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Regularization of the Kepler Problem on
the Three-sphere
Shengda Hu and Manuele Santoprete

Abstract. In this paper we regularize the Kepler problem on S3 in several different ways. First, we per-
form a Moser-type regularization. Then, we adapt the Ligon–Schaaf regularization to our problem.
Finally, we show that the Moser regularization and the Ligon–Schaaf map we obtained can be under-
stood as the composition of the corresponding maps for the Kepler problem in Euclidean space and
the gnomonic transformation.

1 Introduction

It often happens that the flow associated with a vector field is incomplete. Famous
examples are the Newtonian n-body problem, where singularities arise because of
the existence of collision orbits, and the Kepler problem. Regularization of vector
fields is a common procedure in the study of differential equations. There are two
main approaches. In the first approach the incompleteness of the flow is removed by
embedding it into a complete flow. The qualitative behavior of solutions of the set of
singularities is the same for both vector fields. The second approach involves surgery
and is usually called regularization by surgery or block-regularization. Roughly, the
idea is to excise a neighborhood of the singularity from the manifold on which the
vector field is defined and then to identify appropriate points on the boundary of the
region.

Both approaches have been applied to the Kepler problem in Euclidean space. The
second approach was first used for the Kepler problem by Easton [11], while the first
approach has several variants. We mention only the most relevant for our work.
As far as we know the regularization of the planar Kepler problem using the first
approach was first discussed by Levi-Civita [17]. Another beautiful incarnation of
the second approach, due to Moser [21], consists in showing that the flow of the n-
dimensional Kepler problem on the surface of constant negative energy is conjugate
to the geodesic flow on the unit tangent bundle of Sn. The main disadvantage of
Levi-Civita and Moser’s regularization methods is that they handle each energy level
separately. This disadvantage is partially removed by a regularization procedure due
to Ligon and Schaaf [18]. The Ligon–Schaaf regularization procedure allows us to
handle all negative (resp., all positive) energy levels together. However, negative, pos-
itive, and zero energy levels still cannot be handled together with this procedure. The
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treatment of the regularization in the original article by Ligon and Schaaf requires
laborious computations, and a somewhat simplified treatment of the Ligon–Schaaf
regularization map is due to Cushman and Duisteermaat [4] and Cushman and Bates
[5]. Recently Marle [19], and Heckman, and de Laat [14] posted preprints on arXiv
that give another simplified treatment by showing that the Ligon–Schaaf map can
be understood as an adaptation of the Moser regularization map. Regularization by
surgery handles all the energy level at once; however, this is a completely different
approach that has other shortcomings. In particular, on the one hand it is difficult to
find the attaching map, and on the other hand this kind of regularization is not too
helpful in understanding the global flow of the system and the near-collision orbits.

The Kepler problem on the three-sphere S3 is the main topic of this paper. The
Kepler problem and n-body problem on spaces of constant curvature are over a cen-
tury old problems and recently have generated a good deal of scholarly interest. See
[6–8, 22, 23] for some recent results and some history. See [8] for a more exhaustive
survey of recent results.

The flow of the Kepler problem on the three-sphere S3 is incomplete, and several
procedures have been used to regularize its vector field. The surgery approach to
regularization was applied in [23] to the Kepler problem on a class of surfaces of
revolution that include the two-sphere. The Levi-Civita and Moser approaches were
used in [12].

In this article we extend the regularization of Moser and of Ligon and Schaaf,
and we study how they are connected. Other methods that could be extended to
the Kepler problem on S3 are the Kustaanheimo–Stiefel regularization [16], and the
approach of using a larger group of symmetry as Souriau [25] does. Studying these
issues and how the various regularizations are connected is an interesting problem,
which is outside the scope of this paper. However, we plan to address these issues in
a future article.

