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Abstract

Background: Antimicrobial resistance (AMR) causes worsening health, environmental, and
financial burdens.Modelling complex issues such as AMR is important, however, howwell such
models and data cover the broader One Health system is unknown. Our study aimed to identify
models of AMR across the One Health system (objective 1), and data to parameterize such
models (objective 2) to inform a future model of the AMR in the Swedish One Health system.
Based on an expert-derived qualitative description of the system, an extensive literature scan
was performed to identify models and data from peer-reviewed and grey literature sources.
Models and data were extracted, categorized in an Excel database, and visually represented on
the existing qualitative model to illustrate coverage. The articles identidied described 106
models in various parts of the One Health system; 54 were AMR-specific. Few multi-level,
multi-sector models, and models within the animal and environmental sectors, were identified.
We identified 414 articles containing data to parameterize the models. Data gaps included the
environment and broad, ill-defined, or abstract ideas (e.g., human behaviour). In conclusion, no
models addressed the entire system, and many data gaps were found. Existing models could be
integrated into a mixed-methods model in the interim.

Background

Antimicrobial Resistance (AMR) is one of the largest threats to public health across the globe
(Government of Canada, 2017; WHO, 2018), causing an estimated 1.27 million deaths (due to
bacterial AMR directly) globally in 2019 (Murray et al., 2022). Financial burdens also occur
because of increased healthcare costs and loss of productivity; Europe loses 1.5 billion US dollars
annually due to multi-drug resistant bacteria (The European Commission, 2018). AMR can also
impact the agricultural sector via production losses from animals with resistant infections, and
possibly decreased trade due to a fear of resistance (The European Commission, 2018).

The system that produces AMR is a complex system comprised of many drivers across many
sectors (human, animal, and environmental sectors) and ecological scales, allowing for AMR to
easily spread across sectors (Aarestrup et al., 2008; Government of Canada, 2017; The European
Commission, 2018). Due to this complexity, modelling and combatting AMR through policy
and interventions is challenging (Acar and Moulin, 2012; Wang et al., 2016; Islam et al., 2019;
Malik and Bhattacharyya, 2019; Søgaard Jørgensen et al., 2020). Complex systems are composed
of many elements with multiple interactions between them, in which the elements adapt and
react to the patterns the interactions create (Ladyman et al., 2013). These systems are composed
of nonlinear relationships (small changes in one element do not necessarily cause a small change
in another; Waterloo Institute of Complexity and Innovation, 2022) where microscopic
interactions between elements can cause system-wide changes to emerge, thus leading to
unpredictable behaviours or unintended consequences (Ladyman et al., 2013; Waterloo
Institute of Complexity and Innovation, 2022). Knowledge about how the complex pathways
intersect and interact to affect AMR is sparse, therefore, incorporating the entire One Health
system into dynamic models and policy analysis is still in its early stages (Chen and Fu, 2018;
Malik and Bhattacharyya, 2019). For this study, the One Health system was defined as the
complex web of environmental, human, and animal factors and socio-ecological drivers that
interact to perpetuate the issue of AMR. Thus, we wanted to identify how current models across
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sectors or sub-systems have been combined and determine where
data exists to provide the foundations to build and parameterize a
proposed model of the Swedish One Health system as a case study
to be able to assess interventions through a system lens.

Sweden has one of the lowest rates of AMR and antimicrobial
use in Europe (The Public Health Agency of Sweden, 2023) due to
the rapid response, enhanced surveillance, and the guidance and
stringent measures put in place to reduce antimicrobial use in
humans and animals (The Public Health Agency of Sweden, 2023;
Wierup et al., 2021). Sweden has a history of long-term efforts to
control and eradicate infectious diseases in animals and
coordinated activities for endemic diseases, thus reducing the
need for antimicrobials (Wierup et al., 2021). Finally, there is
widespread stakeholder agreement on the need for AMR action
and thus cooperation in creating and implementing measures
across the country (The Public Health Agency of Sweden, 2023;
Wierup et al., 2021), and much trust in the government and
adherence to guidelines from the public (Lambraki et al., 2022).
Sweden’s response to AMR began in 1986, when the use of growth
promoters were banned in food animal production (Grundin et al.,
2020). In 2005, Strama (a national strategic programme in Sweden)
was formed and the first One Health national strategy against
AMR was presented, which has been continually updated, with the
latest version published in 2023 (Grundin et al., 2020). This
strategy includes an action plan to address seven core objectives as
well as an inter-sectional coordinatedmechanism to bring together
expertise from sectors across sectors to work to reduce AMR
(Grundin et al., 2020). Sweden’s policies incorporate the One
Health aspect of the issue, involving agencies and organizations
from human and veterinary medicine, the environment, and food
production, outlining clear responsibilities and focussing on
international collaboration, research, and innovation (Eriksen
et al., 2021).

Systematic and scoping reviews have been conducted to identify
models of the system that drives AMR. However, their scope has
been limited to population-level mathematical models of AMR
within human populations (Niewiadomska et al., 2019), at the
microbial or within-host level (Spicknall et al., 2013), or a
combination of both (Opatowski et al., 2011). Even reviews that
aim to be more inclusive remain human-focused (Ramsay et al.,
2018). Thus, it is necessary to expand the scope to identify models
of the broader system of drivers which have potential to be adapted
for the AMR context.

While a formal literature review is not required for parameter-
ization, a clear framework can improve transparency in the data
collection process, especially due to the vast number of factors to be
parameterized. With a shift towards more inclusive (integrated)
models, scoping reviews or literature scans have gained popularity
as a primary step (Murphy et al., 2018; Primeau, 2020; Goltz, 2022),
and may become the norm in One Health modelling of complex
systems. Our proposedmodel includes 92 factors from a previously
created qualitative model of the drivers of AMR (Lambraki et al.,
2022), making a full scoping review extremely resource intensive.
Also, many factors were unlikely to have quantitative data
available. Thus, a broader search (quantitative and qualitative
data from grey and published literature) was necessary.

Therefore, a literature scan inspired by scoping review methods
(Arksey and O’Malley, 2005) provided a balance of structure and
transparency with the flexibility to explore the literature more
freely. The objectives of this study were to perform a literature scan
to identify: (1) the different types of existing dynamic models (e.g.,

compartmental model, agent-based model, network model) across
various parts of the broader AMR One Health system, and (2) the
data sources and evidence that could be used to model the different
parts of the Swedish One Health system (further referred to as “the
system”).

Methods

To determine the scope of the One Health model of AMR, we used
an existing causal loop diagram (“diagram”) from two participa-
tory modelling workshops that were held in Stockholm, Sweden in
September 2019 in which participants mapped the wider system of
drivers of AMR in the European One Health system (refer to the
workshops carried out by Lambraki et al., 2022 for the methods
and full results). The resulting diagram contained 92 nodes and 331
relationships and represented the structure of a hypothetical One
Health model of AMR in a European (specifically Swedish) food
system context. Using this diagram to bound the scope and define
the search terms, we conducted a literature scan, inspired by
Arksey and O’Malley, 2005 framework for scoping reviews, to
address our two objectives. The search took place from September
1st to December 31st, 2020.

Objective 1: Existing models

A literature search of peer-reviewed publications was performed in
Google Scholar and PubMed to identify different types models,
including: 1) mathematical models pertaining to the transmission
of micro-organisms between humans, animals, and their envi-
ronments; 2) mathematical models of AMR transmission or
emergence; 3) models of AM decay and residue build up in waste,
waste-water, and other settings; 4) economic models of agriculture
and the One Health system, and; 5) economic models of health
systems. Models were not limited to a specific geographical
context; however, the search was conducted in English.

A snowball search approach was used, starting with broad,
high-level search terms that aligned with major domains of the
diagram (e.g., “modelAND antimicrobial resistanceAND humans/
animals/One Health” or “model AND consumer demand AND
food”). Models of E. coliwere explicitly searched because E. coli has
been identified as one of the major threats for AMR (Léger et al.,
2021), is commonly identified in and transmits between humans
and animals (Léger et al., 2021), and is heavily represented in the
existing AMR surveillance data for animals and humans in Sweden
(European Centre for Disease Prevention and Control, 2021;
WHO Regional office for Europe, 2017). In instances where
specific sections of the diagram were not well described, search
terms were refined and the search was narrowed to capture more
specific nodes or parts of the system (e.g., “infectious disease model
AND antimicrobial resistance/resistant E. coli AND hospital/
on-farm/abattoir,” “economic/supply-demand/consumer demand
model AND chicken/beef/fish”). This approach allowed for a
narrowing of the search criteria to ensure key models were
captured in the search, that would be of use for our specific
purpose. A full list of search criteria is given in Supplementary
materials, Table S1. We found that the first 100 results generally
yielded the best fit given our search criteria, and therefore, focused
on the first 100 results for each search. Broad search terms and few
exclusion criteria were deliberately used to capture a wide range of
models from a variety of sectors. Citations about models that were
strictly statistical (e.g., linear and logistic regression models)
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were excluded; we wanted models that simulated or encompassed
the transmission or emergence of AMR or other parts of the system
(economics) and not models that provided estimates of association
between nodes (e.g., odds or risk ratios). Statistical models would
provide an indication of how two nodes affect one another (AMU
leads to AMR) and could be used to help inform or parameterize
the relationships of a model that simulates AMR transmission, but
they are not themselves models of simulation of the broader
system.

