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ideology, identity, and legitimacy are difficult to measure; yet, without measurement that

matches theoretical constructs, careful empirical studies may not be testing that which they
had intended. Item response theory (IRT) models offer promise by producing transparent and improvable
measures of latent factors thought to underlie behavior. Unfortunately, those factors have no intrinsic
substantive interpretations. Prior solutions to the substantive interpretation problem require exogenous
information about the units, such as legislators or survey respondents, which make up the data; limit
analysis to one latent factor; and/or are difficult to generalize. We propose and validate a solution, IRT-M,
that produces multiple, potentially correlated, generalizable, latent dimensions, each with substantive
meaning that the analyst specifies before analysis to match theoretical concepts. We offer an R package and

Measurement is the weak link between theory and empirical test. Complex concepts such as

step-by-step instructions in its use, via an application to survey data.

INTRODUCTION

odern social science is theoretically rich and
M methodologically sophisticated. Measure-

ment, the bridge between theory and
empirics, lags behind. That is understandable given
the complexity of social-scientific theoretical concepts.
Democracy, ideology, legitimacy, power, and identity:
none of those are easy to pin down with simple proxies.
Yet, without measurement that matches theory, careful
empirical studies may not truly be testing what they
were intended to test (e.g., Adcock and Collier 2001;
Barber 2022; Pietryka and MacIntosh 2022; Reuning,
Kenwick, and Fariss 2019). Moreover, without mea-
sures that maintain their meanings across time and
place, scholars working with the same theoretical con-
cepts but in different systems cannot build on each
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others” work. We aim to improve the connection
between theory and measurement by proposing and
validating a solution, IRT-M, that derives multiple,
potentially correlated, generalizable, latent dimensions
from data. Each dimension IRT-M produces possesses
a substantive meaning that the analyst specifies before
analysis to match theoretical concepts, ensuring the link
between theory and measurement.

Ameliorating the measurement problem requires
transparently constructed and improvable measures
of theoretical concepts. Dimensional-reduction tech-
niques, such as item response theory (IRT) models,
assign to each unit in the data a position along each of
one or more latent dimensions. Units can range from
survey respondents, to legislators, to nations. Positions
in latent space are chosen by the model to best predict
each unit’s responses to a series of items. Thus, posi-
tions along latent dimensions predict individuals’
behavior. IRT models are transparently constructed
as long as their inputs are public. They are improvable
as new data become available, via Bayesian estimation.
Perhaps for those reasons, IRT models are increasingly
employed in the social sciences as measurement tools.
While they most frequently have been applied to leg-
islative or judicial ideal point estimation (Bailey and
Voeten 2018; Martin and Quinn 2002; Poole and
Rosenthal 1985), they have also been used to derive a
variety of measures relating to regime traits
(Marquardt et al. 2019) or state capacity (Hanson and
Sigman 2021), qualities of human rights (Hill Jr. 2016;
Schnakenberg and Fariss 2014) or wartime sexual vio-
lence (Kriiger and Nordés 2020), interstate hostility
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(Terechshenko 2020), states’ preferences over investor
protection (Montal, Potz-Nielsen, and Sumner 2020),
peace frameworks (Williams et al. 2021), leaders’ will-
ingness to use force (Carter and Smith 2020), state
trade legislation (Lee and Osgood 2019), international
norms (Girard 2021), media freedom (Solis and Wagg-
oner 2020), and women’s inclusion, rights, and security
(Karim and Hill Jr. 2018).

Unfortunately, dimensional-reduction techniques do
not fully solve the measurement problem because they
do not intrinsically capture theoretical concepts: the
latent dimensions that best predict the data need not
match the theoretical concepts of interest, or even have
any clear substantive meaning at all. One way the latter
might occur would be if the latent dimensions found by
an IRT model were complex combinations of clear
theoretical concepts, so that each dimension would be
difficult to interpret on its own. That is particularly
likely in low-dimensional latent spaces that are
intended to explain complicated social behavior, a
point raised in Aldrich, Montgomery, and Sparks
(2014) and to which we return later.

The problem of substantive interpretation is exacer-
bated by the lack of modeled correlations between
dimensions in typical IRT models, since theoretical
concepts are often correlated. For example, we may
believe theoretically that voting is driven by ideological
positions along economic and social dimensions. If so, in
order to test the theory we would need a two-
dimensional IRT model to return values along those
two ideological dimensions. However, if partisanship
strongly predicts voting behavior along both economic
and social ideological dimensions, the IRT model might
instead return one latent dimension that is a combina-
tion of economic and social ideological positions, and a
second latent dimension, uncorrelated with the first,
that either has no clear theoretical meaning or that
carries a meaning unrelated to the theory being tested.
We discuss that point further in the analysis of roll call
data that forms part of our model validation.

The problem of mismatched theory and measure is
particularly evident when traditional IRT methods are
used to analyze responses to surveys designed with the
specific intent of measuring theoretical concepts. In
such cases, the survey design includes information
about the manner in which survey questions tie to
concepts of interest. Yet that information is not used
when computing latent dimensions from survey
responses in a traditional IRT model. In fact, tradi-
tional IRT methods can estimate latent dimensions that
capture none of the carefully established links between
theoretical concepts and survey responses, simply
because there exists a model that fits the data better
than one that takes the question design into account.

Prior solutions to the problem of substantive inter-
pretation—that is, solutions intended to avoid incor-
rectly characterizing the substantive meaning of latent
dimensions derived from IRT and other dimensional-
reduction techniques—have generally taken three
forms. The first involves the use of additional informa-
tion about units in the data, information exogenous to
the data source from which the latent dimensions will

be derived. One common example of that occurs in the
placement of legislators in a two-dimensional space.
Legislative voting patterns are only one of many data
sources that can speak to legislators’ ideological posi-
tions; others include speeches and donor behavior.
Analysts can use such exogenous information to fix
the positions of a small subset of well-known legislators;
voting behavior is then sufficient to discern the others’
positions. The second form of solution uses comple-
mentary methods to extract more information from the
same data source from which the latent dimensions will
be derived. One example of that makes use of LDA
topic models to associate bill, judicial decision, or meta-
data text with issues, and those issues with latent
dimensions revealed by voting patterns (Gerrish and
Blei 2011; 2012; Lauderdale and Clark 2014).

Both forms of solution represent advances over the
standard IRT approach in that they enable substantive
interpretation of the discovered latent dimensions.
However, both are limited in their range of applicabil-
ity, for related reasons.

First, the data requirements for the application of
either solution are not always, or even often, met. The
first solution requires exogenous information on units
in the data, and as such is often not available. The
second requires that the conditions necessary for appli-
cation of the complementary method be met. In the
case of LDA topic modeling, that means either long
texts or a limited issue space. The typical anonymous
survey—a common source of individual-level data—
usually fails to satisfy either requirement.

Second, neither solution guarantees accurate char-
acterization of the substantive meaning of the discov-
ered latent dimensions. In the case of exogenous
information, one might use public speeches, for exam-
ple, to specify that two legislators are positioned at
opposite extremes in each dimension of a two-
dimensional latent space capturing economic and social
ideology. However, both the IRT’s output and the
public speeches would also be consistent with a two-
dimensional latent space in which one dimension cor-
responded to partisanship and the other to any other
topic over which the two legislators had opposite posi-
tions. In that case, neither dimension might capture
social or economic ideological positions. In the case
of complementary methods, one is limited by the inher-
ent limitations of the complementary method. For
example, nearly all text models suffer from the diffi-
culty of identifying stance and tone (Bestvater and
Monroe 2023).

Third, the meanings of the dimensions suggested by
both exogenous information and complementary
methods can change over time or differ by place or
data source. For example, in the context of exogenous
information, two latent dimensions of ideology at some
time and place might capture economic and civil rights
concerns (Poole and Rosenthal 1985), security and
religion (Schofield and Sened 2005), or agreement with
the Western liberal order and North-South conflict
(Bailey and Voeten 2018). But those can change over
time, as did the link between the second latent dimen-
sion and civil rights in Congress or the North-South
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dimension in U.N. voting (Bailey and Voeten 2018).
Should there be common units across time, place, or
data source, then one can standardize measures via
those units, but that requires the additional assumption
that those units are not changing latent positions over
time, an assumption not available in many contexts. In
the context of complementary methods, many such
methods lack a way to standardize across contexts.
For instance, topic models inductively label scales
based on what the topic model finds in the data. The
degree to which the models shape the uncovered topics
varies based on the degree of supervision as well as
other preprocessing decisions (Denny and Spirling
2018), and the topics that best predict texts might vary
across time, space, and data source, leading to different
impressions of ground truth (Foster 2023).