The paper is organized as follows. We start by deriving the equations of motion
using the method of Dirac brackets (Section 2). In Section 3, we describe the inte-
grals of motion of the system and derive the equations of the orbit. In Section 4, we
describe the Moser regularization applied to the Kepler problem on S3. The details
are given for the negative energy level sets, where the orbits lie completely in the up-
per hemisphere. The same approach applies to the part of any energy level set that
lies in the upper hemisphere. Furthermore, we carry out the Ligon–Schaaf regular-
ization directly (Section 5) and compare it with the case of Euclidean Kepler problem.
It turns out that the Ligon–Schaaf regularization for the negative energy parts of the
two systems are naturally related by the gnomonic map (Section 6). The gnomonic
map takes the upper hemisphere to the full Euclidean space. As will become clear in
Section 6, the negative energy orbits stay completely in the upper hemisphere, and
the two Kepler systems are related by a rescaling of the induced map on the tangent
bundle. More precisely, let Φ and Φc be the Ligon–Schaaf maps for the Kepler prob-
lem on S3 and R3, respectively, and let Ψ denote the map induced by the gnomonic
projection, then Φ = Φc ◦ Ψ. The map Ψ is not symplectic, which implies the non-
symplecticness of the Ligon–Shaaf map for the spherical case. In the same section, it
is also shown that the gnomonic transformation relates the Moser regularization of
the two systems.
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The relations uncovered in this paper are summarized in the following diagram:

Kepler on S3
+

Ψ, Section 6

��

Φ, Section 5

!!

Section 4

,, geodesic flow
on S3

Kepler on R3

Φc , [4, 5]

//

[20, 21]

22

Delaunay

66

2 Preliminaries

Let 〈 · , · 〉 be the Euclidean inner product in R4 and ‖ · ‖ the Euclidean norm in
R4, and let · , ×, and | · | be the usual dot product, vector product and Euclidean
norm in R3, respectively. Let q = (q0, q) with q = (q1, q2, q3) and v = (v0, v)
with v = (v1, v2, v3) be canonical coordinates in TR4, with the symplectic 2-form
ω =

∑
i dqi ∧ dvi .

Consider the following Hamiltonian system (H,TR4, ω) with Hamiltonian

H(q, v) = 1
2 〈v, v〉 + V (q),

where the potential energy V (q) is

V (q) = −γ q0

(1− q2
0)

1
2

.

This Hamiltonian describes a particle that moves in R4 under the influence of poten-
tial V (q).

When the particle is constrained to move on the unit 3-sphere S3 ⊂ R4, the system
is restricted to the tangent bundle of the 3-sphere:

TS3 = {(q, v) ∈ TR4|〈q, q〉 − 1 = 0 and 〈q, v〉 = 0}.

The Hamiltonian vector field XH of H on TR4 does not restrict to the Hamiltonian
vector field XH|TS3 of the constrained system. There are two approaches in comput-
ing XH|TS3 using either a modified Hamiltonian function H∗ (resulting in XH∗ , see
Cushman [5]) or a modified Poisson bracket, the Dirac–Poisson bracket { · , · }∗ (re-
sulting in X∗H , see Dirac [9, 10]) on TR4, such that the restriction of the resulting
vector fields coincide with XH|TS3 . The two approaches are related, since

{F,G}∗|TS3 = {F∗,G∗}|TS3 .

The Dirac–Poisson bracket can be explicitly written as follows.
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Lemma 2.1 The Dirac–Poisson structure {·, ·}∗|TS3 is

q0 q1 q2 q3 v0 v1 v2 v3

q0 0 0 0 0 1− q2
0 −q0q1 −q0q2 −q0q3

q1 0 0 0 −q0q1 1− q2
1 −q1q2 −q1q3

q2 0 0 −q0q2 −q1q2 1− q2
2 −q2q3

q3 0 −q0q3 −q1q3 −q2q3 1− q2
3

v0 0 q1v0 − q0v1 q2v0 − q0v2 q3v0 − q0v3

v1 0 q2v1 − q1v2 q3v1 − q1v3

v2 0 q3v2 − q2v3

v3 0

or

{qα, vβ}∗|TS3 = δαβ − qαqβ , {vα, vβ}∗|TS3 = Lαβ , {qα, qβ}∗|TS3 = 0,

where α, β = 0, 1, 2, 3 and Lαβ = qβvα − qαvβ .

Proof The phase space TS3 is given as a subset of TR4 by the constraints

c1(q, v) = 〈q, q〉 − 1 = 0 and c2(q, v) = 〈q, v〉 = 0

The Dirac–Poisson brackets are given by the relation

{F,G}∗ = {F,G} +
∑

i, j

Ci j{F, ci}{G, c j},

where Ci j are the elements of the inverse of the matrix with entries {ci , c j}. In this
case we have

C =
1

2〈q, q〉

[
0 −1
1 0

]
The result follows from a computation.

Lemma 2.2 The constrained equations on TS3 are

q̇ = v, v̇ = −∇V (q)−
(
〈v, v〉 −

〈
q,∇V (q)

〉)
q.