The lead author (MC) screened the titles and abstracts for
inclusion based on the criteria above, then reviewed the full text
and excluded any sources that were not simulation models. The
following information was extracted from relevant articles and
organized into a database created in Microsoft Excel version 16.60:
type and process of model (e.g., agent-based model, network
model, compartmental model); the sector(s) represented (e.g.,
food-producing animals, humans, crops, environment); themicro-
organism and/or antimicrobial(s) involved (e.g., fluoroquinolone-
resistant E. coli); and other model characteristics (Tables 1–2; full
database Cousins, 2022). Models were categorized to the
environment sector if they represented anything that is external
to a host (Porta, 2016); included any area in which a person,
animal, or plant is living or operating (Oxford Learner’s
Dictionary, n.d.), which was dependent on the setting of the
model and the population of interest (e.g., the bed or light switch, a
river or surrounding landscape).

Identified models were visually situated within the diagram
(Figure 1) to identify gaps in system coverage (e.g., missing human
health, on-farm, or the environment) and depict the overlap
between sectors (e.g., zoonotic transmission, food transmission,
models including environmental reservoirs, or One Health
models) captured by existing model.

Objective 2: Existing data sources and evidence

A second literature search of peer-reviewed publications and grey
literature was performed in Google Scholar, PubMed, and Google,
to compile data to populate the proposed model using multiple
types of data (quantitative and qualitative) from 1995 to present,
prioritizing sources 2000 to present and those that were Sweden-
focused. While our interest was to identify data from 2000 to
present, 1995 was a cut-off to account for potential gaps in data
collection (e.g., data collected every five years which causes a gap
from 1997 to 2002). Furthermore, if no Sweden-specific data
existed, northern Europe was used as a proxy, and if nothing was
specific to northern Europe, then all of Europe or a European
average was included. The search was not limited by language; all
non-English publications were translated with Google Translate.

Search criteria were created based on the 92 nodes identified on
the diagram (Lambraki et al., 2022). A search was created for each
node. Some were refined further if found necessary; for the node
“on-farm production,” a separate search was done for on-farm
production of animal-based foods (e.g., chicken), fruits (e.g.,
apples), vegetables (e.g., potatoes), and other important crops
(e.g., wheat). Examples of search criteria include: “Antimicrobial
resistance AND human AND Sweden,” “Imports AND chicken
AND Sweden.” Broad nodes were narrowed using specific
examples given by the participants within the workshops
(Lambraki et al., 2022); for the node “New and emerging food,”
specific products in development or of interest to the European
population were searched (insects, genetically modified foods,

three-dimensionally printed foods, and lab-based meat). Nodes
that were abstract (e.g., diverse experiences and opinions) or broad
(e.g., AMU in countries other than of Sweden) were more difficult
to create an adequate search strategy. We aimed to find search
strategies that were specific enough to retrieve relevant informa-
tion, while still capturing a broad range of data and sources. A full
list of the search strategies used can be found in Supplementary
materials, Table S2. As with objective 1, the searches for the
92 nodes each returned over 750 results, and therefore we reviewed
titles from the first 100 results for each search string from each
database. Citations that were excluded were: 1) those that did not
contain information relevant to the list of nodes from the diagram,
and 2) those published before 1995.

Due to the number of separate searches performed (at least one
per node), the literature scan was time and resource intensive.
Therefore, per recommendations by Arksey and O’Malley, 2005, a
three-month cut-off date was used (December 31st, 2020) in which
articles identified as potentially relevant by title and abstract during
the search but were not directly related to the node being searched
at the time were not read in full but noted in a separate list
(see Supplementary materials, Table S3) for future use. These
articles did not undergo the proceeding steps of full review for
inclusion and data extraction.

MC reviewed the full text for titles and abstracts that were
screened in and excluded any sources that did not contain data
relevant to the nodes of interest. MC then extracted the data. Due
to the variety of sources and types of reported data, an inter-coder
reliability check was done with three members of our team (MC,
KD, XMYK) to ensure the same data were being extracted from the
articles. MC selected three articles that represented the spectrum of
the articles identified for data extraction (two peer-reviewed and
one grey literature that were quantitative, qualitative, and mixed-
method) and a full article review was performed. MC, KD, and
XMYK compared and discussed results to refine what needed to be
extracted, or what was being missed.

The following information was extracted (MC) from relevant
articles and organized into an excel database (MNV & MC): the
data or parameter extracted (e.g., 1,000,000 prescriptions/year), the
year the data was collected, the type of data (e.g., pharmaceutical
sales, quantitative), the source (e.g., peer-reviewed or grey
literature), they type of study (e.g., survey, cross sectional), the
country or countries for which the data were available, and the date
and country of publication (Table 3; full database; Cousins, 2022).
The country of publication was identified by either the affiliation of
the first author on a peer-reviewed publication, the country in
which the author of an article (magazine, newspaper, blog) was
located, or the country of the main headquarters of an
organization, magazine, newspaper, or webpage.

The amount of data and an associated level for the node was then
initially assigned by MC’s personal judgment, and then verified by
the research team through discussion, with disagreements being
resolved through consensus. The level of the node refers to the
position of that node in the context of the Swedish One Health
system on a scale of the amount, quantity, extent, or quality
compared to a referent (e.g., Sweden vs. other countries within or
outside of Europe, Sweden currently vs. historically). For example,
there is “high” AMU in agriculture in Sweden in 2020 compared to
2010 or there is “low” AMR in Sweden compared to other countries
in Europe. The following levels were assigned: very high, high,
medium, low, very low, or none. A level was assigned to the nodes to
indicate how the qualitative and quantitative data could be combined
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Table 1. Distribution of the 106 articles* referring to models of disease transmission of a single system (n = 102) and models of disease transmission with an economic component (n= 4) according to microbe and/or
antimicrobial class and sector/population involved

Total number
of articles

Unspecified
host/Microbe Human Animal Crops Environment

Human-
Animal

Human-
Environment

Animal-
Environment

Crop-
Human

Human-Animal-
Crops-Environment

(any 3)

Sensitive microbe

African swine fever 1 – – 1 – – – – – – –

Campylobacter 1 – – 1 – – – – – – –

Vibrio cholerae 1 – – – – – – 1 – – –

Clostridium difficile 1 – 1 – – – – – – – –

Shiga-toxin producing
Escherichia coli**

18 – – 3 1 – – – 13 1 –

Foot and Mouth Disease 2 – – 1 – – 1 – – – –

Influenza 6 – 3 – – – 3 – – – –

Listeria monocytogenes 1 – – – – – – – – – 1

Neisseria gonorrhoea 2 – 2 – – – – – – – –

Salmonella 3 – – 1 – – – – 2 – –

Not defined (multiple) 13 – 3 6 – – 2 1 – – 1

TOTAL 49 - 9 13 1 - 4 2 15 1 2

–

Antimicrobial only

Chlortetracycline 1 – – 1 – – – – – – –

Fluoroquinolones 1 – – – – 1 – – – – –

Tetracycline 2 – – – – 1 – – 1 – –

Unspecified (multiple) 1 – – – – – – 1 – – –

TOTAL 5 - - 1 - 2 - 1 1 - -

AMR (Microbe/AM)

CRE (Carbapenem-resistant
Enterobacteriaceae)

1 – 1 – – – – – – – –

Chlortetracycline-resistant
E. coli**

1 – – 1 – – – – – – –

ESBL (extended-spectrum-β-lactamase)-
producing ST131 E. coli**

1 – 1 – – – – – – – –

ESBL (extended-spectrum-β-lactamase)
and AmpC (AmpC-β-lactamase)-producing
E. coli**

1 – – 1 – – – – – – –

Fluoroquinolone-resistant Campylobacter 1 – – – – – 1 – – – –
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Table 1. (Continued )

Tetracycline-resistant E. coli** 1 1 – – – – – – – – –

MRSA (methicillin-resistant
Staphylococcus aureus)

10 – 6 1 – – – 3 – – –

VRE (Vancomycin-resistant enterococci) 1 – – – – – 1 1 – – –

Resistant Klebsiella pneumoniae 1 – 1 – – – – – – – –

Resistant Campylobacter 1 – – – – – 1 – – – –

Resistant E. coli** 12 1 3 2 – – – 2 1 – 1

Resistance in
commensal bacteria

4 1 3 – – – – – – – –

Resistance in
foodborne pathogens

1 – – – – – – – 1 – –

Resistant bacteria (general) 10 1 3 1 – 1 1 2 – – 1

Resistant fungi (general) 2 – – – 2 – – – – – –

Resistant parasites (general) 1 – – – 1 – – 1 – – –

Not defined (multiple) 3 1 1 – – – – 1 – – –

TOTAL 52 5 19 6 3 1 4 10 2 - 2

–

TOTAL 106 5 28 20 4 3 10 13 18 1 4

*To find more details for each model that falls under the given category please refer to the complete database (Cousins, 2022). The complete list of articles is categorized with the same categories as appear in the table for easy cross-reference.
**AM, Antimicrobial.
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Table 2. Distribution of the 106 articles* referring tomodels of disease transmission of a single system (n= 102) andmodels of disease transmission with an economic
component (n= 4) according to study characteristics including the main population of interest, model type and specific model features, and the type of model system
(sensitive microbes, resistant microbes, and antimicrobials (AMs**)