The third form of solution to the problem of substan-
tive interpretation avoids many of those concerns by
carefully selecting and employing response data that
are thought to be related only to a single latent dimen-
sion. That approach has been used productively, such
as in measuring leaders’ willingness to use force (Carter
and Smith 2020), the strength of norms (Girard 2021),
respect for human rights (Schnakenberg and Fariss
2014), and peace agreements (Williams et al. 2021).
Unfortunately, no matter how careful the selection, it
comes with one significant limitation: analysts cannot
allow their response data to be generated by more than
one latent dimension. There are many cases in which
one dimension might be sufficient, particularly as a first
approximation. For example, if partisanship theoreti-
cally were to drive most voting behavior, a one-
dimensional measure of partisan attachment might be
sufficient to predict most voting behavior. In that case,
a one-dimensional IRT model run on voting data might
produce a good measure of partisan attachment. Fariss
(2014) makes such an argument with respect to physical
integrity rights.

However, very often the theories we want to test
contain multiple theoretical concepts that are imper-
fectly correlated. One could attempt to measure multi-
ple latent dimensions by estimating one dimension at a
time, with each measurement using a different subset of
the data. The subsets would have to be nonoverlapping
in that case; otherwise, the assumption that one latent
dimension is sufficient to predict the data would be
violated for the overlapping indicators. We view that
level of precision across subsets as rare. Further, even
should there be such nonoverlapping subsets, that esti-
mation procedure does not model correlation between
latent dimensions, rendering it poorly able to capture
imperfectly correlated theoretical concepts. As imper-
fectly correlated theoretical concepts are common in
the social sciences—for example, legitimacy and
democracy—we view the range of applicability of the
one-dimensional solution as somewhat limited.

We offer a novel solution to the measurement prob-
lem via a model that enables transparent substantive
interpretation across multiple, possibly correlated,
latent dimensions. It does so without needing to lever-
age either exogenous information about individual
units in the data or complementary methods. Our

solution, which we call IRT-M, is a semi-supervised
approach based on Bayesian IRT. In the spirit of the
one-dimensional solution, it employs careful selection
of response data. In IRT-M, the analyst identifies
before the analysis how each latent dimension is sup-
posed to affect each response to each item, and the
model uses that information to output a set of theoret-
ically defined latent dimensions that may also be imper-
fectly correlated. Thus, the range of applicability of
IRT-M is considerably broader than that of existing
solutions to the problem of substantive interpretation.

The IRT-M model takes as input data in which each
of a set of units (e.g., survey respondents, legislators,
and peace treaties) respond to an array of items (e.g.,
answers to survey questions, votes on bills, and elements
of treaties). The present iteration of IRT-M requires
dichotomous items, with any non-dichotomous item
needing to be reformatted into a series of dichotomous
ones, but extensions to more general data, as we discuss
further, are straightforward. In the pre-analysis step, the
analyst hand-codes each item according to its connec-
tion to each latent dimension, recalling that latent
dimensions capture specific theoretical concepts from
one’s theory (e.g., perception of threat from immigra-
tion, ideological position, and degree to which a peace
treaty captures minority rights and security). In that
coding, each item-latent dimension pair is assigned a
value of 1,-1,0, or NA. A 1 (-1) indicates that a unit
with greater (lesser) values along that dimension is
more likely to respond positively to that item. A 0
indicates that a unit’s value along that dimension does
not predict that unit’s response to that item. An NA
indicates that the analyst has no prior belief about
whether that dimension influences one’s response to
that item. The M in IRT-M represents the constraint
matrices that capture those coding rules; the rules cap-
ture the theory, ensuring that the measurement matches
the theory.

Thus, one’s theory plays a key role in the IRT-M
approach. If the theory captures some aspect of the
process that generated the data used to derive the
latent dimensions, and if the coding is applied consis-
tently, the model will produce measures of relevant
theoretical concepts that are constant in meaning
across disparate data sources and across time and place.
For example, a second ideological dimension coded to
capture civil rights will maintain that substantive mean-
ing across time, even if it becomes less predictive of
variation in the data. In contrast, if the theory does not
capture the data generating process well, then the
coding should reveal that by assigning values of 0 or
NA to many item-latent dimension pairs. The model
therefore ensures that measurement matches theory
both positively, by constraining the IRT model to
connect items to theoreticallydetermined latent dimen-
sions, and negatively, by not using items in analysis that
are unrelated to the theory at hand.

IRT-M can be used in any setting in which one would
use an unsupervised IRT model, as coding all item—
dimension pairs as NA when there is no theory turns
IRT-M into an unsupervised model. However, it is
particularly well suited when there are clear underlying
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theoretical mechanisms driving the responses of units
to items. We use a motivating example drawn from
Kentmen-Cin and Erisen (2017) both to make that
point and to provide an intuitive introduction and step-
by-step guide to IRT-M. Kentmen-Cin and Erisen
(2017) describe how in surveys of Europeans, attitudes
toward immigration relate to perceptions of different
threats that might be induced by immigration, including
economic, cultural, and religious threats. We coded the
February—March 2021 wave of Eurobarometer for
questions related to those three threats, an additional
health threat, since the survey took place during the
COVID-19 pandemic, and the two outcome attitudes of
support for immigration and support for the European
Union (EU). We then employed IRT-M to derive
posterior distributions of survey respondents’ positions
along each of the six latent dimensions. We show that,
given sufficient related questions, our measures of
latent dimensions possess construct validity and our
latent threat dimensions are correlated with each other.
We also find some correlation of threats to attitudes,
particularly support for the EU.

The section following our motivating example offers
a more technical presentation of IRT-M in brief and
suggests how it may be easily extended to non-
dichotomous items. Our fourth section presents two
forms of validation of IRT-M. The first employs simu-
lated data to show that IRT-M yields a reduction in
error as compared to established approaches to dimen-
sional reduction while still possessing similar conver-
gence properties. Further, that error remains
comparable or lower to established approaches even
under substantial misspecification of the model. In
other words, one need not perfectly code one’s theo-
retical concepts into a constraint matrix in order to
accurately measure them.

The second form of validation applies IRT-M to roll
call votes in both the 85th and 109th House and
Senate. We hand-code all votes in order to employ
IRT-M, rather than use exogenous information on a
subset of legislators, as does DW-NOMINATE. In
doing so, we recover legislators’ placements on two
theoretically meaningful latent dimensions that are
broadly consistent with positions derived from
DW-NOMINATE, particularly along the first, theo-
retically clearer, latent dimension corresponding
roughly to economic ideology. At the same time, we
also produce a theoretically clear second latent dimen-
sion that is usually strongly correlated with the first.
That correlation suggests a role for partisan voting
behavior. We also, by varying our coding rules, illus-
trate the manner in which the theory drives the mea-
surement. Together, our two validation exercises
indicate that although one need not be perfect in
coding the constraint matrix to make use of IRT-M,
straying too far from the latent concepts in question
risks measuring different concepts entirely.

Though using IRT-M entails an up-front cost in
coding a constraint matrix based on one’s theory, it
produces measurements of positions on conceptually
meaningful latent dimensions while eliminating the
need for exogenous information about units in the data

to identify the model. That opens up numerous appli-
cations, which we briefly discuss in the conclusion. We
also provide an R package that will allow analysts to
employ the IRT-M framework and model in their own
analyses.!

APPLYING THE IRT-M MODEL

The IRT-M model produces a set of latent dimensions
whose substantive meaning derives from the theoreti-
cal concepts underlying pre-analysis coding rules. Thus,
applying the IRT-M model begins with identifying a
theory that possesses a set of theoretical concepts that
one desires to measure. IRT-M will translate each
concept to a corresponding latent dimension and com-
pute a latent position for each data unit on each dimen-
sion. To illustrate application of IRT-M, we use a
motivating example drawn from Kentmen-Cin and
Erisen (2017), which offers an overview of anti-
immigration attitudes in Europe. Kentmen-Cin and
Erisen (2017) also calls explicitly, in the abstract, for
scholars to “employ methodological techniques that
capture the underlying constructs associated with atti-
tude and public opinion,” a task for which IRT-M is
ideally suited.

Kentmen-Cin and Erisen (2017) elaborate on the
manner by which perceptions of threat partially deter-
mine one’s attitudes toward both immigration and the
EU. We draw three distinct dimensions of threat from
their discussion of the literature: a sense of economic
threat, a sense of cultural threat, and a sense of religious
threat. Together with the two attitudes those threat
perceptions are theorized to influence, we thus have
five theoretical concepts: economic threat, cultural
threat, religious threat, support of immigration, and
support of the EU. Each of those five concepts corre-
sponds to a substantively meaningful latent dimension,
and the theory indicates that people’s values on the first
three latent dimensions influence their values on the
last two.