Proof We first compute the equations of motion for the Hamiltonian function H
with respect to the Dirac–Poisson bracket

q̇ = {q,H}∗ v̇ = {v,H}∗,

then we restrict the resulting vector field X∗H to TS3.

Let {e0, e1, e2, e3} be the standard basis for R4. Then for our choice of the poten-
tial, the equations of motion take the form:

q̇ = v

v̇ =
γe0

(1− q2
0)3/2

−
(
〈v, v〉 + γ

q0

(1− q2
0)3/2

)
q.

(2.1)
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3 Conserved Quantities and the Equations of the Trajectory

It is easy to see that the Hamiltonian H and the angular momentum µ = q × v are
integrals of motion of the vector field XH∗ |TS3 = XH|TS3 . There is another interesting
integral

A = π × µ− γ q

|q|
,

where π = q0v− v0q. The vector A is a spherical generalization of the vector known
as the Runge–Lenz vector in Euclidean space (see [15]). Priority for the Runge–Lenz
vector in Euclidean space is sometimes attributed to Laplace, but appears to be due
to Hermann and Bernoulli [13].

Note that, as in the case of the Kepler problem in Euclidean space, there is no uni-
versally accepted definition of the Runge–Lenz vector. The most common definition
is given above, while the common alternative e = A/γ is also called the eccentricity
vector.

Proposition 3.1 The Runge–Lenz vector is an integral of motion.

Proof

dA

dt
=

dπ

dt
× µ− γ q̇

|q|
+ γ

(q · q̇)q

|q|3

=(q̇0v + q0v̇− q̇v0 − qv̇0)× µ− γ q̇

|q|
+ γ

(q · q̇)q

|q|3

=
[

v0v−
(
〈v, v〉q0 + γ

q2
0

|q|3/2

)
q− v0v− q

( γ

|q|3/2
− 〈v, v〉q0 − γ

q2
0

|q|3/2

)]
× µ

− γ v

|q|
+ γ

(q · v)q

|q|3
, using (2.1)

=− γ

|q|3/2
(q× µ)− γ

|q|3
(v(q · q)− q(q · v)) =

γ

|q|3/2
(q× µ− q× µ) = 0.

Remark 3.2 Analogous to the Euclidean case, there is an another conserved vector,
namely the binormal vector,

B = π − γ

|q||µ|2
(µ× q).

It can be shown that A = B× µ, and B is “binormal”, because it is normal to both A
and µ.

Regard q, v, µ,A,B as vectors in R3. Since µ = q × v is a constant of motion, it
points in a fixed direction. Moreover, it is orthogonal to q and v. Therefore, when
moving along an orbit, q lies on a plane P2 (in R3) orthogonal to µ. Furthermore, it
can be shown that (A × B) · q = 0, A · µ = 0, and B · µ = 0. Hence, A and B form
a basis for P2 when both are non-zero (however, they are zero on circular orbits).
Returning to R4, let P = Span(e0,A,B), then along an orbit, q ∈ S2 = P∩S3. Hence,
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each orbit must lie on a three-dimensional subspace. Moreover, since 〈q, q〉 = 1, the
orbit is a curve on the two-sphere S2. If φ is used to denote the angle between q and
the fixed direction of A, then

(3.1) A · q = |A||q| cosφ = q · (π × µ)− γ q · q

|q|
.

Permuting the terms in the scalar triple product and noting that π = q0v− v0q,

q · (π × µ) = µ · (q× π) = q0µ · (q× v) = q0|µ|2.

Let |q| = r and q0 = z. Rearranging equation (3.1) yields

(3.2)
z

r
=

γ

|µ|2
(

1 +
|A|
γ

cosφ
)
, r2 + z2 = 1,

where (r, φ, z) are cylindrical coordinates on P. Write equation (3.2) in spherical
coordinates (ρ, φ, θ) using the formulas r = ρ sin θ, φ = φ, and z = ρ cos θ, and we
obtain

1

tan θ
=

γ

|µ|2
(

1 +
|A|
γ

cosφ
)
.