Total number of articles Sensitive microbes Resistant microbes AM** only
Main population of interest

Human 28 9 19 –

Companion animal – – – –

Cattle 7 4 2 1

Pigs 3 1 2 –

Poultry 3 1 2 –

Sheep 1 1 – –

Fish/Aquaculture – – – –

Crops 2 – 2 –

Wildlife – – – –

Unspecified host (bacterial level) 5 – 5 –

Environment 3 – 1 2

2 populations 43 28 13 2

>3 populations 11 5 6 –

Model class

Compartmental 73 31 39 3

Agent-based 9 3 6 –

Network 8 5 3 -

Risk analysis 11 9 2 –

Combination/multiple 3 1 2 –

Other 2 – – 2

Model type

Deterministic 53 21 27 5

Stochastic 43 23 20 –

Both 6 1 5 –

Hybrid (e.g., semi-stochastic) 4 3 1 –

Specific Model features†

Multi-strain/co-infections
(e.g., competition and gene transfer)

30 2 28 1

AMR emergence from AMU 23 – 23 1

Spatial
(e.g., patch models, position or GPS data)

17 15 2 –

Multi-level model
(e.g., within host and population transmission)

8 4 4 –

Vector-borne
(e.g., healthcare workers)

11 3 8 –

Seasonal factors 5 4 – 1

Super-shedders/shedding rate 9 8 1 –

Pathogen survival 11 6 5 –

Vertical and pseudo-vertical transmission 3 2 1 –

Importation/Migration 36 22 14 –

AM effect on gut microbiome 6 – 6 –

AM residue levels and decay 7 – 2 5

(Continued)
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to generate a single estimate of the state of that node, which could
then be used to inform a semi-quantitative model for example.

A level was able to be assigned to a node based on the decision
criteria found in Figure 2; a node had to have enough data to create
an accurate evaluation of the state of the node and had to have
either: 1) a good comparator to be able to judge the node against
(e.g., historical data or data from another country), and 2) the node
could be accurately described by a single level (e.g., “Consumer
choice, demand, and behaviour” could be split into many different
nodes that represent how consumers feel about different
commodities and therefore one level could not be assigned).

The amount of data to inform each node was also assigned a
categorical level (very little, a little, some, a lot, and most), which
was based on the number of sources and data points (e.g., many
sources or many years of data collected), and the amount of
quantitative and qualitative data that existed for a given node
(Figure 3). A data point was defined as a single piece of qualitative
(e.g., a quotation) or quantitative data (e.g., a statistic) referring to a
single node. A visual representation of the existing data for the
nodes was overlayed on the diagram of AMR in the system to
depict the amount and quality of data that exists and identify major
data gaps (Figure 4).

Although searches were conducted based on the nodes, data
pertaining to the relationships between the nodes were also found
and extracted into the database, but these were not categorized into
categorical levels (Cousins, 2022). New relationships identified via
the literature search were mapped on top of the original diagram
(Supplementary materials, Figure S1), and the sources that had
data pertaining to the existing relationships were also visually
mapped (Figure 4).

Results

Objective 1: Existing models

We identified a total of 146 relevant peer-reviewed articles
(Table 4) that provided good coverage of the One Health system
(Figure 1). Each individual article and relevant information
pertaining to the articles can be found in the database (Cousins,
2022). Most articles were published after 2000 (Supplementary
Materials, Figure S2). Most (79/146, 54%) models were either non-
geographic context specific or included countries from all over the
world (e.g., international travel, global food demand; Cousins,
2022), four of which were situated in multiple countries of Europe.
Many articles in which a country was defined were from high-
income countries (58/146, 40%), as defined by World Bank (e.g.,
United States of America (USA), Sweden, Denmark) (World Bank
Group, n.d.), and only 10 articles (7%) represented models from
low- and middle-income countries. Our search yielded 14 articles
that described economicmodels, however upon further analysis we
found that these models were not useable for our purpose as they
represented statistical models (e.g., econometric, time series) that
reflect the associations between nodes, not simulation models.
These excluded models are described in Supplementary materials,
Table S4 (details about each model can be found in the database;
Cousins, 2022) and are of interest for future research.

There were 126 articles that described models focused on
disease transmission and/or AMR emergence and transmission,
102 of which were models of a single system, 4 were models of a
single system that included an economic component (e.g., cost-
effectiveness of an intervention or cost analysis of a disease
outbreak), and 20 were review articles summarizing multiple

Table 2. (Continued )

Total number of articles Sensitive microbes Resistant microbes AM** only
Cost-benefit/cost analysis 4 3 1 –

Participatory modelling 1 – 1 –

Model parameters

Referenced data 53 28 23 2

Primary data 12 4 8 –

Both 7 2 2 3

Reference/Theoretical model 34 16 18 –

Publicly available dataset

Yes 7 1 4 2

No 99 48 48 3

Type of data

Quantitative 103 47 51 5

Qualitative – – – –

Mixed-methods 3 2 1 –

Model rigour

Calibration 52 26 23 3

Validation 56 30 21 5

Sensitivity analysis 56 24 31 1

*To find more details for each model that falls under the given category please refer to the complete database (Cousins, 2022). The complete list of articles is categorized with the same
categories as appear in the table for easy cross-reference. **AM, Antimicrobial.
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Table 3. Distribution of the 414 sources of data relating to the nodes (n = 64) according to the study characteristics including the number of sources, number of data
points, type of data, and regions and years covered within the data

Node

Number
of

Sources

Number
of data
points

Qualitative
data

Quantitative
data Region(s) covered

Year(s)
covered

(Terrestrial) On-farm AM*
use

3 31 1 30 Denmark, Sweden, EU/EEA and Switzerland 2000–2018

Access to AMs* outside of
the system

5 32 16 16 Global, EU, Europe, Northern Europe, Southern
Europe, Eastern Europe, Sweden, Albania, Armenia,
Azerbaijan, Belarus, Bosnia and Herzegovina,
Georgia, Kazakhstan, Kyrgyzstan, Montenegro, North
Macedonia, Republic of Moldova, Russian
Federation, Serbia, Tajikistan, Turkey, Ukraine,
Uzbekistan, Kosovo, USA

2002–2019

AM* use in companion
animals

5 20 6 14 Europe, EU/EEA and Switzerland, Sweden, Italy 2000–2017

AM* use in plant
agriculture

5 18 7 11 Global, EU, Sweden, The Netherlands, USA 2007–2017

Amount of imported
product

16 234 8 226 Global, Europe, Sweden, Norway, Thailand 1990–2019

(Continued)

(Terrestrial) On-fa rm

AM use

Animal

density

Produc er profi tability (e.g.
profi t margins)

Viability of dom estic meat
produc tion

Retail cost of
food

AROs in food

produc ts

AROs in
humans

Food-produc ing a nimal illness
(e.g. poul try, livestock, aquatic

animals)

Meat/egg

consumption

Consumption of ot her
(non-m eat/egg) foods

-

+

Human illness

+

-

+

Healthcare
costs +

Amount of i mported

produc t

Amount of produc t in the
domestic market

Population

vulnerabilities

On-farm produc tion
level (e.g. kg, L )

-

+

Retail availability of

meat/eggs in domestic
market

+

+

+

--

Chroni c,
non-communicable

diseases

Nutritional
quality of di et

Food a nd water
security (pe rsonal,

national)

-

-

+

+

+

+

+

Time to market

weight

-

Market price per

produc tion uni t (e.g. kg,
L)

-

+

Consumer choice, demand, a nd be haviour (i ncl. AB

free food, AMs from  doctors, ha bit, percieved
personal benefit, compliance, purc hasing pow er)

Cost per uni t (e.g. kg, L )

set by quot a

+

+

Exposure to AROs in
imported produc ts

Human AM use

+

+

Produc tion systems (e.g.

conventional, organic, AB fre e)

Feed
efficiency

-

+

+

+
-

+

Non-AM infection control on fa rms of

food-produc ing animals (e.g. va ccination,
isolation)

-

Restocking with animals/eggs at
higher ri sk for i nfection

+

+

AROs in food-produc ing

animals

+

+

Treatment post-proc edure (e.g.

post castration, de -horni ng)

Resistance in the wider environment

(e.g. w ater, soil, manure, run-of f,
wastewater)

+

+

Number of uni ts (e.g. kg,

L) set by quot a

+

+

+

AM use in other
count ries

+

-

Death+

Host
microbiome

-

Use for pre ventive
purpos es

+

+

+

Aquaculture

AM use

-

+

+

Development of
alternatives to AM

+

AM use in companion
animals

+

+

-

Use for grow th

promotion

AM use in pl ant agriculture (e.g.
hort iculture crops , ethanol

produc tion)

+

+

AM use in wildlife (e.g.

baiting)

+ +

+

+

Good fa rm practices (e.g. hyge ine,

biosecurity, hous ing
location/environment)

-

Animal welfare/low
stress

-

+

-+

-

+

+

+

+ +

-

Corpora te profi ts

from AMs
+

+

+ -

-

+

+

+

Psychological health (e .g. s tress,

producer mental health)

+

-

+

+

Diverse experiences, opi nions, training, a nd
culture (e.g. food pre ferences, health status,

healthcare systems)

Healthcare resources (e.g. amount  and type of

staff, training, w aiting t ime, money,
equipment/technology)

Level of re sistance in other

countries

+

Movement of pe ople (e.g. i mmigration,
migration, dom estic and international

travel, health touri sm)

+

+

+

Appropri ate pre scribing, di agnosing, t reatment
practices (incl. pre scribing ha bits,

appropri ateness of AM, dos e, dura tion, a nd
route of a dministration)

Diagnostics

Research development and

innovation (e .g. ne w technology
and a pproaches)

Science and

acedemia

+

+ +

+ +

+

+

+
Digital health (e.g. onl ine

diagnosing, e -prescriptions)

-

-

-

Development of new
AMs

+

+

Disposal of AMs (e.g. unus ed,

unmetabolized)

+

+

+
+

+

+ +

Understanding and awareness (incl.
surveillance, scientific evidence, know ledge

translation, c ommunication)

+

National budge ts,
money, fundi ng

+

+

+

New and emerging foods  (e.g.