The next step in applying the IRT-M model is to
identify a data source comprising items that one
believes would be informative about individual data
units’ positions along the latent dimensions identified
by the theory. In the context of our example, we require
data that are informative about each of the three
threats and the two attitudes. We identified the Euro-
barometer survey for that purpose, and specifically
chose the February—-March 2021 (94.3) wave due to
availability (European Commission 2021). In reading
through the survey codebook, it became clear that
there was a fourth sense of threat, specific to the
COVID-19 pandemic, for which the survey was infor-
mative and which might have also influenced attitudes
toward immigration and the EU along the same lines as
those discussed in Kentmen-Cin and Erisen (2017):

! R-package implementation of IRT-M is available at: https:/github.
com/dasiegel/IRT-M. Replication data are available on the APSR
Dataverse (Morucci et al. 2024).
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health threat. Thus, we added that latent dimension to
our list, giving us six in all.

After identifying the latent theoretical dimensions of
interest and a candidate data source, the next step is to
produce the constraint matrix. We accomplish that here
by coding the items in the data according to their
expected relationships to the underlying theoretical
dimensions. Each item in the data is an opportunity
for the unit to express its positions along the latent
dimensions specified in the theory. In the context of the
Eurobarometer survey, an item is a possible answer to a
survey question, and a positive response to that item is
choosing that answer to the question. Each answer to a
question is an item as all items must be dichotomous.
Converting all non-dichotomous options to a set of
dichotomous items is straightforward. For instance, a
five-level feeling thermometer survey question would
be broken down into five separate dichotomous items.
That is known in the machine-learning literature as
One Hot encoding. Similarly, a continuous variable
would be made dichotomous through the use of thresh-
olds. In the next section, we discuss how to generalize
our model for more general items. In other contexts,
responses to items may be votes on bills or resolutions,
or the presence of particular elements of treaties, con-
stitutions, or other documents.

After creating an array of dichotomous items, one
assigns to each item-latent dimension pair one of four
possible values: 1,-1, 0, or NA. One assigns a 1 if a
positive response to that item would be predicted by a
greater value along that latent dimension. Conversely,
one assigns a —1if a positive response to that item would
be predicted by a lesser value along that latent dimen-
sion. If one believes that values on that latent dimen-
sion do not influence the likelihood of a positive
response to that item, one assigns a 0. Finally, if one
truly has no prior belief about whether and how values
on that latent dimension influence the likelihood of a
positive response to that item, IRT-M allows the user to
assign NA to the item-latent dimension pair.

Returning to our motivating example, consider the
latent dimension of economic threat. We would code a
survey question that asks about one’s personal job
situation as relevant to that underlying dimension. If
the survey question had four possible responses, rang-
ing from “very good” to “very bad,” then there would
be four item-latent dimension pairs to code. We would
code the two “bad” responses as 1 and the two “good”
responses as —1, since they would be predicted by more
and less perception of threat, respectively. In contrast, a
survey question asking for one’s opinion about a com-
mon European Asylum system would be coded as 0
along the economic threat dimension, since we do not
view responses to that question as influenced apprecia-
bly by one’s sense of economic threat.

In coding the Eurobarometer survey wave, we are
implicitly assuming that the theoretical concepts we are
trying to measure are constant across both space and
time, at least during the time the survey was fielded. We
are also assuming that the connection between those
concepts and the survey questions is constant across
both space and time. We view those assumptions as fair

for our motivating example, but what would happen if
either were violated?

The assumption of constant theoretical concepts is a
necessary one for the application of IRT-M. Should
concepts not apply equally across space or should they
change over time, then the application of IRT-M
should be restricted to those regions or times in which
the concepts are uniform. Otherwise, it is not clear
what concept one would be measuring. In contrast, it is
not a problem for IRT-M if the tie between concepts
and items varies across space or time, as long as the
coding rules capture that variation. In some cases,
there may be appreciable variation in coding rules
across time and space (Fariss 2014; 2019). For exam-
ple, a survey question regarding discrimination might
change in meaning across time due to shifts in a
country’s demographics, or might mean different
things in different countries. In such cases, the coding
rules should assign a value to each item-latent dimen-
sion pair appropriate to each country, at each time. In
other cases, particularly when items are presented to
samples of the same population in the same context
over time, as they often are for repeated surveys,
coding rules may be constant across time. In other
words, coding rules should be time and space depen-
dent when necessary.

While we expect exact coding rules to vary between
coders—connecting items to theoretical concepts
allows for subjective assessment—our simulations,
described subsequently, illustrate that IRT-M’s perfor-
mance is not significantly reduced even when the con-
straints are only 50%-75% correct. Thus, based on our
simulation, the model can still return reasonable esti-
mates even with partially misspecified constraints.

Our set of constraints captures coding for all item—
latent dimension pairs in the model, and its use distin-
guishes IRT-M from unsupervised IRT models. Once
coding is complete, one inputs the constraints (in the
form of a matrix) and the data into the IRT-M package
IRTM. The output of IRT-M is a user-definable num-
ber of draws from the posterior distribution of each
unit’s position along each latent dimension. In other
words, IRT-M maps out the posterior probability dis-
tribution capturing each unit’s position in the latent
space defined by the theoretical concepts encoded in
the constraints. One can average those draws—taking
the expected value of the posterior distribution—along
each latent dimension for each unit. Doing so produces
a distribution of the units’ expected positions in latent
space, as in Figures 1 and 2. That captures the distribu-
tion of the theoretical concepts in the sample. One can
then compare the distributions of different concepts
within a sample, or of the same concepts across sam-
ples. Individual units’ positions in latent space can also
be used in subsequent analyses as individual-level
direct measures of theoretical concepts.

We can use our motivating example to illustrate IRT-
M’s output. While there is a great deal one could do
with our six latent dimensions—and we provide coding
rules, data, and complete model output for those who
might want to explore further—we focus on three
figures that showcase both what IRT-M can do and
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FIGURE 1. Comparison of Distributions of Latent Dimension Posterior Means
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means obtained by each methods for each the N respondents. Left: IRT-M output, with named dimensions. Right: unconstrained IRT output.

some differences between IRT-M and an uncon-
strained IRT model.

Figure 1 compares the six posterior distributions of
units’ positions along the latent dimensions arising from
IRT-M (on the top) to those arising from an uncon-
strained six-dimensional IRT model (on the bottom). It
is clear that the distributions of latent positions in the
sample seem to vary significantly across theoretical
concepts in IRT-M, but do not appreciably vary in the
unconstrained IRT model. We will return to that point
shortly, but first we highlight the distribution arising
from IRT-M most different from the rest, that corre-
sponding to religious threat. Unlike the other five
dimensions, the distribution of religious threat is sharply
peaked near zero with only a small rise away from that
peak. Is it the case that, unlike each of the other percep-
tions of threat, almost no one in the sample perceives
religious threat? To answer that, we can turn to the
constraints and the coding rules from which they were
derived. What we find is that the February—March 2021
wave of Eurobarometer is a poor data source for mea-
suring religious threat. Only three questions, all regard-
ing whether or not terrorism is the most important issue,
are reasonably related to religious threat. Further, dur-
ing a pandemic, very few people felt that terrorism was
the most important issue, leading to little variation in
response to those questions. Consequently, we should
have little confidence in our measure of the religious
threat concept. Instead that latent dimension is captur-
ing a more narrow concept of issue importance. That
highlights a point made in the previous section: IRT-M
does not find latent dimensions that best predict the
data. Rather, it computes positions along a latent dimen-
sion using only those items tied closely to the theoretical
concept connected to that latent dimension. When there
are few or no such items, IRT-M will not produce a good
measure of that concept. That is a feature, not a bug, of

the approach, and we left that dimension in the analysis
to reiterate that important point.

What about the other measures of threat? One way
to assess the level of confidence we should have in them
is by exploring their construct validity. One way to do
that is to disaggregate each distribution so as to enable
comparisons to behavioral expectations. Figure 2 dis-
plays results for one possible disaggregation, in which
the population is split according to trust in different
media sources. We would expect, all else equal, that
those who do not trust the media would be more likely
to perceive threat, particularly cultural threat, whereas
those who trust the traditional media would be less
likely to perceive threat. That is what we see in the
distributions derived from IRT-M, particularly for cul-
tural and health threat, less strongly for economic
threat. Further, those who trust all media sources gen-
erally perceive threat more similarly to those who trust
traditional sources than to those who trust no sources.
In contrast, only one of the dimensions derived from
the unconstrained IRT model, that for Theta3,
approaches that behavior. One can repeat that exercise
for different subgroups. For example, we find (not
shown) that upper class respondents generally perceive
less threat than lower class respondents across the three
meaningfully measured threat dimensions. That pat-
tern is not observed in the unconstrained model appli-
cation. Figure 2 thus reiterates another key point:
where there are sufficient informative items in the data,
IRT-M produces latent dimensions that possess sub-
stantive validity.

Figure 3 extends the point about validity to the
attitude measures. For both IRT-M and an uncon-
strained IRT, it displays a correlation matrix linking
the six latent dimensions, as well as four values of trust
in the media, a social class variable, and one question
directly asking about more border controls. The border
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FIGURE 2.