This recovers the known formula for the orbits of the Kepler problem on the sphere
[3] (compare also with [22]). The orbits are always closed. Each orbit is obtained by
intersecting a conical surface with vertex at the origin and a sphere, which reduces to
a circle when |A| = 0. In fact, the first of equations (3.2) is a conical surface (and, in
particular, one nappe of a quadric conical surface for |A|/γ < 1), since for φ = φ0

it reduces to the equation of a line through the origin, and for z = z0 it reduces to
a conic section. The constant ε = |e| = |A|/γ is called the eccentricity of the orbit,
which explains why e is called the eccentricity vector. When ε = 0, the orbits are
circles, when 0 < ε < 1 they are curves corresponding to ellipses on the plane, ε = 1
corresponding to parabolas, and ε > 1 corresponding to hyperbolas. Note that the
orbits are confined to the upper hemisphere when 0 < ε < 1, while it is not the case
when ε > 1. We refer the reader to [3,22] for a more detailed discussion of the orbits.

The Hamiltonian H can be rewritten as

H =
1

2
(|π|2 + |µ|2) + V (q),

and the length of the eccentricity e vector is

|e|2 = 1 +
|µ|2

γ2

(
2H − |µ|2

)
.

There is another constant of motion,

E = H − |µ|
2

2
=

1

2
|π|2 + V (q),
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which satisfies the equation

(3.3) |e|2 = 1 + 2
E

γ2
|µ|2.

Define the modified eccentricity vector ẽ = −νe, where

ν =
γ√
−2E

,

then the following hold:

µ · ẽ = 0, ‖µ‖2 + ‖ẽ‖2 = ν2 > 0,

where the second equation follows from (3.3). These relations are equivalent to

(µ + ẽ) · (µ + ẽ) = (µ− ẽ) · (µ− ẽ) = ν2 > 0,

which defines a smooth 4-dimensional manifold diffeomorphic to S2
ν × S2

ν .

4 Hodograph and Moser’s Regularization

In this section, we describe the Moser’s regularization for the Kepler problem on S3.
The approach follows closely Milnor’s work [20] for the Euclidean case. Without
loss of generality, suppose that µ = (0, 0, µ). Then µ = |µ|, q = (q1, q2, 0) and
v = (v1, v2, 0). Furthermore, suppose that A = (|A|, 0, 0) 6= 0 and let φ be the angle
formed by q with A (as in the equation of the trajectory). Since A = B×µ, it follows
that |B| = |A|/|µ|(0, 1, 0). Then µ × q = |µ||q|(− sinφ, cosφ, 0), and from the
definition of B, it follows that

π = B +
γ

|µ|
(µ× q) =

|A|
|µ|

(0, 1, 0) +
γ

|µ|
(− sinφ, cosφ, 0)

=
γ

|µ|
(− sinφ,

|A|
γ

+ cosφ, 0)

Thus, for each orbit, π moves along a circle centered at |A|/|µ|, with radius γ/|µ|
and lying in the plane through the origin that is orthogonal to µ.

Conversely, starting with a circle with the equation

π =
γ

|µ|

(
− sinφ,

|A|
γ

+ cosφ, 0
)
,

a direct computation gives

µ cos θ = q0µ = q× π =
γ

|µ|
sin θ

(
0, 0, 1 +

|A|
γ

cosφ
)
.
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Hence, we recover the equation of the orbit in spherical coordinates

1

tan θ
=

γ

|µ|2
(

1 +
|A|
γ

cosφ
)
.

It follows that the hodocycle completely determines the corresponding Kepler orbit.
We can now prove the following theorem.

Theorem 4.1 Fixing some constant value of E = H − |µ|2/2 < 0, consider the space
M+

E of all the vectors π such that π · π > 2E, together with a single improper point
π = ∞. This space possesses one and only one Riemannian metric ds2, so that the
arc-length parameter

∫
ds along any circle t → π(t) is precisely equal to the parameter∫

dt/q0|q|. This metric is smooth and complete, with constant curvature −2E, and its
geodesics are precisely the circles or lines t → π(t) associated with Kepler orbits.

Proof From (4.1) it is clear that if E < 0 the orbits must have q0 > 0 and thus are
limited to the upper hemisphere. In this case ε = |A|/γ < 1 and only the space M+

E

is relevant. In fact E = 1/2|π|2−γq0/(1− q2
0)1/2 and thus, if E < 0, |π2| > 2E, since

in such case q0 > 0. However, if E > 0, things get more complicated.
Using the equation of motions it is easy to show that