3-D printed food, G MOs,
insects)

+

What is being fa rmed (e .g. t ype

of food-produc ing a nimal or
crops)

Existing fa rm
infastructure

Produc tion

costs

+

-

+

Unregulated meat sales (e.g. bl ack
market, on fa rm sales)

+

+

Movement of a nimals (e.g.
transport , migration)

-

+

+

Feed qua lity

+

+

AROs in
wildlife

AROs in companion
animals

+

+

+

+

+

+

+

AROs in pl ant
agriculture

+

+

+

+
+

Resistance at the

abbatoir/processor

Retailer demand for

produc t

+

+

+

Treatment of w aste and
waste-water (e .g. s ewage,

manure , sludge)

-

Pharmaceutical market,
sales, and PR

+

+

+

Existing he althcare infrastructure (e.g.
physical building and l ayout, num ber of

beds or i solation room s)

-

-

Access to AMs outside of t he system (e.g.

over-the-counter, black market, internet, from
family or t ravel)

+

+

+

Non-AM disease prevention a nd infection

control in health and social care settings (e.g.
hospital, long-term care)

-

++

-

+

Human

vaccination

-

-

+

Non-AM infection pre vention and c ontrol in
other social institutional settings (e.g.

restaurants, workplace, community, hom e)

-

-

-

Use for

metaphylaxis/control

Use for

treatment

+

+

-

Disease in pl ant agriculture
(e.g. c rops , hort iculture)

+

+

+

-

+

-

Non-AM infection prevention and control by the

public (e.g. ha nd hyge ine, hom e cooking, s ocial
isolation, a ccess to sick days)

-

-

-

+

Companion

animal illness

+

+

Wider environment microbi ome

(eg. or ganisms in the water and
soil)

+

Non-AM disease prevention a nd

control in plant agriculture (e.g. he avy
metals)

-

Use for t reatment in

humans
Use for c ontrolling

spread of i llness in
humans

Use for pre vention in humans (e.g.

immunocompromised, surgeries)

+

+
+

-

+

+

+

Domestic and
international trade

+

-

-

+

-

+

+

+

+

+

++

+

-

-

+

+

-

+

+

+

+

+

+

+

+

+

-

-

+

-

-

-

+

- +

-

Person-person and healthcare 
transmission (28 models, 1 review 
article): 
• Community spread
• In- and between- hospital and other 

healthcare facility transmission
• AMU and AMR emergence and 

spread

Importation models (36 models, 1 
review article): 
• Importation of disease from 

animals and people from other 
places (countries, cities, farms, 
pens)

Supply-demand models (10 models, 4 review articles): 
• Consumer demand for food and travel
• Food supply and demand forecasts
• Shifts in demand 
• Econometric modelling 

Food-human transmission (11 models, 1 r eview article): 
• Farm to fork transmission
• Foodborne transmission
• Slaughterhouse/abattoir tranmission

Environmental transmission (6 models, 1 review 
articles): 
• Waterborne transmission
• Wildlife transmission 
• Environmental-human/animal transmission 

Figure 1. The diagram of AMR adapted from Lambraki et al. (2022) with the types of models found from the literature search categorized into broad themes overlayed to depict
model coverage of the system. Note: this figure is zoomable in the PDF version to legible font size.
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Table 3. (Continued )

Node

Number
of

Sources

Number
of data
points

Qualitative
data

Quantitative
data Region(s) covered

Year(s)
covered

Amount of product in the
domestic market

3 31 3 28 Sweden 2000–2018

Animal density 3 7 2 5 Sweden 1980–2005

Animal welfare/stress 8 58 46 12 Sweden 2001–2020

Aquaculture AM use 2 4 1 3 Global, EU/EEA and Switzerland, Sweden, Norway 2008–2017

AROs† in companion
animals

7 54 5 50 Europe, Austria, Belgium, Denmark, France,
Germany, Greece, Italy, the Netherlands, Portugal,
Serbia, Spain, Sweden, Switzerland, United Kingdom

2005–2018

AROs† in food products 5 35 2 33 Sweden, Switzerland, UK 2004–2018

AROs† in food-producing
animals

9 84 6 78 EU, Belgium, Denmark, Spain, Sweden, Switzerland,
The Netherlands, UK

2007–2019

AROs† in humans 4 7 1 6 Sweden 2014–2018

AROs† in imported food
products

1 1 0 1 Sweden 2004

AROs† in wildlife 1 3 0 3 Sweden 2009–2019

Chronic, non-
communicable diseases

3 14 0 14 EU, Poland, Sweden 1986–2017

Companion animal illness 5 22 3 19 Europe, Austria, Belgium, Denmark, France,
Germany, Greece, Italy, the Netherlands, Portugal,
Serbia, Spain, Sweden, Switzerland, United Kingdom

1999–2020

Consumer choice, demand,
and behaviour

57 365 289 76 Global, Europe, EU, North America, Nordic countries,
Austria, Belgium, China, Denmark, England, Finland,
France, Germany, India, Italy, Liechtenstein, Spain,
Sweden, Switzerland, Thailand, The Netherlands,
UK, USA

1960–2020

Consumption of other
(non-meat/egg) foods

20 312 11 301 Europe, Finland, France, Iceland, Norway, Russia,
Spain, Sweden, UK

1960–2018

Corporate profits from AM* 12 61 12 49 Global, Europe, EU/EEA and Switzerland, US 1980–2018

Death (Human) 16 60 6 54 Global, Europe, EU, Poland, Sweden 1990–2019

Development of
alternatives to AM*

14 97 82 15 Global, Europe, EU, Australia, Brazil, Canada,
Denmark, Japan, Singapore, The Netherlands, UK,
USA

1997–2020

Development of new AMs* 35 175 84 91 Global, Europe, EU, Canada, England, India,
Scotland, UK, USA

1911–2020

Diagnostics 8 30 18 12 Global, Europe, Africa, Australia, Canada, Norway,
Sweden, UK, USA

2003–2018

Digital health 20 77 18 59 Global, Europe, EU/EEA and Switzerland, Austria,
Belgium, Denmark, Finland, Estonia, Ireland,
Sweden, Denmark, Portugal, Spain, Germany, UK,
France, Italy, Russia, Poland, Switzerland, The
Netherlands, UK, USA

2002–2023

Disease in plant agriculture
(crops, horticulture)

2 9 0 9 Sweden 2006–2011

Domestic and international
trade

12 184 18 166 Global, EU, Sweden 1990–2019

Feed efficiency 1 1 0 1 Global 2019

Feed quality 1 1 1 0 Sweden 2020

Food and water security
(personal, national)

4 27 0 27 Global, EU, Sweden 2000–2019

Food-producing animal
illness

11 44 1 43 Denmark, Norway, Sweden, UK 1998–2020

(Continued)
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Table 3. (Continued )

Node

Number
of

Sources

Number
of data
points

Qualitative
data

Quantitative
data Region(s) covered

Year(s)
covered

Healthcare costs 12 53 2 51 Global, Europe, EU, Canada, China, Germany,
Malaysia, Norway, Sweden, Switzerland, Serbia,
Thailand, USA

2000–2050

Healthcare resources 16 314 8 306 Global, Europe, Austria, Belgium, Bulgaria, Croatia,
Cyprus, Czech Republic, Denmark, Estonia, Finland,
France, Germany, Greece, Ireland, Italy,
Luxembourg, The Netherlands, Portugal, Spain,
Sweden, United Kingdom

1999–2019

Human AM* use 17 51 3 48 Global, Europe, Southern Europe, Northern Europe,
Eastern Europe, Central Europe, Austria, Belgium,
Denmark, England, Finland, France, Germany,
Greece, Italy, The Netherlands, Portugal, Spain,
Sweden, United Kingdom

1994–2020

Human illness 15 106 3 103 Global, High-Income countries, Europe, Nordic
region, Albania, Bosnia, Bulgaria, Croatia, Czech
Republic, Hungary, North Macedonia, Montenegro,
Poland, Romania, Serbia, Slovakia, Slovenia,
Denmark, Finland, Iceland, Norway, Sweden,
Greenland, Poland, Spain, The Netherlands, UK