Comparison of Distributions of Posterior Means of Latent Dimensions by Trust in Media
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control question is coded so that higher values imply
less desire for more border controls. We would expect it
to be strongly correlated with the Support for Immi-
gration latent variable, as it is both substantively
related and 1 of about 10 survey questions that are
informative about that latent dimension and coded as
such in the constraints. The figure bears out that expec-
tation strongly, while the same is not true for any of the
latent dimensions arising from the unconstrained IRT
model. Thus, whatever is being captured by those
unconstrained dimensions, it is not directly interpret-
able as support for immigration, one outcome variable
of interest.

Figure 3 also speaks to another characteristic of IRT-
M: it models correlated latent dimensions, in order to
capture correlated theoretical concepts. IRT models
typically assume independent priors over the latent
dimensions; yet there are often theoretical reasons to
believe that the underlying latent dimensions of inter-
est are correlated. Explicitly modeling the correlation
between dimensions, as does IRT-M, avoids a funda-
mental disconnect between theory, data, and model.
That comes through in the figure: the three meaningful
threats are all positively correlated with each other, in
addition to a lack of trust in the media, while being
negatively correlated with trust in traditional media.
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FIGURE 3. Correlations: Latent Dimensions,
Media Trust, and Support for Border Controls

T «

. - £ 5

-§ §z2 =
= I ¥ 0O & @
& S 3.
5 g & S §L£ 5 3
£ £ § § 5 5 <8
S & S §bHb 53885 >SS
L S 5 5 & § X ©

s § K S & O

s £ 7 4 <

5 S S § 2 2 9

5 5 & e g F Z

S § £ 5 s &£ 4

Culture Threat
Religion Threat

Economic Threat

~ .8
8
s 5 &8
) 535S
s § _ 8 S §3 £ %
~ A o_% ksJ
S & § 5 5 & s g
S &5 8 5§ p g £ 5 > =
L g L ¥ & 8§ § X 0
g £ = =~ 5 8 =~
§ £ r §r O g &§0 < <
S £ 5 § § 3 2 2 2 2
& 5 5 8 85 5 25 F 3
o o LW 5 3 o NN NN
X @ T a9 v v S & & K& K&
1

Social Class |0

More Border Contro.
Trusts Traditional Media -0
Trusts Only Web Media

Trusts All Media -0.16

Note: Top: IRT-M output, with named dimensions. Bottom:
unconstrained IRT output.

Those correlations are substantively important, and a
model without them would not be able to capture
different aspects of threat. In contrast, in the uncon-
strained IRT, the latent dimensions are not substan-
tially correlated with each other, which forces the
concepts they represent to be largely unrelated.
Finally, Figure 3 speaks to the idea in Kentmen-Cin
and Erisen (2017) that perceived threats are linked to
attitudes about immigration and the EU. We find that
the three meaningful threats are all negatively

correlated with support for both immigration and the
EU, though the correlations with the former are weak.
We present the technical specification of IRT-M in
the next section, but before doing so, it is worth
highlighting one more difference between IRT-M and
unconstrained IRT models that is more technical in
nature. In an unconstrained IRT model, identification
and scaling of the latent dimensions occurs via the use
of exogenous information relating to units in the data.
For example, ideological ideal points might be taken as
given for a small number of legislators. In IRT-M, the
constraints both directly allow for model identification
and indirectly scale the latent dimensions. The latter
occurs automatically in the course of running the model
via the creation of anchor points. Anchor points are
artificial units that possess extreme positions along the
latent dimensions. The constraints characterize behav-
ior consistent with extreme values: if someone has a
positive response to every item coded as 1 and a
negative response to every item coded as —1 for some
latent dimension, then it is impossible for a person to
show up as more extreme along thatlatent dimension in
the data at hand. Accordingly, the extreme anchor
points we construct serve as reference points for the
bounds of the space spanned by the latent dimensions.
Other, real, units are measured relative to those anchor
points, aiding in interpretation of their values along
each latent dimension. No exogenous information
relating to the units is needed: all required information
arises from the pre-analysis step of coding the con-
straints, and so relates only to the items used by IRT-
M to compute latent positions and is theoretically
rather than empirically driven. Anchor points are auto-
matically removed prior to output.

METHODOLOGY

We now describe our approach more formally. There
are several key points of divergence from existing
IRT-based models such as Zeileis, Kleiber, and Jack-
man (2008). The first is our pre-analysis coding of the
constraints, described earlier. That coding entails
conversion of the data to a series of binary (yes/no)
items, followed by assignment of a 1,-1, 0, or NA for
each item-latent dimension pair. Each assignment is
based on whether or not the theoretically defined
latent dimension positively, negatively, or does not
predict at all the value of that item. The second point
of divergence is that identification in our model is
accomplished via our constraints, as we will describe.
In contrast, typically multidimensional ideal-point-
estimation models require for identification purposes
some exogenous information relating to the units in
the data, usually the ideal points of several units. The
third point of divergence is that we explicitly model
the covariance of the latent dimensions in our model.
IRT models typically assume independent priors for
the latent dimensions and do not model their covari-
ance; yet researchers often have theoretical reasons
to believe that the underlying latent dimensions of
interest are correlated. By modeling covariance, we
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allow for closer connections between theory, data,
and model.

Formally, begin by considering a set of i =1,...,N
units each responding to k=1,...,K binary (e.g.,
yes/no) items. Let y;, € {0,1} denote unit i’s response

to item k, and Y € {0,1} X be a binary matrix in
which row i is unit i’s set of responses to all items, and
column k is the vector of all units’ responses to item k,
so that each entry corresponds to y;, as just defined. We
would like to model units’ responses to items as a
function of values along j =1, ...,d latent dimensions,
denoted for unit i by the vector §;. We will also refer to
each 0;; as a factor j. We choose a two-parameter model
(Rasch 1960) for this task, as it is commonly used in
applied political science (e.g., Clinton, Jackman, and
Rivers 2004; Tahk 2018):

Pr(yy = 1) = g(4; 0i=by), )

where 4is a d-length vector of loadings, by is a negative
intercept, and g is a link function, mapping from R to
[0,1] . The intercept is commonly understood as a
difficulty parameter in the psychometric testing litera-
ture, and can be seen here as an average rate of “yes”
responses to item k. Each entry in the vector 4y is a real
value, denoted by 44;. The sign of A;; represents whether
alarger factorj (i.e., a larger 6;;) will increase or reduce
the likelihood of a “yes” response to item k, while the
magnitude of Z;; represents the overall influence of
factor j on the likelihood of responding “yes” to item k.
For example, a large positive 4, tells us that units with a
large factor j are much more likely to respond “yes” to
item k.

The main objective of this article, phrased formally,
is to introduce a strategy to encode theoretical infor-
mation linking latent dimensions and items in the
model above, while at the same time resolving its
identification issues. We do so by introducing a set of
K matrices: My, ..., Mg. There is one matrix for each
item, and each matrix is d x d and diagonal. Entries in
the diagonal of each matrix are denoted by m; and are
allowed to either take values in R or to be missing,
where missingness is denoted by my;; = NA. We then
retain the same model in Equation 1, but constrain the
loadings 4 as indicated in Table 1. As Table 1 shows, we
constrain our model by (potentially) prespecifying
whether the relationship between the response to an

item and each latent dimension is positive, negative,
zero, or not defined. That accomplishes two fundamen-
tal goals. First, it lets one introduce known theoretical
connections between items and latent dimensions into
the modeling framework. Second, it allows for identifi-
cation of the model. Before expanding on how our
framework accomplishes both of those goals, we give
a full description of the model we employ. We choose to
adopt a Bayesian specification for our model in
Equation 1: we place priors on all of its parameters
and express the constraints imposed on 4 by M as prior
items on the former.
The full hierarchical model is as follows:

Yie =T, >0 (2)
:uik ~ N(lzgl - bk, 1)5 (3)

if ;> 0,

Niow] (0, mﬁ/j> s

N ) (O,Mfﬂ-), if my; <0,

At ~ k=1,...,K, (4)
(5[2‘”:0], if Myjj = 0,
N(O, 5), if mkjj = NA
by ~N(0,1), (5)
0; ~ N4(0,%), i=1,...,N, (6)
T~ IW,{(V(), S()), (7)

where I is the indicator function, N p(u, X) denotes the
multivariate normal distribution of size d, with mean
vector u and covariance matrix X, N, (1, 0*) denotes
the univariate normal density truncated between real
valued constants @ and b, and ZWV,; denotes the Inverse-
Wishart distribution with vy degrees of freedom and
positive, semi-definite matrix Sy. Finally, the vector of
length d that is 0 at all positions is denoted by 0.