π̇ = q̇0v + qov̇− v̇0q− v0q̇ = − γq

|q|3
,

and thus |π̇| = γ
|q| . Dividing this equation by the definition of the time rescaling

ds = γ/q0|q|dt and using the fact that

(4.1)
γq0

|q|
=

1

2
|π|2 − 1

2
(2H − |µ|2)

we obtain ∣∣∣ dπ

ds

∣∣∣ =
γ|q0|
|q|

=
∣∣∣ 1

2
|π|2 − E

∣∣∣ ,
ds2 =

4dπ · dπ
(|π|2 − (2H − |µ|2))2

=
4dπ · dπ

(|π|2 − 2E)2
(4.2)

Thus, there is one and only one Riemannian metric on the spaces M+
E that satisfies

our condition, and it is given by formula (4.2).
To describe what happens in a neighborhood of infinity, we work with the in-

verted velocity coordinate w = π/|π|2 (see, for example, Milnor’s paper [20] for a
discussion of inversion). Since the differential of w is

dw =
(π · π)dπ − 2(dπ · π)π

(π · π)2

we have dw · dw = dπ·dπ
(π·π)2 . Hence,

(4.3) ds2 =
4dw · dw

(1− 2Ew · w)2
.

The metrics given in equations (4.2) and (4.3) have constant curvature−2E.

Since E < 0, the corresponding metric space is a round 3-sphere and t → π(t) is
thus a geodesic on a round 3-sphere.
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5 Ligon–Schaaf Regularization

5.1 so(4) Momentum Map

The components of the angular momentum and of an opportunely rescaled eccen-
tricity vector form a Lie algebra under a Poisson bracket that is isomorphic to so(4).
This gives the momentum map of the Kepler problem on the sphere.

Let g = so(4). For a suitably chosen basis {X1,X2,X3,Y1,Y2,Y3}, the Lie bracket
is

(5.1) [Xi ,X j] = [Yi ,Y j] = εi jkXk and [Xi ,Y j] = εi jkYk

The identification g ∼= so(3) ⊕ so(3) can be seen via substitution 1
2 (Xi + Yi) and

1
2 (Xi − Yi). The basis can be thought of as coordinate functions on g∗, then the Lie
bracket defines a Poisson bracket {, }g on C∞(g∗), which defines the Lie–Poisson
structure on g∗.

We first write down the brackets of the components of µ and A.

Lemma 5.1 The brackets of the components of µ and A are:

{µi , µ j}∗|TS3 = εi jkµk, {µi ,A j}∗|TS3 = εi jkAk,

{Ai ,A j}∗|TS3 = −2(H − |µ|2)εi jkµk(5.2)

In the Appendix, we give a sketch of the proof of the lemma above and of the
proposition below.

Proposition 5.2 Let g = so(4), C(H) = H +
√
γ2 + H2, and

η(|µ|2,H) =
−|µ|2 + C(H)

|A|2

Then the following is the momentum map of the Kepler problem on the sphere

ρ = (µ, η(|µ|2,H)A) : TS3 → g∗.

It is a Poisson map with respect to the bracket { · , · }∗ on TS3 and the Lie–Poisson
bracket on g∗.

5.2 Delaunay Vector Field

Let (x, y) be the coordinates on TR4 ∼= R4 ⊕ R4. Then TS3 ⊂ TR4 is given by
〈x, y〉 = 0 and 〈x, x〉 = 1. Let T+S3 = {(x, y) ∈ TS3|y 6= 0} be the tangent bundle
of S3 less its zero section and let ω̃ = ω|T+S3 be the restriction to T+S3 of the standard
symplectic form ω on TR4. Consider the Delaunay Hamiltonian on T+S3:

H = −1

2

γ2

〈y, y〉
,
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which resembles the Kepler Hamiltonian written in Delaunay coordinates (see, for
example, [1]). It is clear that H is invariant under the standard action of SO(4) on
T+S3.

The integral curves of the Delaunay vector field XH satisfy

dx

dt
=

γ2

〈y, y〉2
y,

dy

dt
= − γ2

〈y, y〉
x.

It can be proved that the Delaunay vector field XH is a time rescaling of the Hamil-
tonian vector field of the geodesic flow on the unit sphere. The space so(4)∗ can be
naturally identified with

∧2(R4)∗. Under this identification, the momentum map-
ping of the standard action of SO(4) on T+S3 is:

J(x, y) = x ∧ y ∈
∧ 2(R4)∗ ∼= so(4).

A more detailed description of these facts can be found in [5].

5.3 Regularization

All the orbits of the Kepler problem on the sphere that have E < 0 can be regularized
at once, with a slightly modified Ligon–Schaaf map. Let

J : TS3 −→ so(4) : (q, v) 7−→ (µ, ẽ).

