH) = λ(E/F,ψ)−1 ×

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
1 if e and f are odd,

ω(�F )
d/2 if e is odd and f is even,

ω(−1)e(f−1)/4 if e is even and f is odd,

ω+(σ
f/2(ζ)− ζ) if e and f are even,
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where πH = 1. By Proposition 7.8 and Lemma 10.5 below, we have

Jω(π, fG) = J(πH , fH).

Hence, we have c= 1.

To finish the proof of Theorem 1.4, it remains to prove the following

lemma.

Lemma 10.5. Assume that e and f are even. Then we have

ω(−1)ef/4 · ω(�F )
d/2 = ω+

(
σf/2(ζ)− ζ

)
.

Proof. Note that 2 � q since E/F is tamely ramified and e is even. By

Lemma 10.6 below, we have �e
E =�F ζ

a with an odd integer a.

We first show that

ω(�F )
d/2 =−1.

The quadratic character ω+ = ω ◦NE+/F of E×
+ associated to E/E+ satisfies

the following:

• ω+(ζ) =−1,

• ω+(−�2
E) = 1,

• ω+ is trivial on 1 + pE+ .

Note that F ′′ ⊂E+ and σ+(�E) =−�E . Hence, we have

ω(�F )
d/2 = ω+(�F )

= ω+(�
e
Eζ

−a)

= ω+

(
(−1)e/2 · (−�2

E)
e/2 · ζ−a

)
= ω+(−1)e/2 · ω+(ζ)

−a

= ω(−1)ed/4 · (−1)−a

=−1.

We next show that

ω(−1)ef/4 =

⎧⎪⎨
⎪⎩
1 if q ≡ 1 mod 4,

1 if q ≡ 3 mod 4 and f ≡ 0 mod 4,

−1 if q ≡ 3 mod 4 and f ≡ 2 mod 4.
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Note that, if q ≡ 3 mod 4, then e ≡ 2 mod 4 since e | (q − 1). Assume that

q ≡ 1 mod 4. Then a primitive fourth root of unity ζ(q
f−1)/4 belongs to F .

Since (−1)ef/4 = (ζ(q
f−1)/4)d/2, we have

ω(−1)ef/4 = ω+(ζ
(qf−1)/4) = (−1)(q

f−1)/4.

Since f is even, (qf − 1)/4 is even, so that ω(−1)ef/4 = 1. Assume that

q ≡ 3 mod 4. It suffices to show that ω(−1) =−1. Let ζ ′ = ζ(q
f−1)/(q−1) be

a primitive (q− 1)th root of unity in F . Then ω(ζ ′) is a primitive eth root

of unity in C× since the restriction of ω to o
×
F is of order e. Since e | (q− 1)

and (q− 1)/2 is odd, we have

q− 1

2
≡ e

2
mod e.

Hence, we have

ω(−1) = ω(ζ ′(q−1)/2) = ω(ζ ′)e/2 =−1.

We finally show that

ω+

(
σf/2(ζ)− ζ

)
=

⎧⎪⎨
⎪⎩
−1 if q ≡ 1 mod 4,

−1 if q ≡ 3 mod 4 and f ≡ 0 mod 4,

1 if q ≡ 3 mod 4 and f ≡ 2 mod 4.

Put β = σf/2(ζ) − ζ ∈ o
×
F ′′ . Then we have σf/2(β) = −β, and hence

(β2)q
f/2−1 ≡ 1 mod pF ′′ . Let r be the order of β2 in (oF ′′/pF ′′)×. Then we

have r | (qf/2 − 1). Since 2 � q, we have σf/2(β) 
≡ β mod pF ′′ . Hence, 2r is

the order of β in (oF ′′/pF ′′)× and 2r � (qf/2 − 1). Let b be an integer such

that (b,2r) = 1 and β ≡ ζb(q
f−1)/2r mod pF ′′ . Then we have

ω+(β) = ω+(ζ
b(qf−1)/2r) = (−1)b(q

f−1)/2r = (−1)(q
f−1)/2r = (−1)(q

f/2+1)/2.

Note that b, (qf/2 − 1)/r are odd and

qf − 1

2r
=

qf/2 − 1

r
· q

f/2 + 1

2
.

Hence, ω+(β) = 1 if and only if 4 | (qf/2 + 1). This yields the assertion.
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Lemma 10.6. Let F be a nonarchimedean local field of characteristic zero.

Let f be a positive integer. We fix a primitive (qf − 1)th root of unity ζ

in F̄ . Let F ′′ = F (ζ) be the unramified extension of F of degree f . Let e be

a positive integer such that e | (q− 1).

Let �E be a root of

Xe −�F ζ
a,

where �F is a uniformizer of F and a is an integer such that(
a,

qf − 1

q− 1
, e
)
= 1.

Then E = F ′′(�E) is a tamely ramified cyclic extension of F with rami-

fication index e and residual degree f . Conversely, any such E is of this

form.

Proof. If E is a tamely ramified cyclic extension of F with ramification

index e and residual degree f , then there exist a uniformizer �F of F and

an integer a such that E = F ′′(�E), where �E is a root of Xe −�F ζ
a.

Conversely, let E = F ′′(�E), where �E is a root of Xe −�F ζ
a, �F is a

uniformizer of F , and a is an integer. For each 0 ≤ i ≤ e − 1,

�Eζ
a(q−1)/e+i(qf−1)/e is a root of Xe −�F ζ

aq. Hence, there exists an auto-

morphism σ of E over F given by

σ(ζ) = ζq,

σ(�E) =�Eζ
a(q−1)/e+i(qf−1)/e.

Note that any extension to E of the Frobenius automorphism of F ′′ over F
is of this form.

Let n be the order of σ. Since σ is an extension of the Frobenius auto-

morphism of F ′′ over F , we have f | n. We have

σf (�E) =�E(ζ
a(q−1)/e+i(qf−1)/e)1+q+···+qf−1

=�E(ζ
a(q−1)/e+i(qf−1)/e)(q

f−1)/(q−1)

=�E(ζ
a+i(qf−1)/(q−1))(q

f−1)/e.

We have (ζa(q−1)/e+i(qf−1)/e)(q
f−1)/(q−1) ∈ F× since its order divides q − 1.

Hence, we have

σjf (�E) =�E(ζ
a+i(qf−1)/(q−1))j(q

f−1)/e
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for all j, so that n= ef if and only if

(
a+ i

qf − 1

q− 1
, e
)
= 1.

Hence, there exists 0≤ i≤ e− 1 such that σ is of order ef if and only if

(
a,

qf − 1

q− 1
, e
)
= 1.

This completes the proof.

This completes the proof of Theorem 1.4.
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