1970–2018

Human vaccination 8 41 5 36 Europe, EU, EU/EEA, Canada, Italy, Sweden 2000–2019

Market price per
production unit

5 187 1 186 EU, Sweden 1980–2018

Meat/egg consumption 30 296 20 276 Global, Europe, EU, Denmark, Finland, France,
Germany, Norway, Italy, Poland, Russia, Spain,
Sweden, UK, USA

1960–2020

Movement of animals 15 95 16 79 Europe, EU, Sweden 1999–2020

Movement of people 10 127 18 109 Europe, EU, Austria, France, Germany, Italy, Sweden,
Poland, Hungary

2000–2018

New and emerging foods 36 335 60 275 Global, Asia, Africa, Europe, North America,
Australia, Belgium, Brazil, Canada, Czech Republic,
The Netherlands, France, United Kingdom, Denmark,
Sweden, Norway, England, Italy, Poland, Portugal,
Slovakia, Spain, Switzerland, United States, UK

1965–2020

Non-AM* disease
prevention and infection
control in health and
social care settings

16 140 26 114 Global, EU, Northern Europe, Austria, Belgium,
Denmark, Estonia, Finland, France, Germany,
Greece, Iceland, Ireland, Italy, Luxembourg, The
Netherlands, Norway, Portugal, Spain, Sweden,
United Kingdom,

2002–2020

Non-AM* infection control
in food-producing animal
agriculture

1 1 1 0 EU 2016

Number of units set by
quota

1 3 0 3 Sweden 2002

Nutritional quality of diet 2 8 3 5 Sweden 2002–2020

On-farm production level 17 341 15 326 Denmark, Norway, Sweden 1984–2020

Pharmaceutical market,
sales, and PR‡

6 63 7 56 Global, Europe, EU, Albania, Armenia, Azerbaijan,
Belarus, Bosnia and Herzegovina, Georgia,
Kazakhstan, Kyrgyzstan, Montenegro, North
Macedonia, Republic of Moldova, Russian Federation,
Serbia, Tajikistan, Turkey, Ukraine, Uzbekistan,
Kosovo, Canada, France, Ireland, Sweden, UK

1995–2018

Population vulnerabilities 12 156 22 134 Global, OECD countries, Europe, EU, Nordic
countries, Austria, Bosnia, Belgium, Romania,
Bulgaria, Croatia, Czech Republic, Denmark,
England, Finland, France, Germany, Greece,
Hungary, Ireland, Italy, Lithuania, Norway, Poland,
Portugal, Romania, Russia, Scotland, Slovenia,
Spain, Sweden The Netherlands, United States,
Wales, Switzerland

1992–2019

(Continued)
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models (not included in the following analysis). Table 5
summarizes the location the model represents (e.g., a hospital,
on-farm, food), the type of transmission that is described (e.g.,
person-to-person, animal-to-animal), and whether the model was
representing a sensitive microbe, a resistant microbe.

Table 1 summarizes the microbes and AMs that were modelled
and the different sectors or transmission pathways these models
encompassed. Less than half of the models addressed two or more
sectors (46/106, 43%). Many articles were focused on humans
(42/106, 40%). Models at the human-animal interface were
described animal exposure as a risk factor for human illness.
Models that included the environment as part of the transmission
pathway looked at either the immediate surroundings of the host
(contaminated pens, hospital equipment, and production equip-
ment; 23/106, 22%) or the natural environment (water sources,

soil, plants; 8/106, 8%). The environment as a target area for
modelling was very limited (3/106, 3%), and was mostly framed in
terms of causing human illness or as a reservoir for pathogens. There
were very few models about plant/crop agriculture (5/106, 5%).

Resistant bacteria, specifically E. coli and methicillin-resistant
Staphylococcus aureus (MRSA), were the most modelled compared
to other resistant microbes (Table 1). Five models focussed on an
AM instead of a target microbe (Table 1), specifically on the decay
of antimicrobials in different settings (one in the gastrointestinal
tract of a host, and four in water systems). One model also
described AM’s effect on the development of AMR in a pathogen.
Five models did not have a specified host (Table 1) and described
the transmission of resistance genes and the development of
resistance in a population of micro-organisms after exposure to an
antimicrobial.

Table 3. (Continued )

Node

Number
of

Sources

Number
of data
points

Qualitative
data

Quantitative
data Region(s) covered

Year(s)
covered

Prescribing, diagnosing,
treatment practices
(appropriateness)

35 186 34 152 Global, Europe, EU**, Austria, Belgium, Canada,
Croatia, Denmark, England, Estonia, Finland, France,
Germany, Greece, Ireland, Italy, Latvia, Lithuania,
Norway, The Netherlands, Spain, Sweden, United
Kingdom, USA

1995–2019

Production costs 1 3 0 3 Sweden 2018

Production systems 28 413 48 365 Global, Europe, EU, Austria, Bosnia, Canada, Czech
Republic, Denmark, Estonia, Finland, France,
Germany, Latvia, Lithuania, Italy, Malta, Macedonia,
Norway, Romania, Russia, Spain, Sweden,
Switzerland, Thailand, UK, USA

1991–2030

Psychological health 8 60 0 60 Europe, EU, Belgium, Bulgaria, Czechia, Cyprus,
Finland, France, Germany, Iceland, Italy, Lithuania,
Luxemburg, Netherlands, Norway, Portugal,
Romania, Spain, Sweden, Switzerland, The
Netherlands, Turkey

2000–2018

Resistance in the wider
environment

1 1 1 0 Global 2018

Retail cost of food 16 245 16 229 Europe, EU, Austria, Czech Republic, Belgium,
Bulgaria, Denmark, Finland, France, Hungary,
Iceland, Ireland, Lithuania, Luxemburg, Monico,
Norway, Poland, Romania, Sweden, Switzerland

1999–2020

Retailer demand for
product

8 9 7 2 Europe, Sweden 2005–2019

Treatment of waste and
waste-water

2 12 2 10 Global, EU, Bangladesh, Ghana, India 2000–2018

Understanding and
awareness

2 11 1 10 Global, EU, Sweden, United states 2010

Unregulated meat sales 1 1 0 1 Sweden 2002

Use for prevention in
humans

3 46 0 46 EU/EEA, Sweden 2002–2012

Use for preventive
purposes

1 2 0 2 Italy 2000–2007

Use for treatment 1 1 0 1 Denmark 1995–2008

Use for treatment in
humans

1 15 0 0 Sweden 2003–2010

Viability of domestic meat
production

3 10 5 5 Europe, Sweden 2002–2019

*AM: Antimicrobial; **EU/EEA: European Union/ European Economic Area; †ARO: Antimicrobial-resistant organism; ‡PR: Public relation.
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Transmission model characteristics including the type of
pathogen (susceptible or resistant) and AM being modelled are
shown in Table 2. The majority (42/106; 40%) were human-
focused and were either at a population level (e.g., transfer of
patients between hospitals and community members) or at a
microscopic or micro-organism level (e.g., within-host models of
gene transfer and AMR emergence), with very few including both
mechanisms into a multi-level model (Table 2). There were very
few animal-focussed models of AMR. Alternatively, models of
microbes that did not state the resistance status were mainly
animal centred and focussed on within-farm or between-farm
transmission (Table 2).

Finally, most of the models described were compartmental
(n= 73/106, 69%) (Grassly and Fraser, 2008; Hohle, 2015;
Blackwood and Childs, 2018) and deterministic (53/106, 50%)
(Grassly and Fraser, 2008; Hohle, 2015), and used data from the
peer-reviewed literature as inputs for model parameter values
(53/106, 50%). This was especially true within the AMR-focused
models (Table 2). The use of theoretical models was also
widespread (34/106, 32%), especially within the AMR models.
We defined theoretical models as models that provide a general
structure and are solved mathematically but are not informed by
empirical data. These models were occasionally tested with
parameters from the literature or with wide ranges for parameters

Figure 2. How each of the 64 nodes were categorized into
ordinal levels (very high, high, medium, low, very low) given the
quantitative and qualitative data found from the literature scan
to inform the model the different parts of the Swedish food
system.

Figure 3. How each of the 64 nodes were categorized into ordinal levels that describe the amount of data (very little, a little, some, a lot, most) given the number of source and
amount of the data found from the literature scan to inform the model the different parts of the Swedish food system.
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to capture many possible values. Models rarely included all
indications of rigour (sensitivity analysis, validation, and calibra-
tion (Barlas, 1996; Martis, 2006; van Kleef et al., 2013) but over half
of the models (56/106, 53%) included at least one of these features.

Objective 2: Existing data sources and evidence

A total of 414 articles were identified that addressed 64 of the 92
nodes from the qualitativemodel (see full database; Cousins, 2022).
Despite the thorough review, there was no literature found for
28 nodes, including: AMU in wildlife; AMU and AMR in other
countries; antimicrobial-resistant organisms (AROs) in plant
agriculture; cost per unit set by quota; disposal of AMs (e.g.,
unused, unmetabolized); diverse experiences, education, and
training; existing farm infrastructure; existing healthcare infra-
structure; exposure to AROs through imported products; good
farm practices; host microbiome; level of resistance AMR in other
countries; national budgets money, and funding; non-AM
infection prevention and control in plant agriculture, by the
public, and in other social institutional settings; producer
profitability; research, development, and innovation; resistance
at the abattoir/processor; restocking with animals/eggs at higher
risk of infection; retail availability ofmeat/eggs in domestic market;
science and academia; time to market weight; treatment post-
procedure; what is being farmed; and the wider environment
microbiome (e.g., water, soil).