We begin our search for a Ligon–Schaaf map by noting that the image of J is the
same as the image of J (see [5] for a detailed study of the Delaunay vector field and
its momentum map). This suggests that the two maps are somewhat related, even
though J is not a momentum map. Note that this situation differs from the case of
the Kepler problem in R3, studied by Cushman [5], where the maps that are related
are the momentum maps.

Theorem 5.3 The smooth map Φ : (q, v) 7→ (x, y) intertwines the momentum map J

and the map J; that is, Φ∗J = J if an only if

(5.3) Φ : (q, v) 7→ (x, y) =
(
α sinϕ + β cosϕ, ν(−α cosϕ + β sinϕ)

)
,

where

α = (α0, α) =
( 1

νq0
q · π, q

|q|
− q · π

γq0
π
)
,(5.4)

β = (β0, β) =
( |q|
γq0

π · π − 1,
|q|
νq0

π
)
,(5.5)

where ϕ is an arbitrary smooth real function and ν = γ√
−2E

.
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Proof Suppose Φ intertwines the momentum map J and the map J. Write x =
(x0, x) ∈ R3 × R = R4, y = (y0, y) ∈ R3 × R = R4. Then Φ∗J = J is equivalent to

x× y = q× v,

x0y− y0x =
1√
−2E

(
γ

q

|q|
− π × (q× v))

)
= Mq + Nπ,

(5.6)

where

M =
1√
−2E

( γ

|q|
− π · π

q0

)
and N =

1√
−2E

( π · q
q0

)
.

Suppose q× v = 1
q0

(q× π) 6= 0, then it follows that x and y lie on the same plane of
q and π. Since q and π are linearly independent, we obtain

(5.7) x = aq + bπ, y = cq + dπ.

Since q × v = 1/q0(q × π) = x × y = (ad − bc)(q × π), we find ad − bc = 1/q0.
Substituting (5.7) into (5.6) and using the linear independence of q and π gives a set
of linear equations for x0 and y0. Since ad−bc = 1/q0, these equations may be solved
to give

x0 = (aN − bM)q0, y0 = (cN − dM)q0.

Since (x, y) ∈ T+S3,

(5.8) 1 = x · x + x2
0, 0 = x · y + x0 y0.

Substituting the expressions for x and y and the expressions for x0 and y0 above into
(5.8) yields

1 = a2(q · q) +
( π · q√
−2E

a +
γq0

|q|
√
−2E

b
) 2
,(5.9)

0 = ac
(

q · q +
(π · q)2

(−2E)

)
+ (ad + bc)

(
γ

(π · q)q0

|q|(−2E)

)
+ bd

(
γ2 q2

0

|q|2(−2E)

)
,(5.10)

where we have used the identities

q · q + N2q2
0 = q · q +

(π · q)2

(−2E)
,

(q · π)−MNq2
0 = γ

(π · q)q0

|q|(−2E),

π · π + M2q2
0 = γ2 q2

0

|q|2(−2E)
,
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which follow from the definition of M and N and the identity

π · π − γ q0

|q|
= 2E + γ

q0

|q|
.

Multiplying (5.9) by c and (5.10) by−a and adding the resulting equations gives

c = −a
γ(π · q)

|q|(−2E)
− b

γ2q0

|q|2(−2E)
.

Similarly, multiplying (5.9) by d and (5.10) by−a yields

d = a
(

q · q +
(π · q)2

(−2E)

) 1

q0
+ b

γ(π · q)

|q|(−2E)
.

All solutions of (5.9) are parametrized by

a =
1

|q|
sinϕ, b =

√
−2E|q|
γq0

cosϕ− π · q
q0γ

sinϕ,

where θ is an arbitrary function. Substituting the previous equations in the expres-
sions for c and d gives

c = − γ

|q|
√
−2E

cosϕ, d =
|q|
q0

sinϕ +
(π · q)

q0

√
−2E

cosϕ.

Conversely, a calculation shows that a map Φ of the form (5.3) intertwines the
momentum map J and the map J.

Corollary 5.4 Φ intertwines E and the Delaunay Hamiltonian; that is, Φ∗H = E.