We choose a probit specification for our link function
g as this is standard practice in Bayesian IRT modeling
(e.g., Zeileis, Kleiber, and Jackman 2008); however, the
model above can also be extended to logistic IRT by
changing the distribution of y;. We express the con-

straints imposed on the loading vector, 4, by the

TABLE 1. Constraints on Loadings 4 from Theory

Entry in diagonal j of matrix k

Constraint on J;

Prior belief

my; =0 Jkjj =0

My >0 Akjj € (0,0)
my;; <0 Akjj € (—0,0)
My = NA Akjj € (=00, 0)

Factor j does not affect answers

to item k.

Factor j positively affects likelihood of
answering yes to item k.

Factor j negatively affects likelihood of
answering yes to item k.

No prior on whether and how factor j affects
answers to item k.
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M-matrix by varying which prior is chosen for this
vector depending on M (Equation 4). Both vy and Sy
are hyperparameters fixed at standard weakly informa-
tive (see, e.g., Gelman et al. 2008) values in our model.
That specification is motivated partly by our applica-
tion, and partly by the fact that it allows us to solve the
identification problems associated with the model in
Equation 1 in conjunction with the M matrices. Addi-
tional discussion of our model specification is available
in Appendix A of the Supplementary Material.

A major contribution of our model specification is
that it models the covariance between latent factors as a
free parameter and the covariance between loadings as
the identity matrix. Model identification while allowing
correlation between factors requires shifting the
assumption of independence to the item loadings in
the M matrices. This is, of course, a consequential
modeling assumption. However, in the context of many
applications of interest to social scientists, underlying
factors—such as dimensions of ideology—are often
interlinked. In contrast, items—such as survey question
answers or elements of texts—are often functionally
independent, frequently by design. By modeling inde-
pendence at the item loading level, we leverage the
data generating process’s tendency to produce nearly
independent loadings. Our resulting IRT model better
fits with many applications of interest. We will expand
more on the effect of covariance parameters on model
identification and estimation shortly. First, we elabo-
rate on the role of our constraint matrix, M.

Using M to Link Model and Theoretical
Knowledge

As indicated in Table 1, in our approach, M-matrices
are used to model the extent to which we expect a given
item k to load on a factor j. Those loadings are encoded
by changing the value of ;. A value of Oindicates that
factor j does not influence the likelihood of a “yes”
response to item k, and therefore item k should not load
on that factor. An absolute value of |my;| = 1indicates
that we believe that factor j affects item k, but have no
strong belief about the magnitude of its effect. A larger
absolute value of |my;| > 1indicates that factor j should
have an effect stronger than the average factor on the
likelihood of response to item k. Values of m; that are
greater (less) than O indicate that we believe increasing
factor j leads to a greater (lesser) likelihood of a “yes”
response to item k. All those items are visibly encoded
in our model by the prior items in Equation 4. Those
priors are important for both model identification and
substantive interpretation of results. On the latter
point, they are crucial in assigning a clearly defined
meaning to each dimension: dimensions are theoreti-
cally prior in our approach, and they may be more or
less relevant for understanding a unit’s responses to
particular items. On the former point, as we will discuss
further, constraints embedded in the matrices allow for
model identification in the absence of exogenous infor-
mation about the units.

That does not mean, however, that a user needs to
specify all my; in our model. Only a small number
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(d(1-d), as we will see) of my; must be set to zero for
identification. Further, even that requirement could be
weakened if one desired to use exogenous information
on units. Whenever a loading is not specified, my;; is set
to missing, and the relevant parameter, /;, is drawn
from a standard normal distribution, as is normally
done in IRT modeling. The most likely scenario in
practice is one in which analysts have good knowledge
of the loadings of only some items, and this model
specification allows them to encode their knowledge
without having to put strong priors on items about
which they do not have strong knowledge.

Using M for Model Identification

Identification issues arise when dealing with models
such as thatin Equation 1. Here, we show how diagonal
matrices such as our constraint matrices can be used to
solve those issues, without the need for additional prior
distributions or more complex model specifications.

Location and Scale Invariance

Models such as that in Equation 1 are not identified
because, for any value of the parameters y;; = l[ﬂi and
by, a different set of parameter values that gives rise to
the same likelihood could be constructed with zf, =
1130,- + a, and b;( = by—a, for some real value a. Simi-
larly, for any value of /1;{01' , we could construct a
different set of parameters that gives rise to the same
likelihood with 4 = 4 - a and ; = 6; - 1. Those issues
are known as location and scale invariance, respec-
tively, and can be prevented by fixing the mean of 6;
and by, and the variance of 4. We implement this with
our model prior choices in Equations 4-7.

Rotation Invariance

One other identification issue that arises is that, for any
Jx and 6;, the same exact value of the product 1,30,- can
be obtained with the product of different parameter
values 2; = A¢A and 8, = A@;, where A is an orthogonal

rotation matrix. This implies that A7 6; = 2,7@,. There
are several possible ways to prevent this issue, com-
monly known as rotation invariance. In general, d(d-1)
constraints must be imposed on the model to prevent
this issue (Howe 1955). A researcher may want to
impose more than d(d-1) constraints if perceived
theoretical clarity allows for this; we discuss this setting
in Appendix A of the Supplementary Material. Appli-
cations of unconstrained IRT generally achieve identi-
fication by specifying, before analysis, values along the
latent dimensions for a set of units in the data (see, e.g.,
Zeileis, Kleiber, and Jackman 2008). Though that
approach does encode links between latent dimensions
and theoretical concepts, it also requires that the ana-
lyst knows the location of some units in the latent space
ahead of time, which is not always possible.

Instead, IRT-M imposes the necessary d(d—1) con-
straints to prevent rotation invariance via the M
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matrices. There are two ways to do so. First, one can set
at least d(d—1) zeros in the diagonals of all the M-matri-
ces, cumulatively. That is the method we describe
above. Formally, this requirement can be stated as

K d

DN Ty = d(1-d).

k=1j=1

Setting my;; = 0 is equivalent to assuming that item k
does not load on factor j, or that factor j does not
influence the likelihood of responding “yes” toitem k.
Substantively, that means that one must have a cer-
tain amount of prior knowledge regarding the con-
nection between items in the data and the latent
dimensions. While one does not need any of the items
to load on only one of the latent dimensions, a certain
number of items must not load on all the latent
dimensions.

Second, one can fix at least d(1-d) of the 6,. Rather
than make assumptions about the locations of units in
latent space as is commonly done, however, IRT-M
instead creates anchor points from the M matrices.
Those anchor points rely on assumptions about links
between items and latent dimensions, rather than about
units, and so their use allows analysts to solve rotation
invariance issues without having to make strong
assumptions about the units themselves. Anchor points
also set the scale for the latent space, as described
previously. Relying solely on anchor points for identi-
fication requires the M matrices to generate two
anchors per dimension, according to the procedure
described below. However, any combination of M
matrix constraints and anchor points allows for identi-
fication, as long as the total number of constraints is at
least d(d-1).

The intuition behind anchor points is that a hypo-
thetical data unit that responds “yes” to all items that
are positively influenced by one factor j, and “no” to all
the items that are not will have a large value of factor .
The formal procedure to create a positive anchor point
for one factor j, starting from a set of M-matrices, is as
follows:

1. Create a new data point, y"*".

2. Forallitems ¢ € {my;; >0: k =1,...,K}, thatis, all
items such that the direction of their loading on
factor j is known and positive, set y,* = 1.

3. Forallitems £ € {my; <0:k=1,...,K}, thatis, all
items such that the direction of their loading on
factor j is known and negative, set y7" = 0.

4. For all the remaining items, r, set y’*¥ to missing.

5. Set ¢/ = D, where D is some positive constant that
is in an extreme of the latent space.

To create a negative anchor for the same factor j, the
procedure can be followed exactly, except by setting
v = Oatstep 2, y}* = latstep 3, and by making D a
negative constant at step 5. In the rare occurrence that
an anchor point has exactly the same answers as an
actual respondent, then the @ for that respondent

should also be set to that of the anchor point just
created.

Model Extensions

In order to simplify exposition, we have presented our
model in the context of a probit-based IRT model;
however, our proposed approach can be -easily
extended to logistic IRT and multinomial IRT and,
while we will not discuss it in detail, to standard factor
analysis for a real-valued outcome as well. The hierar-
chical formulation of our model also allows for simple
handling of missing outcome data. Finally, our model
can be modified so that the covariance matrix of the
loadings, rather than the factors, is learned from the
data. We discuss that last modification in Appendix A
of the Supplementary Material. All of those extended
models allow Gibbs sampling formulations for their
MCMC posterior sampling procedures, greatly improv-
ing convergence speed. Importantly, none of those
extensions affect how analysts specify and use M-
matrices in our approach, further supporting the flex-
ibility and wide applicability of our proposed method.