The data came from both peer-reviewed (149/414, 40%) and
grey literature (228/414, 60%) which are outlined in
Supplementary materials, Figure S3. These sources came from
multiple countries (Supplementary Materials, Figure S4), with
Sweden being the predominant country of origin as it was

Figure 4. The diagram of AMR adapted from Lambraki et al. (2022) to show the data sources and evidence found from the scoping review. Nodes colour represents the assigned
level for the given node, the darkness of the shading represents the amount of data for the given node, and the relationships that were mentioned in the sources are coloured in
black with numbered references (found in database; Cousins, 2022) provided in brackets. Note: this figure is zoomable in the PDF version to legible font size.

Table 4. Breakdown of the types ofmodels found in the sources identified in the
literature from a literature scan different types of existing models across various
parts of the broader One Health system (n= 146)

Number of articles

Disease transmission models 122

Single model or system 102

Review articles 20

Economic models 14

Single model or system 10

Review articles 4

Combination models 4

Single model or system 4

Review articles 0

Total 146
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prioritized in the search (117/414, 28%). Sources were mainly
published after 2017 (205/414, 50%; Supplementary materials,
Figure S5). Many databases reported surveillance data or national/
regional statistics and indicators which were particularly useful,
including: Food and Agriculture Organization of the United
Nations (FAO), Worldbank, Eurostat, Migration Data Portal,
Our World in Data. Similarly, other useful statistical webpages
depicted or combined information found in common databases:
Statista, Knoema, TrendEconomy, and Indexmundi

Both qualitative and quantitative data was reported; the majority
was quantitative (4445/5432 data points, 82%). However, more
qualitative data were available to parameterize some nodes, due to
either a lack of available quantitative data (e.g., development of
alternatives to AM), or the nature of the node being described (e.g.,
animalwelfare/low stress, consumer demand and behaviour). Ten of
the nodes had “very little” amount and quality of data; one or very
limited data sources (1 source) and data (1–15 data points). Six of the
nodes had a “most” for amount of data; 16 to 30 data sources and
234 to 413 data points per node, with an average of 94% (88%–97%)
being quantitative data points.

The literature search was targeted towards the nodes; however,
valuable information was identified pertaining to the relationships
(arrows) in the diagram. There were 325 relationships found in the

literature, 86 from the original diagram and 239 newly identified
during data extraction (see Supplementary materials, Figure S1).

Two new nodes, and included in the newly identified
relationships, were added to the diagram: “Access to healthcare
(doctors, hospitals, veterinarians, etc.)” and “Number of abattoirs.”

Discussion

We found a wide variety of dynamicmodels that describedmany of
the transmission pathways within the system. These models
however were segregated and had limited connection across
sectors. We also found quantitative and qualitative data to help
understand the current and past states of many of the nodes
representing the system. The data were highly variable in terms of
quantity, source, and type but overall, when combined, helped
extend our understanding of the overall system and have the
potential to be incorporated into future models of AMR.

Literature scan of models of, and factors associated with
AMR

Scoping reviews are useful tools for summarizing and dissemi-
nating existing literature in a useable and concise format for use by

Table 5. Distribution of the 106 articles* referring to models of disease transmission (n = 102) and models of disease transmission with an economic component
(n = 4) according to model processes, type of transmission, and type of model system (sensitive microbes, resistant microbes, and AMs**)

Location within the system that drives
antimicrobial resistance Type of transmission

Total Number of
Articles

Sensitive
microbes

Resistant
microbes

AM**
only

Community Person-person,
person-environment

10 8 2 –

Hospital/healthcare facility Person-person,
person-environment

11 2† 9† –

Community-healthcare facility Person-person,
person-environment

13 - 13 –

On-farm transmission Animal-animal,
animal-environment

18 17† 1 –

Between/introduction to farm transmission Animal-animal 10 9 1 –

Farm-to-slaughter Animal-animal 2 1 1 -

Crop agriculture Plant-environment 3 – 3 –

Processing plant/Slaughter house Animal-person,
plant-person,
cross-contamination

4 4 – –

Zoonotic transmission Animal-person 5 4 1 –

Veterinary clinic Animal-person 1 – 1 –

Foodborne Animal-person,
plant-person

5 2 3 -

Waterborne Environment-person 2 2 – –

One health model Human-animal-environment 1 – 1 –

Pathogen level Within host,
AMR emergence

14 - 14 -

Pharmacokinetic model AM levels and decay 2 - 1 1

Hydrological model AM residue and genetic element
levels and decay

5 – 1 4

TOTAL 106 49 52 5

*To find more details for each model that falls under the given category please refer to the complete database (Cousins, 2022). The complete list of articles is categorized with the same
categories as appear in the table for easy cross-reference. **AM, Antimicrobial. †At least one of these models contain an economic component.
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other researchers, policy makers, and other stakeholders who may
not have the skills or resources to perform such a task (Antman
et al., 1992) review methodology, this literature scan: 1) provided a
framework to improve the transparency of data collection for
parameterization of a model of a complex system; 2) supports the
building of a future comprehensive One Health model of AMR
in a Swedish context; 3) assists other modellers by providing a
comprehensive list of existing models of AMR (and related micro-
organisms) in various sectors, where data exist within those
sectors, and how to gain access to these data; and 4) provides
insight into the areas in which more empirical data are needed
before comprehensive quantitative models can be created. Major
data gaps included AMR in the environmental sector (e.g., levels of
resistance within the soil and waterways), in wildlife populations
(e.g., the level of resistance in birds, rodents, and other wild animals
and the relative contribution these pathways have to overall
transmission to humans or food-producing animals), and in crop
agriculture, and for nodes referring to economics, resources, and
practices on-farm and in healthcare (e.g., healthcare and farm
infrastructure, good farm practices, feed quality and feed
efficiency). Furthermore, most models encompassed a single
sector, and more research is needed into modelling methods to
connect existing models from the various sectors.

Disease transmission models embedded within the One
Health system
We found that the models provided good coverage of the main
parts of the One Health system (human, animal, environment),
especially for specific human populations (e.g., within hospital)
and agriculture (e.g., on-farm transmission). We included models
not directly related to AMR (e.g., Foot and Mouth Disease,
Influenza) as they are embedded within the same system and
model parts that have not yet been explored in AMR-specific
models (e.g., importation or global spread). Human-focused
models with limited connection between sectors has been
identified as a major gap in AMR models in previous reviews
(Antman et al., 1992; Birkegård et al., 2018), but even with the
inclusion of a wider range of models, there was still limited
connection between the sectors, and nodes less directly related to
human health and agriculture (e.g., development of new AMs,
research and development) were missed.

Furthermore, models typically took a humanistic perspective,
looking at how animals, crops, or the environment can lead to
resistance in humans. However, humans also have the potential to
introduce and spread resistant microbes to animals and into the
environment (Government of Canada, 2017; Mcewen and
Collignon, 2017; WHO, 2018). Therefore, a more One Health
perspective, including cross-sector connections and evaluating all
parts equally within models, is an important step towards an
integrative modelling approach.

Smaller scale models, such as those in a single hospital or
farm, included the environment as a source of transmission
(e.g., shedding faeces, contaminated spaces or workers in hospital).
In contrast, larger community models of AMR were simplified to
human-human or animal-animal transmission. However, to better
understand and address the complex issue of AMR,models need to
account for these different transmission pathways.

The AMR-specific models identified were mainly quantitative,
deterministic, compartmental models, aligning with past reviews
of the literature (Birkegård et al., 2018; Ramsay et al., 2018) and the
evolution of models; AMR is a developing field, and compart-
mental models are typically developed first (Hohle, 2015).

Individual-based models allow researchers to add more hetero-
geneity to the population and include additional population-level
attributes (e.g., different contact rates, spatial elements, individual
behaviours; Bonabeau, 2002; Maglio and Mabry, 2011; Hohle,
2015). These models are useful but require more data about the
populations and the pathogens they model and therefore can be
more difficult to parameterize (Bonabeau, 2002; Maglio and
Mabry, 2011; Hohle, 2015). Also, many models were theoretical;
models that outline the structure and transmission pathways, but
do not use data to inform them. Although these theoretical models
are useful to understand transmission dynamics, without data to
inform them, their ability to be used to accurately model a system
or to assess interventions is limited and untested (Birkegård et al.,
2018; Ramsay et al., 2018).

Compartmental models provide a good foundation and are
typically the starting point for modelling new systems (Hohle,
2015). By creating a set of interlinked compartmental models from
multiple areas of the system, we could create a more compre-
hensive model of the system. Compartmental models also lend
themselves well to be expanded into integrated or multi-level
models (e.g., within-host and population level; Hohle, 2015).
However, there is a lack of data and knowledge about some of the
associations between sectors, which can lead to larger uncertainty
in results and difficulty in interpreting results. The use of mixed-
methods compartmental modelling may be an intermediate step to
include a wider range of data.