Proof We have that

(Φ∗H)(q, v) = −1

2

γ2

〈y, y〉
= −1

2

(−2E)γ2

γ2| − α cosϕ + β sinϕ|2
= E(q, v),

since 〈α, α〉 = 1, 〈β, β〉 = 1, 〈α, β〉 = 0, as the following shows:

〈α, α〉 = 1− 2
(π · q)2

|q|γq0
+

(π · q)2(π · π)

γ2q2
0

+
(π · q)2

ν2q2
0

= 1 + 2
(π · q)2

γ2q2
0

( π · π
2
− γq0

|q|

)
+

(−2E)(π · q)2

γ2q2
0

= 1

〈β, β〉 = 1 +
(π · π)2|q|2

γ2q2
0

− 2
(π · π)|q|
γq0

+
|q|2(π · π)

ν2q2
0

= 1 + 2
|q|2(π · π)

γ2q2
0

( π · π
2
− γq0

|q|
+

(−2E)

2

)
= 1

〈α, β〉 = −π · q
νq0

+
|q|
νγq2

0

(π · q)(π · π) +
π · q
νq0
− |q|
νγq2

0

(π · q)(π · π) = 0.
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The next result is a computation we will use to understand the relationship be-
tween the Kepler vector field XH and the Delaunay vector field XH.

Lemma 5.5 The derivatives of α and β along the flow generated by the vector field XH

are

dα

dt
=

√
−2E

q0|q|
β ,

dβ

dt
= −
√
−2E

q0|q|
α.

Proof Let t → (q(t), v(t)) be an integral curve of the Kepler vector field XH . Let
α = α(q(t), v(t)) and β = β(q(t), v(t)), where α = (α0, α) and β = (β0, β) are
given by (5.4) and (5.5), respectively. Recall that π = q0v− v0q so that v = 1/q0(π +
v0q). Moreover a simple computation shows that dπ/dt = −γq/|q|3. With these
equations in mind, together with the expressions for XH , we compute

dα0

dt
=

1

νq0
(π̇ · q + π · v)− 1

νq2
0

(π · q)q̇0

=
1

νq0

(
− γ

|q|
+
π · π

q0

)
+

1

νq2
0

(π · q)v0 −
1

νq2
0

(π · q)v0

=
1

νq0|q|

( (π · π)

q0γ
− 1
)

=
1

νq0|q|
β0

and

dα

dt
=

v

|q|
− (q · v)

|q|3
q− (π̇ · q)

γq0
π − (π · q̇)

γq0
π − (π · q)

γq0
π̇ − (π · q)π

γq2
0

v0

= − 2π

γq2
0

( π · π
2
− γq0

|q|

)
=

√
−2E

q0|q|

( |q|
νq0

π
)

=

√
−2E

q0|q|
β.

Similarly, to verify the expression for dβ
dt , we compute

dβ0

dt
= 2

(π · π̇)|q|
γq0

− (π · π)|q|
γq2

0

v0 +
(π · π)

q0γ

(q · v)

|q|

= −2
(π · q)

q0|q|2
− (π · π)

γq2
0

|q|v0 +
(π · π)

γq2
0|q|

(q · π) +
(π · π)

q2
0γ|q|

(q · q)

= 2
π · q

q2
0|q|γ

( π · π
2
− γq0

|q|

)
= −
√
−2E

q0|q|

(√−2E(π · q)

γq0

)
= −
√
−2E

q0|q|
α0
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and

dβ

dt
=
|q|π̇
νq0
− |q|π
νq2

0

v0 +
(q · v)π

νq0|q|

=
√
−2E

( |q|π̇
γq0
− |q|π
γq2

0

v0 +
(q · π)π

γq2
0|q|

+
|q|2π
γq2

0|q|
v0

)
= −
√
−2E

q0|q|

( q

|q|
− (q · π)π

γq0

)
= −
√
−2E

q0|q|
α.

Remark 5.6 Note that, with the time reparametrization given by dt = q0|q|dt ′, the
equations for α and β, given in the previous lemma, can be rewritten as

dα

dt ′
=
√
−2E β,

dβ

dt ′
= −
√
−2E α.

These are formally equivalent to the equations of motion of an harmonic oscillator
of Hamiltonian

Hhar =
1

2

√
−2E (β2 + α2),

with the standard symplectic form, where (α, β) are coordinates on T∗R4. However,
in our case, α and β satisfy the constraints that define T∗S3: 〈α, α〉 = 〈β, β〉 = 1
and 〈α, β〉 = 0. The equations for the harmonic oscillator on T∗R4, of Hamiltonian
Hhar, automatically preserve T∗S3 and give the equations of a reparametrization of
the geodesic geodesic flow on S3 when restricted to this invariant (symplectic) sub-
manifold.