Logistic and Multinomial IRT

Our model can be extended to logistic IRT and multi-
nomial IRT by adopting the Polya—Gamma formulation
of logistic regression of Polson, Scott, and Windle
(2013). In a binary logistic IRT, we model our responses

as Pr(Yy=1) = !f%m, where y;;, = Z,{B,"—bk'. Pol-
son, Scott, and Windle (2013) show that the likelihood

for one item in this model is proportional to

0

Li(w)ocexp(rava) / exp(~owy2/2)p(ow)dwi,
0

where y;, = Yi—1/2 and w; follows a Polya—Gamma
distribution with parameters (1,0). If all the priors on
the IRT parameters 6;,4x, by are left as they are in
Equations 4-6, then that formulation for the likelihood
leads to simple conditionally conjugate updates for all
three parameters depending on w;c, which also has a
conditionally conjugate update. That allows for simple
extension of the Gibbs sampler for our existing model
to the logistic setting without loss of performance in
terms of computation time.

Additionally, that model is easily extended to multi-
nomial IRT settings in which one item can have more
options than a yes/no response. Suppose that Y, can be
one of £ =1,..., L options. In that case, the outcome
model becomes: Pr(Yy =¢) = M, where:

Do exp(vie)
Yie = M ,0i~bys. As Polson, Scott, and Windle (2013)
note, that model can also be expressed as a special case
of the binary logistic model just discussed, leading to
similar conditional updates for all the IRT parameters.
Notably, the number of item loadings is now different
for each item, as one loading vector 4x, has to be
estimated for each possible response. That implies that

11
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it is possible to further constrain such response-level
loadings with M-matrices: in that case, the analyst may
specify a different My, for each possible answer to a
multiple-choice question. The prior on i, is then
determined based on such a matrix in the same way
that it is in the current model, for binary responses.

Missing Responses

Finally, our current formulation allows for simple inclu-
sion of missing outcomes (responses) by modifying the
Gibbs sampling update for 4, : if a response is missing,
then y;, can be drawn from an untruncated normal
distribution centered at the conditionally updated
mean and variance. That is a common tool in Bayesian
inference for probit models, and it is explained in detail
in, e.g., Gelman et al. (1995). That approach has the
clear advantage of allowing analysts to directly deal
with missing data without the need to specify other
parameters; however, we note that there is evidence
that values imputed this way are biased toward the
conditional mean of their imputation distribution
(Néf et al. 2023). As we already have incorporated this
model extension, we caution analysts who believe that
imputation-induced bias might affect their estimates
too strongly to make use of other imputation methods
before employing IRT-M.

MODEL VALIDATION

In this section, we present an in-depth empirical eval-
uation of our proposed methodology. We first study the
performance of IRT-M on a set of simulated data,
where ground truth is known and so can be coded
directly into the M matrices. Then, we apply our model
to roll call data in the U.S. Congress in order to
compare our results to those arising from a common
IRT application, in a setting in which information on
the positions of some legislators in latent ideological
space is thought to be known.

Simulated Data

We generate one hundred artificial datasets from the
model specified in Equations 2-7. Parameter values for
the main simulation parameters are held constant for
each simulated dataset at the following values: N = 500,
K =50, Sy =153, vo = 3. We consider four different
numbers of latent dimensions—d = 2,3,5, and 8 —in
order to cover a range of substantively useful values.

Comparison with Other Methods

We compare performance of our model (IRT-M) and a
correctly specified set of M-matrices to two other meth-
odologies: principal component analysis (PCA) where
the principal component associated with the largest
eigenvalue is taken as the latent dimension of interest,
and a model similar to the one in Equation 1, but
without any M-matrices or any constraints on the
respondents, as well as uncorrelated factors and
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loadings. That second comparison model (IRT) is an
implementation often used in applications in political
science. We compare IRT-M both with and without
correlated factors to those two models. For the IRT-M
model with uncorrelated factors, we remove the prior
in Equation 7 from the model, and fix £ = I, 4.

We first compare the mean squared error (MSE) of
estimates obtained across the three methodologies.
The MSE captures the average distance between the
location of the true value of the theta (position along
each latent dimension) for each observation in the data
(each data unit) and the model’s estimate of that obser-
vation’s theta. As in other contexts, an MSE close to
zero indicates that the model tends to estimate thetas
close to their true values. The results, averaged across
dimensions, are shown in Table 2. We note that asses-
sing performance of latent factor models is a complex
problem, and MSE can have problems as a metric
(Naf et al. 2023). Due to that, we randomly selected
several points from each simulated dataset and
inspected them to make sure that average MSE did
indeed correspond to estimates closer to their true
value: we found that to be the case.

We see that our proposed methodology performs
uniformly better than both PCA and the same model
without M-matrices. That is evidence that including M-
matrices in the model does indeed lead to superior
estimation performance. Allowing for correlated fac-
tors also seems to lead to improvements in estimation
error, demonstrating the usefulness of that addition to
our modeling framework. We report MSE and 95%
Credible Interval coverage results for both the latent
factors and loadings in Appendix B.

We next compare our model (IRT-M) with the other
Bayesian method (IRT), in terms of speed of conver-
gence of the MCMC sampler for estimating the latent
factors. To perform that comparison, we use the version
of the effective sample size (ESS) statistic proposed in
Vehtari et al. (2021). Results are shown in Table 3;
larger values denote more information being captured
in the Markov chain. We see that IRT-M displays
similar or better convergence to simple IRT after the
same number of iterations. This is generally true for
both the version of our model with correlated factors
and the version without; however, the uncorrelated
model displays overall best convergence. This is
expected, as exploring the posterior of correlated fac-
tors is generally harder than exploring that of uncorre-
lated factors. In addition, Tables 7 and 8 in Appendix B
of the Supplementary Material show that our models
achieve similar convergence performance according to
other widely used MCMC convergence statistics.

Those results indicate that our proposed approach
can achieve performance superior to the standard
methodology in terms of MSE without requiring the
same strong assumptions and while displaying similar
convergence properties. The last is notable because our
model requires sampling from a truncated multivariate
normal posterior when loadings are direction-
constrained by M: that sampling step is nontrivial and
requires MCMC tools like rejection or Gibbs sampling
in itself (Wilhelm and Manjunath 2010). Our
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TABLE 2. RMSE for —Averaged over Dimensions, Respondents, and Simulations