Economic models embedded within the One Health system
Economic modelling is becoming important in evaluating policies
in many health (e.g., health interventions such for obesity
(Gortmaker et al., 2011; Sacks et al., 2011), hospital interventions
for disease control (Assimakopoulos, 1987; Schechner et al.,
2017)), and other fields (e.g., energy (Hafezalkotob, 2018),
agriculture (Martínez-López et al., 2014), and climate change
(Kahil et al., 2015)). It has been deemed necessary to identify
solutions that can have the most impact with the least amount of
associated costs (Jamison, 2006; Levin and Chisholm, 2016;
Marseille et al., 2015). Cost is especially important for agricultural
and food production as there are many levels at which the costs can
be applied (Animals, 1999; FAO, 2017). For example, if the
ultimate goal is for impacts at the human population level (e.g.,
reducing AMR), but it is not economical for producers to
implement the intervention (e.g., reducing AMU, changing
farming practices, updating farm infrastructure), then it is not
going to be adopted as easily as an intervention that allows
producers to continue to profit (Aarestrup et al., 2008; FAO, 2017;
Mcewen and Collignon, 2017; Wernli et al., 2017). Consumer
demand is also a strong driver of food availability, cost, and
ultimately AMR (Primeau, 2020; Lambraki et al., 2022). To provide
enough food for the growing population at a price that consumers
can afford, agricultural practices have adapted to high intensity
farming where the higher animal density may drive the need for
AMs for prevention or treatment of inevitable diseases (Lambraki
et al., 2022). Therefore, engaging economists and economic
modellers in AMR modelling is vital for cost-benefit analysis (e.g.,
weighing initial costs and long-term payoffs) of interventions that
aim to control AMR at an international scale.

The evidence landscape of factors that drive AMR
Overall, we found the evidence landscape challenging to navigate.
Data existed across many formats and sources, and required
substantial interpretation, searching, deciphering jargon, and
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sifting through multiple databases, government webpages, and
other literature. After the data were found, it was either: hard to
compare between populations and contexts due tomultiplemetrics
being reported, patchy, incomplete, or were not publicly available.
Therefore, to adequately capture data for the 92 nodes identified
(Lambraki et al., 2022), a separate literature scan may be needed to
be conducted for each specific research question (node), especially
those where data were not readily available. We estimated that
this could take upwards of 276 person-months (given a cut-off
of 3 months per node for 92 nodes), which would be resources
intensive.

Some of the nodes were informed by quantitative data that
captured many years and were specific to the Swedish context.
However, in some cases, the way the data were collected or
reported was not useful for quantitative modelling purposes; data
reported monthly or yearly (as opposed to daily or weekly which
is required for many quantitative models), not representative
of the entire country, or did not capture the entire context
(e.g., surveillance data for one hospital or farm) and could not be
generalized to a population level. This quantitative data could,
however, be reduced to qualitative categories to represent the state
of the node within a semi-quantitative model. For example, the
amount of AMU of three countries (e.g., 5 defined daily doses
(DDD) per 100,000 population, 10 DDD per 100,000 population,
and 18 DDD per 100,000 population (The Centre for Disease
Dynamics & Economics & Policy, n.d.)) could be converted into
categories; high (18 DDD per 1000,000 population), low (5 DDD
per 1000,000 population), and medium (10 DDD per 100,000
population).

Some nodes were mainly represented in qualitative terms.
These nodes are important to the system (as identified by the
workshop participants; Lambraki et al., 2022)) and therefore
incorporating this valuable data is necessary to capture the nuances
of the One Health system, providing further evidence for
qualitative or mixed-methods simulation modelling this complex-
ity and breadth.

Limitations

This literature scan aimed to identify a breadth of models that fit
our context and outcome of interest (One Health model of AMR in
a high-income context), not to identify every possible model of
AMR and zoonotic transmission. Therefore, it is likely that some
models were missed that could provide additional insight into the
system. However, many models were identified that provide wide
coverage of the system and a good foundation for creating a One
Health AMR model.

The search formodels were not limited by geographical context,
however, most of the models identified were from a high-income
context. Although this aligns with our specific goal of creating a
model in Sweden, a high-income country, this limits the
generalizability of this review to modelling low- and middle-
income contexts, and a targeted search may be necessary.

The literature scan of the existing evidence landscape was
thorough, and searches for data to inform all 92 nodes were
attempted by creating, testing, and refining of the search strings.
However, it was more difficult to create searches that captured
some nodes in their entirety or were narrow enough to capture
some of the more detailed or niche aspects of the nodes (e.g.,
“Consumption of other (non-meat/egg) foods” could include
fruits, vegetables, and grains, but also pop, snack foods, and
alcohol). Similarly, a subset of nodes was broad and abstract in

nature (e.g., diverse experience, knowledge, and training) and
although important to AMR dynamics, are challenging to describe
on a national and population level, making it difficult to inform
population-based models (e.g., compartmental models). For
example, an individual’s culture, educational background, and
past experiences can shape their views and actions (e.g., how they
access the healthcare system (Haenssgen et al., 2020; Lohm et al.,
2020; Lambraki et al., 2022), their trust in doctors and medicine
(Blommaert et al., 2014; Lambraki et al., 2022)), can impact
their risk of AMR. Furthermore, the 331 relationships (arrows)
identified by the workshop participants (Lambraki et al., 2022) and
additional 239 relationships identified through the literature scan
need to be quantified with a targeted search. Finally, although the
same search strategy was used throughout, searching the first 100
articles in each data base for each node, the three-month limit
could have led to a deeper and more critical look at the titles and
abstracts for the nodes that occurred early in the search compared
to the end of the search. Finally, although the same search strategy
was used throughout, searching the first 100 articles in each data
base for each node, the three-month limit could have led to a
deeper and more critical look at the titles and abstracts for the
nodes that occurred early in the search compared to the end of
the search. Overall, this literature search highlights that despite
the availability of information, there are substantial challenges as
data are not cohesive, accessible, or easy to find. Thus, a more
comprehensive scan of the literature by a large inter-disciplinary
team (including other fields such as economists or agroecology), to
refine nodes for use in modelling and to identify potential data
sources is necessary.

Finally, this literature scan was conducted as a pragmatic way of
collecting data to outline and parameterize a large-scale model of
AMR across a One Health system. Therefore, validating the quality
of evidence to support the data or validity of the sources was not a
primary aim of this review and not inherently part of the literature
scan process. However, most sources were from peer-reviewed,
government, or major newspapers and therefore, we have
confidence in the data that were collected can be representative
of the situation within a high-income country such as Sweden.

Conclusion and recommendations for future research

This literature scan identified disparate, primarily quantitative
models that do not fully represent the One Health aspects of this
AMR. Many data gaps exist, making it difficult to model the entire
system empirically. Current quantitative models are unable to
adequately capture the complexity, nonlinear relationships, and
interconnectedness of the system and given the data availability, it
is not possible to create a fully quantitative model of the complex
systems of drivers of AMR in the Swedish One Health system
context without including overtly simplifying assumptions.
Further work is needed to determine how to integrate the wealth
of knowledge found in this review to create a comprehensive model
of the system.

To combine the plethora of valuable data found, including both
the quantitative and qualitative data, a mixed-methods (semi-
quantitative) compartmental model of the 64 nodes for which
there were data could be created in the interim, while still
advocating for further evidence to fill identified data gaps.
Interdisciplinarity and cross-sector collaboration can foster
communication, highlight different perspectives and expertise,
share knowledge about existing or novel models and where and
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how data are being collected, to gain a more holistic and One
Health view of the system of AMR.
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Martínez-López B, Ivorra B, Fernández-Carrión E, Perez A M, Medel-
Herrero A, Sánchez-Vizcaíno F, Gortázar C, Ramos A M, Sánchez-
Vizcaíno J M (2014) A multi-analysis approach for space-time and

economic evaluation of risks related with livestock diseases: the example of
FMD in Peru. Preventive Veterinary Medicine 114, 1, 47–63. https://doi.org/
10.1016/j.prevetmed.2014.01.013.

Martis MS (2006) Validation of simulation based models: a theoretical outlook.
Electronic Journal of Business Research Methods 4, 1, 39–46.

Mcewen SA and Collignon PJ (2017) Antimicrobial resistance: a One Health
perspective.Microbiology Spectrum 6, 2, 1–26. https://doi.org/10.1128/micro
biolspec.ARBA-0009-2017.Correspondence.

Murphy C P, Carson C, Smith B A, Chapman B, Marrotte J, McCann M,
Primeau C, Sharma P, Parmley E J (2018) Factors potentially linked with
the occurrence of antimicrobial resistance in selected bacteria from cattle,
chickens and pigs: a scoping review of publications for use in modelling of
antimicrobial resistance (IAM.AMRProject).Zoonoses and Public Health 65,
8, 957–971. https://doi.org/10.1111/zph.12515.

Murray CJ, Ikuta KS, Sharara F, Swetschinski L, Robles Aguilar G, Gray A,
Naghavi M, et al. (2022) Global burden of bacterial antimicrobial resistance
in 2019: a systematic analysis. The Lancet 399, 10325, 629–655. https://doi.
org/10.1016/S0140-6736(21)02724-0.

Niewiadomska AM, Jayabalasingham B, Seidman JC, Willem L, Grenfell B,
Spiro D and Viboud C (2019) Population-level mathematical modeling of
antimicrobial resistance: a systematic review. BMC Medicine 17, 1, 1–20.
https://doi.org/10.1186/s12916-019-1314-9.

Opatowski L, Guillemot D, Boëlle PY and Temime L (2011) Contribution of
mathematical modeling to the fight against bacterial antibiotic resistance.
Current Opinion in Infectious Diseases 24, 3, 279–287. https://doi.org/
10.1097/QCO.0b013e3283462362.

Porta M (2016) Environment. In Dictionary of Epidemiology, 6th edn. Oxford
University Press. https://doi.org/10.1093/acref/9780199976720.001.0001.

Primeau C (2020) Exploring the Contributions of Genotypic, Phenotypic, Social
and Qualitative Data Sources to Our Understanding of Antimicrobial
Resistance in Canada. Thesis. Univeristy of Guelph.

Ramsay DE, Invik J, Checkley SL, Gow SP, Osgood ND and Waldner CL
(2018) Application of dynamic modelling techniques to the problem of
antibacterial use and resistance: a scoping review. Epidemiology and Infection
146, 16, 2014–2027. https://doi.org/10.1017/S0950268818002091.

Sacks G, Veerman JL, Moodie M and Swinburn B (2011) Traffic-light
nutrition labelling and junk-food tax: a modelled comparison of cost-
effectiveness for obesity prevention. International Journal of Obesity 35, 7,
1001–1009. https://doi.org/10.1038/ijo.2010.228.

Schechner V, Carmeli Y and Leshno M (2017) A mathematical model of
Clostridium difficile transmission in medical wards and a costeffectiveness
analysis comparing different strategies for laboratory diagnosis and patient
isolation. PLoS ONE 12, 2, 1–12. https://doi.org/10.1371/journal.pone.
0171327.

Søgaard Jørgensen P, Folke C, Henriksson PJG, Malmros K, Troell M and
Zorzet A (2020) Coevolutionary governance of antibiotic and pesticide
resistance. Trends in Ecology and Evolution 35, 6, 484–494. https://doi.org/
10.1016/j.tree.2020.01.011.

Spicknall IH, Foxman B, Marrs CF and Eisenberg JNS (2013) A modeling
framework for the evolution and spread of antibiotic resistance: literature
review and model categorization. American Journal of Epidemiology 178, 4,
508–520. https://doi.org/10.1093/aje/kwt017.

The Centre for Disease Dynamics, & Economics & Policy (n.d.)
ResistanceMap: Antibiotic Use.

The European Commission (2018) AMR: A Major European and Global
Challenge. The European Commission. Available at https://health.ec.euro
pa.eu/system/files/2020-01/amr_2017_factsheet_0.pdf.

The Public Health Agency of Sweden (2023) Swedish Work Against Antibiotic
Resistance – A One Health Approach.

van Kleef E, Robotham JV, Jit M, Deeny SR and Edmunds WJ (2013)
Modelling the transmission of healthcare associated infections: a systematic
review. BMC Infectious Diseases 13, 294, 1–13. https://doi.org/10.1186/1471-
2334-13-294.

Wang L, Zhang X, Liang X and Bloom G (2016) Addressing antimicrobial
resistance in China: policy implementation in a complex context.
Globalization and Health 12, 1, 1–9. https://doi.org/10.1186/s12992-016-
0167-7.

18 Melanie Cousins et al.

https://doi.org/10.1017/one.2023.15 Published online by Cambridge University Press

https://www.canada.ca/en/health-canada/services/publications/drugs-health-products/tackling-antimicrobial-resistance-use-pan-canadian-framework-action.html
https://www.canada.ca/en/health-canada/services/publications/drugs-health-products/tackling-antimicrobial-resistance-use-pan-canadian-framework-action.html
https://doi.org/10.1038/nrmicro1845
https://doi.org/10.1038/nrmicro1845
https://publications.slu.se/?file=publ/show&id=105237
https://publications.slu.se/?file=publ/show&id=105237
https://publications.slu.se/?file=publ/show&id=105237
https://publications.slu.se/?file=publ/show&id=105237
https://doi.org/10.1136/bmjgh-2020-003779
https://doi.org/10.1136/bmjgh-2020-003779
https://doi.org/https://doi.org/10.1016/j.cie.2018.03.031
https://doi.org/https://doi.org/10.1016/j.cie.2018.03.031
https://doi.org/10.1111/tmi.13230
https://doi.org/10.1016/j.ecolecon.2015.11.004
https://doi.org/10.1016/j.ecolecon.2015.11.004
https://doi.org/10.1007/s13194-012-0056-8
https://doi.org/10.1007/s13194-012-0056-8
https://doi.org/10.1371/journal.pone.0263914
https://doi.org/10.1186/s12879-021-06483-z
https://doi.org/10.1080/13698575.2020.1783436
https://doi.org/10.1080/13698575.2020.1783436
https://doi.org/10.1016/j.amepre.2010.11.010
https://doi.org/10.1038/s41598-019-46078-y
https://doi.org/10.2471/BLT.14.138206
https://doi.org/10.2471/BLT.14.138206
https://doi.org/10.1016/j.prevetmed.2014.01.013
https://doi.org/10.1016/j.prevetmed.2014.01.013
https://doi.org/10.1128/microbiolspec.ARBA-0009-2017.Correspondence
https://doi.org/10.1128/microbiolspec.ARBA-0009-2017.Correspondence
https://doi.org/10.1111/zph.12515
https://doi.org/10.1016/S0140-6736(21)02724-0
https://doi.org/10.1016/S0140-6736(21)02724-0
https://doi.org/10.1186/s12916-019-1314-9
https://doi.org/10.1097/QCO.0b013e3283462362
https://doi.org/10.1097/QCO.0b013e3283462362
https://doi.org/10.1093/acref/9780199976720.001.0001
https://doi.org/10.1017/S0950268818002091
https://doi.org/10.1038/ijo.2010.228
https://doi.org/10.1371/journal.pone.0171327
https://doi.org/10.1371/journal.pone.0171327
https://doi.org/10.1016/j.tree.2020.01.011
https://doi.org/10.1016/j.tree.2020.01.011
https://doi.org/10.1093/aje/kwt017
https://health.ec.europa.eu/system/files/2020-01/amr_2017_factsheet_0.pdf
https://health.ec.europa.eu/system/files/2020-01/amr_2017_factsheet_0.pdf
https://doi.org/10.1186/1471-2334-13-294
https://doi.org/10.1186/1471-2334-13-294
https://doi.org/10.1186/s12992-016-0167-7
https://doi.org/10.1186/s12992-016-0167-7
https://doi.org/10.1017/one.2023.15


Waterloo Institute of Complexity and Innovation. What are complex
systems?, 2022. Available at https://uwaterloo.ca/complexity-innovation/
about/what-are-complex-systems.

Wernli D, Jørgensen PS, Morel CM, Carroll S, Harbarth S, Levrat N and
Pittet D (2017)Mapping global policy discourse on antimicrobial resistance.
BMJ Global Health 2, 2, e000378. https://doi.org/10.1136/bmjgh-2017-
000378.

Regional office for Europe, 2017, The burden of food borne diseases in the
WHO European region, WHO Regional Office for Europe. The burden of
food borne diseases in theWHOEuropean region, 2017. Available at https://

www.euro.who.int/__data/assets/pdf_file/0005/402989/50607-WHO-Food-
Safety-publicationV4_Web.pdf.

WHO (World Health Organization) (2018) Antibiotic resistance. Available at
https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance.

Wierup M, Wahlström H and Bengtsson B (2021) Successful prevention of
antimicrobial resistance in animals—a retrospective country case study of
sweden.Antibiotics 10, 2, 1–24. https://doi.org/10.3390/antibiotics10020129.

World Bank (n.d.) The World by Income and Region. The World Bank.
Available at https://datatopics.worldbank.org/world-development-indicato
rs/the-world-by-income-and-region.html.

Research Directions: One Health 19

https://doi.org/10.1017/one.2023.15 Published online by Cambridge University Press

https://uwaterloo.ca/complexity-innovation/about/what-are-complex-systems
https://uwaterloo.ca/complexity-innovation/about/what-are-complex-systems
https://doi.org/10.1136/bmjgh-2017-000378
https://doi.org/10.1136/bmjgh-2017-000378
https://www.euro.who.int/__data/assets/pdf_file/0005/402989/50607-WHO-Food-Safety-publicationV4_Web.pdf
https://www.euro.who.int/__data/assets/pdf_file/0005/402989/50607-WHO-Food-Safety-publicationV4_Web.pdf
https://www.euro.who.int/__data/assets/pdf_file/0005/402989/50607-WHO-Food-Safety-publicationV4_Web.pdf
https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance
https://doi.org/10.3390/antibiotics10020129
https://datatopics.worldbank.org/world-development-indicators/the-world-by-income-and-region.html
https://datatopics.worldbank.org/world-development-indicators/the-world-by-income-and-region.html
https://doi.org/10.1017/one.2023.15

	Mapping out a One Health model of antimicrobial resistance in the context of the Swedish food system: a literature scan
	Background
	Methods
	Objective 1: Existing models
	Objective 2: Existing data sources and evidence

	Results
	Objective 1: Existing models
	Objective 2: Existing data sources and evidence

	Discussion
	Literature scan of models of, and factors associated with AMR
	Disease transmission models embedded within the One Health system
	Economic models embedded within the One Health system
	The evidence landscape of factors that drive AMR

	Limitations

	Conclusion and recommendations for future research
	Connections references
	References