N K d=2 d=3 d=5 d=8
PCA IRT IRT-M IRT-M  PCA IRT IRT-M IRT-M  PCA IRT IRT-M IRT-M  PCA IRT IRT-M  IRT-M
Correlated 6? No No No Yes No No No Yes No No No Yes No No No Yes
10 10 1.953 4145 0.024 0.023 2.431 3.849 0.028 0.027 2.576 2.625 0.031 0.03 — — — —
10 50 1.781 4699 0.011 0.011  2.059 3.565 0.013 0.013 2.372 3.509 0.019 0.017 — — — —
10 100 2284 10.131 0.008 0.008 2.092 5828 0.009 0.009 2.309 4298 0.013 0.012 — — — —
10 250 2.327 13.560 0.006 0.005 2.099 8.927 0.006 0.006 2.357 4808 0.009 0.008 — — — —
10 500 2.082 58.273 0.004 0.004 2.141 17.066 0.004 0.004 2.183 4144 0.007 0.006 — — — —
50 10 2.034 3.167 0.1 0.099 2.103 3.105 0.106 0.104 2.332 2630 0.128 0.126 2521 2.370 0.148 0.146
50 50 2.256 3.348 0.028 0.027 2.254 3.250 0.034 0.033 2.486 2625 0.044 0.042 2553 2489 0.060 0.058
50 100 2979 15258 0.019 0.018 2.331 6.120 0.021 0.021 2.572 3435 0.028 0.027 2.652 2.752 0.042 0.04
50 250 2.561 34.504 0.011 0.011 2721 18.009 0.011 0.011 2.841 9.653 0.016 0.015 2.615 4.457 0.029 0.028
50 500 2.529 69.705 0.007 0.007 2.769 80.276 0.007 0.007 2.753 16.239 0.01 0.01 2.897 7.970 0.023 0.022
100 10 2222 3.213 0.153 0.15 2.199 3.196 0.173 0.167 2.204 2643 0.213 0.208 2421 2555 0.246 0.243
100 50 2.640 3.296 0.045 0.043 2.667 2.643 0.052 0.048 2.682 2,635 0.065 0.059 2621 2378 0.087 0.08
100 100 2.461 8.781 0.025 0.024 2.710 3.376  0.031 0.029 2.948 2860 0.038 0.035 2812 2470 0.050 0.046
100 250 2.589 13.037 0.013 0.012 2666 10.391 0.016 0.015 3.201 6.670 0.019 0.018 3.001 4.523 0.030 0.026
100 500 2.395 59.279 0.009 0.008 2.717 28505 0.01 0.009 3.011 17.176 0.012 0.011 3236 7.282 0.020 0.018
250 10 2.076 3.761 0.267 0.253 2.298 2.730 0.305 0.283 2.278 2671 0362 0.348 2440 2.587 0.451 0.437
250 50 2.760 3.951 0.07 0.064 2.728 2560 0.086 0.075 2.672 2.537 0.107 0.09 2832 2336 0.138 0.115
250 100 2.099 3.995 0.038 0.036 2.896 3.425 0.045 0.042 3.291 2.758 0.059 0.05 2971 2.167 0.072 0.06
250 250 2.418 5269 0.017 0.016 3.117 3.603 0.021 0.02 3.358 3.580 0.025 0.024 3.367 2.692 0.032 0.028
250 500 3.167 34.596 0.012 0.011 3.184 8.250 0.012 0.011 3.475 9579 0.015 0.014 3.617 5.845 0.020 0.017
500 10 2122 3.507 0.317 0.298 2.117 2742 0.389 0.356 2.346 2476 0.5 0471 2393 2335 0.607 0.591
500 50 2.768 4480 0.094 0.078 3.108 2676 0.1 0.087 2.933 2210 0.144 0.107 2.783 2.322 0.184 0.139
500 100 2.889 2642 0.054 0.044 2772 2.576 0.061 0.05 3.029 2403 0.075 0.058 3.083 2220 0.093 0.07
500 250 2.781 15.625 0.029 0.023 2.970 4.052 0.03 0.025 3.262 2.361 0.036 0.03 3.649 2237 0.043 0.035
500 500 2.359 5,530 0.017 0.013 3.333 6.459 0.021 0.018 3.675 3.509 0.022 0.019 3823 2741 0.024 0.02
1000 10 2.256 2.942 0404 0359 2.246 3.266 0473 0421 2.458 2502 0603 0554 2399 2446 0.765 0.731
1000 50 2.339 4734 0.107 0.088 2.860 2932 0.14 0.094 2.866 2389 0.165 0.114 2841 2397 0.210 0.15
1000 100 2.788 2.947 0.069 0.048 3.375 2.729 0.08 0.055 3.239 2353 0.087 0.062 3.306 2.167 0.112 0.076
1000 250 2.703 3.391 0.043 0.023 3.445 2951 0.055 0.031 3.561 2406 0.058 0.034 3813 2.188 0.055 0.036
1000 500 2.995 3.471 0.042 0.015 2.956 2.814  0.041 0.023 3.676 2413 0.048 0.025 3.804 2242 0.043 0.025
2500 10 2.240 4955 0479 0399 2.086 3.721 0597 0.5 2.355 2465 0.736 0.66 2415 2373 0939 0.88
2500 50 2.561 3.107 0.123 0.093 3.073 2.698 0.156 0.097 2.992 2.712 0.201 0.121 3.043 2276 0.247 0.159
2500 100 2.686 4588 0.086 0.048 3.061 2.720 0.091 0.057 3.221 2.383 0.108 0.065 3.204 2.267 0.129 0.079
2500 250 2.631 8.042 0.07 0.022 3.459 2.797 0.098 0.032 3.589 2432 0.087 0.037 3986 2.280 0.085 0.038
2500 500 3.101 8.044 0.096 0.013 3.468 3.191  0.11 0.029 3.527 2412 0.092 0.026 4.099 2259 0.088 0.028

Note: Lower is better; best method for each N,K,d in bold. Values are root-mean-square error for estimated versus true latent factors, averaged over d dimensions, N units, and 50 simulations. For
Bayesian models, estimates are posterior means computed by averaging over 10,000 posterior samples. All results from Bayesian models are computed from four thousand posterior samples
obtained from four parallel MCMC chains after two thousand burn-in iterations.
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TABLE 3. ESS Convergence for 0
N K d=2 d=3 d=5 d=8
IRT IRT-M IRT-M IRT IRT-M IRT-M IRT IRT-M IRT-M IRT IRT-M IRT-M

Correlated 6? No No Yes No No Yes No No Yes No No Yes
10 10 39 74 77 38 65 68 48 53 58 — — —
10 50 21 30 32 16 29 30 13 22 24 — — —
10 100 18 23 24 14 22 23 10 18 19 — — —
10 250 15 18 19 12 18 19 8 16 16 — — —
10 500 14 16 17 11 17 17 7 15 15 — — —
50 10 68 149 149 49 133 134 43 121 123 51 108 112
50 50 49 83 83 35 78 78 25 65 65 20 49 49
50 100 42 63 61 32 62 62 23 55 55 17 43 43
50 250 30 44 44 26 49 49 21 47 47 16 38 38
50 500 27 38 37 23 43 44 19 43 43 16 36 36
100 10 97 180 179 67 168 167 54 148 148 57 140 139
100 50 72 117 117 55 110 110 37 93 92 28 71 70
100 100 61 93 92 46 91 92 32 80 79 24 63 62
100 250 45 67 68 38 72 72 30 68 68 23 57 56
100 500 39 58 58 34 61 62 27 63 63 22 54 54
250 10 151 230 229 112 213 207 85 193 185 79 179 173
250 50 122 165 165 95 154 153 67 130 127 50 104 100
250 100 107 143 143 84 135 136 60 117 116 44 95 93
250 250 82 111 114 68 109 112 48 99 101 37 85 84
250 500 67 90 95 56 95 97 43 92 93 34 80 80
500 10 199 253 248 157 242 237 121 229 216 108 206 194
500 50 162 194 193 133 178 176 102 157 152 76 133 126
500 100 142 174 176 120 160 159 92 143 141 69 115 111
500 250 122 148 152 102 139 145 80 125 126 59 105 104
500 500 102 126 133 86 125 130 65 113 117 50 98 99
1000 10 248 277 269 203 265 255 165 240 232 142 232 216
1000 50 188 201 199 174 202 198 139 177 167 108 150 138
1000 100 180 194 192 156 181 176 126 159 151 100 134 127
1000 250 157 171 174 142 164 163 111 143 140 89 120 116
1000 500 148 159 165 123 151 151 100 135 133 77 112 111
2500 10 289 286 275 275 294 273 228 274 251 194 248 243
2500 50 216 217 211 214 206 198 188 193 179 156 169 148
2500 100 204 206 203 196 196 188 173 176 164 142 150 135
2500 250 189 193 187 176 183 175 153 161 149 130 139 125
2500 500 184 187 186 167 173 164 141 151 143 116 128 120
Note: Higher is better. Best method for each N,K,d in bold. Values are ESS averaged over N units, d dimensions, and 50 simulations. ESS
is a statistic that outputs the number of fully i.i.d. samples that have the same estimation power as the autocorrelated MCMC samples. Here,
ESS is computed over 10,000 posterior samples. All results from Bayesian models are computed from four thousand posterior samples
obtained from four parallel MCMC chains after two thousand burn-in iterations.

convergence comparison shows that this harder sam-
pling step does not affect speed and MCMC mixing
performance. Note here that including the prior on
variance hurts us in terms of relative convergence, but
we still do well despite that.

Performance under Misspecification of M-Matrices

We have seen that our model performs well given a
correctly specified set of M-matrices, but in real appli-
cations coding of the M-matrices is unlikely to be
perfect. Thus, we also assess the robustness of our
methodology to misspecification of the M-matrices.
We do so in the same simulated-data setting as before,
but this time our model is given progressively more
misspecified M-matrices. Those misspecified M matri-
ces have two effects, and so misspecification affects the
model in two ways. One, it alters elements in the
diagonals of the matrices, which alters whether or not

14

a certain item loads on a certain factor. Two, those
altered loadings are used to generate anchor points,
using the procedure described previously.

Results are shown in Figure 4. The figure shows an
expected trend: when the M-matrices are in large part
misspecified, model performance is poor, while a cor-
rectly specified model displays very low error. The key
point, however, is that, in general, even with only half of
the correct specification for the M-matrices, our model
still performs very well.

Application to Roll Call Data

Our model performs quite well according to reasonable
benchmarks, as long as there exists ground truth to
capture. Our motivating example shows that IRT-M
also produces reasonable results in the absence of
ground truth. However, in that example, we had no
existing measures with which to compare ours.
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FIGURE 4. MSE of the Three-Dimensional IRT Model at Progressively More Misspecified M-Matrices
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Note: Values on the horizontal axis represent percentages of misspecification of M-matrix diagonals. The leftmost point corresponds to a
model in which the M-matrices are completely correct, while the rightmost point corresponds to a model in which the M-matrices are

completely misspecified.

Therefore, for our final exercise in model validation,
we apply the same procedure detailed in our motivating
example to congressional roll call data from four
sources: the 85th and 109th U.S. House and Senate.
Roll call data are commonly used as inputs to ideal-
point-estimation techniques (e.g., Aldrich, Montgom-
ery, and Sparks 2014; Clinton, Jackman, and Rivers
2004; Poole and Rosenthal 1985; 1991; Tahk 2018;
Treier 2011). Further, those techniques use exogenous
information about legislators’ latent ideological posi-
tions to identify the models, providing a level of ground
truth. In contrast, to apply IRT-M, we will code bills—
the items in this context—and make no assumptions
regarding legislator positions. We can then compare
latent positions derived from applying IRT-M with a
two-dimensional latent space to existing ideal point
measures such as DW-NOMINATE (DWN) scores,
obtainable from voteview.com. That comparison not
only reinforces the validity of IRT-M, it also helps us
understand better the substantive consequences of
employing correlated latent dimensions and varying
what gets coded as part of each latent dimension.

The first step in applying IRT-M to roll call data is to
specify a set of theoretically informed latent dimen-
sions. Our approach does not fix the number of latent
dimensions; however, to compare to DWN, we need to
limit the number of latent dimensions to 2. As there is
no theoretically unique set of two latent dimensions
given the range of substantive topics addressed in
Congress, we opted for three different sets of coding
rules. Coding rule A uses dimensions corresponding to
(1) Economic/Redistribution and (2) Social/Cultural/
Civil Rights/Equality. Coding rule B uses dimensions

corresponding to (1) Economy/Distribution/Power and
(2) Civil Rights. Coding rule C uses dimensions corre-
sponding to (1) Economy/Public Distribution/Power
and (2) Civil Rights/Redistribution. Bills not corre-
sponding to any of those topics are coded O for all latent
dimensions. The major differences between coding
rules are where Redistribution falls and what else gets
lumped together with Civil Rights. Appendix C of the
Supplementary Material contains a full description of
all three coding rules, and we make all coded bills and
files to replicate figures available as well.

Figure 5 expresses correlations between different
latent dimensions for the 85th and 109th House of
Representatives. A similar figure for the Senate is in
Appendix D of the Supplementary Material. There are
six plots in the figure, one for each House and coding
rule combination. Within each plot, the four rows and
columns correspond to the first and second latent
dimensions derived from DWN and IRT-M. Within
each plot are 16 subplots, one for each pair of those
four dimensions. The subplots along the diagonal illus-
trate the distribution of that latent dimension for each
of Democrats and Republicans. Above the diagonal,
which will be our focus, are correlations between the
latent dimension in the column and that in the row, both
in the aggregate and broken down by political party.
We will focus on those correlations in our brief discus-
sion of model validity, though there is much more one
could do with our analysis than we have space for here.
High correlations between any two dimensions indicate
that those dimensions predict voting behavior similarly.

We first highlight two features of Figure 5 that speak
to model validity. One, in all but coding rule B of the
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FIGURE 5. Correlations between IRT-M and DW-NOMINATE Ideal Points in the House
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85th House, our two dimensions are highly correlated.
In contrast, DWN’s two dimensions are mildly corre-
lated in the 85th House and nearly uncorrelated in the
109th. Given the breadth of bill topics covered in all
dimensions we have coded, save for the second dimen-
sion in coding rule B which uniquely specifies civil
rights, that suggests there may be an underlying factor,
such as partisanship, driving voting behavior across a
range of bills that may obscure more complex ideolog-
ical preferences (Aldrich, Montgomery, and Sparks
2014). The increasing correlation of our two dimen-
sions over time is consistent with that point. The dif-
ference observed in coding rule B of the 85th House is
also consistent with that point, given the known schism
in the Democratic party at that time over civil rights.

Two, our first latent dimension is consistently highly
correlated with DWN’’s first dimension. That suggests
that we are capturing a similar theoretical concept to
that captured in DWN’s first, economic, dimension. For
all but coding rule B of the 85th House, which solely
captures Civil Rights, our second dimension is also
strongly correlated with DWN’s first, for reasons we
have noted. However, for coding rule B of the 85th
House, our second dimension is much more highly
correlated with DWN’s second dimension. That pro-
vides further confidence in the validity of our measures,
since that dimension in DWN is typically interpreted as
being related to civil rights as well, unlike DWN’s
second dimension in the 109th House, which does not
share that interpretation.

Together, those two features of Figure 5 support our
claim to the validity of our approach, and lend us more
confidence that we are able to capture substantive
meanings without making assumptions about legisla-
tors’ preferences. They also illustrate the substantive
effects of two aspects of IRT-M: correlated latent
dimensions and coding rules. Modeling correlated
latent dimensions lets us capture a scenario in which
at least one plausible underlying factor drives more
than one latent dimension. The underlying factor
does not eliminate the meaning of the two latent
dimensions—they still have the substantive meanings
our coding rules constrained them to have—but it does
suggest a richer causal story, of the type described in
Aldrich, Montgomery, and Sparks (2014). That richer
story also suggests that, absent correlated dimensions
and our coding rules, one dimension found by an
unconstrained IRT model may capture a complex com-
bination of theoretical concepts driven by an underly-
ing factor, while other dimensions capture concepts not
present in the theory, and potentially of less impor-
tance. It is possible that DWN applied to the 109th
House is doing just that. Its first dimension, termed
“Economic/Redistributive” on voteview.com, may be
capturing the influence of partisanship, while its second
dimension, left without a meaning and called “Other
Votes” on voteview.com, may be capturing behavior
that is not part of the underlying theory of two-
dimensional ideological voting.

Using coding rules to capture the link between the-
ory and measure has several implications. One is that,
as long as the coding rules are adjusted for variation in

meaning across time or space, the substantive meaning
of the latent dimensions will remain constant. As an
example, in coding rule B, the second dimension cap-
tures civil rights in both time periods. We can see that
the split in the Democratic party during the 85th House
is no longer appreciably present by the time of the
109th House as both dimensions are highly correlated
in the 109th House. A second implication is that the
items that go into what theoretical concepts each
dimension captures fundamentally change what each
dimension is measuring. As we saw, isolating civil rights
as its own dimension leads to a very different measure
than what we obtained under either set of coding rules
in which it was combined with other related, but theo-
retically distinct, concepts.

CONCLUSION

Measurement is the necessary bridge between theory
and empirical test. In the social sciences, it is also the
weak link: we traffic in complex concepts such as
ideology, identity, and legitimacy, and deriving appro-
priate measures of those concepts is not trivial. Yet,
without measurement that matches our theoretical
constructs, our careful empirical studies may not truly
be testing what they were intended to test. Further, in
the absence of measurement that holds its meaning
across time and place, it is difficult to build on each
other’s work. What captures an aspect of ideology or
legitimacy in one context, for instance, may not carry
into another.

Dimensional-reduction techniques, such as IRT
models, produce improvable measures of latent vari-
ables that are thought to underlie behavior, and their
construction is transparent given knowledge of the data
from which they draw. However, such unsupervised
methods do not provide the latent dimensions they
discover with intrinsic substantive interpretations.
Prior approaches to assigning substantive meaning to
latent dimensions either require additional information
about units in the data—for example, the ideological
positions of certain well-known legislators—or limit the
number of latent dimensions to one. As a result, prior
approaches cannot solve the problem of substantive
interpretation when additional information is not avail-
able—as it is not, for example, in anonymous surveys—
and the theory under investigation includes multiple,
potentially correlated, latent dimensions.

We offer a novel solution to the problem of substan-
tive interpretation: the IRT-M model. Applying the
IRT-M model requires coding all responses by a set
of units to a set of items—for example, responses by
people to survey questions or votes by legislators on
bills—according to whether and how that response
could be predicted by each latent dimension in one’s
theory. That coding, used in conjunction with Bayesian
IRT, allows IRT-M to produce posterior distributions
over each unit’s position on each of the latent dimen-
sions, with each latent dimension having the substan-
tive meaning specified in one’s theory. We provide two
worked examples of IRT-M’s use: a motivating
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example applying it to survey data and latent dimen-
sions of threats and attitudes, and an example applying
it to roll call data in the U.S. Congress used as model
validation. We also provide an R package that will
allow analysts to apply the IRT-M model to their own
data and theories.

In applying IRT-M, it is important to keep in mind
the importance of theory to the approach. IRT-M is not
designed to provide latent dimensions that would best
predict responses to items by units in the data. Rather,
it is designed to best measure theoretical concepts that
may have driven behavior by data units. Thus, a theory
as to how the latent dimensions are affecting the
responses of the units is essential to the approach. That
theory drives the coding of each item—dimension pair.
As long as the theory is applied consistently in coding,
one can apply IRT-M to disparate data sources across
time and place. In all cases, IRT-M will return substan-
tively meaningful latent dimensions, allowing one to
make comparisons that previously required exogenous
assumptions on individual units. For example, in the
roll call application, ideal points located on a civil rights
dimension maintain more or less the same meaning
across time, as long as sufficient votes related to civil
rights continue to be taken.

In the future, we aim to extend our model to addi-
tional forms of data, but even limited to dichotomous
item data, our approach makes possible consistent,
theoretically meaningful measurements that can com-
bine data from numerous sources. We expect such
measurements to be substantially more precise than
simple indices, let alone single proxies, of the types of
theoretical concepts social scientists consider. For
instance, our motivating example—employing IRT-M
to draw out latent concepts from survey data—illus-
trates how one can use existing survey data to test
social-scientific theories in a straightforward fashion.
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