We recall some standard terminology that we will use to describe the relation be-
tween the Kepler vector field and the Delaunay vector field.

Definition 5.7 Let X and Y be vector fields on the manifolds M and N, and let
gX

t : M → M and gY
t : N → N be the corresponding flows. We say that X and Y (and

the corresponding flows) are Ck-conjugate if there is a Ck-diffeomorphism Φ : M →
N such that Φ(gX

t (x)) = gY
t (Φ(x)). We say that X and Y (and the corresponding

flows) are Ck-equivalent if there is a Ck-diffeomorphism Φ : M → N that maps the
orbits of gX onto the orbits of gY and preserves the direction of time. That is, there is
a family of monotone increasing diffeomorphisms τx : R → R such that Φ(gX

t (x)) =
gY
τx(t)(Φ(x)).

Remark 5.8 Note that differentiating Φ(gX
t (x)) = gY

τ (x,t)(Φ(x)) with respect to t
yields

(5.11) Φ∗X(x) =
( ∂τx

∂t

)
Y (Φ(x)).

Hence, if this equation is satisfied, under the conditions of the definition above, the
two vector fields are Ck equivalent.
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The next theorem finally describes the relationship between the Kepler and the
Delaunay vector fields.

Theorem 5.9 The Kepler vector field XH and the Delaunay vector field XH are
C∞-equivalent with maps

Φ(q, v) = (α sinϕ + β cosϕ, ν(−α cosϕ + β sinϕ))

and

τq =

∫ t

t0

dt

q2
0(t)

,

where ϕ = 1
νq0

q · π(= α0).

Proof Differentiating

(x(t), y(t)) = Φ(q(t), v(t)) =
(
α sinϕ + β cosϕ, ν(−α cosϕ + β sinϕ)

)
with respect to t along a trajectory (q(t), v(t)) of XH and using Lemma 5.5 yields

dx

dt
=

dα

dt
sinϕ + α cosϕ

dϕ

dt
+

dβ

dt
cosϕ− β sinϕ

dθ

dt

=
(√−2E

q0|q|
− dϕ

dt

)
(β sinϕ− α cosϕ) =

√
−2E

γ

(√−2E

q0|q|
− dϕ

dt

)
y

=
1

ν

( γ

νq0|q|
− dϕ

dt

)
y

and

dy

dt
= ν

(
−dα

dt
cosϕ + α sinϕ

dθ

dt
+

dβ

dt
sinϕ + β cos θ

dθ

dt

)
= −ν

(√−2E

q0|q|
− dϕ

dt

)
(α sinϕ + β cosϕ)

= −ν
( γ

νq0|q|
− dϕ

dt

)
x.

Taking ϕ = 1
νq0

(q · π) implies that

dϕ

dt
− γ

νq0|q|
=

1

ν

( v · π
q0

+
q · π̇

q0
− q · π

q2
0

q̇0

)
− γ

νq0|q|

=
1

ν

( π · π
q2

0

+ v0
q · π

q2
0

− γ

q0|q|
− v0

q · π
q2

0

)
− γ

νq0|q|

=
1

νq2
0

(
π · π − 2

γq0

|q|

)
= − γ2

ν3q2
0

,
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and thus by Corollary 5.4 we obtain

Φ∗(XH) =

(
γ2

q2
0〈y,y〉2

y

− γ2

q2
0〈y,y〉

x

)
=

1

q2
0

XH.

Let τq =
∫ t

t0

dt
q2

0(t) , then (5.11) holds, and hence the two vector fields are smoothly

equivalent.

Note that the vector field of the Kepler problem in R3 is Ck-conjugate to the one
of the Delaunay vector fields ([4, 5]). And the diffeomorphism Φc intertwining the
two vector fields is a symplectomorphism. However, the vector field XH of the Kepler
problem in S3 is Ck-equivalent but not Ck-conjugate to the Delaunay vector field XH.

6 Gnomonic Transformation

The computations in the previous section are analogous to those of [4, 5]. However,
there is a more direct link between the Kepler problem on S3 and in Euclidean space.
We first recall a classical result due to Appell and Serret [2, 24], relating the Kepler
problem on the upper hemisphere S3

+ to that on R3 via the gnomonic transformation.
On the phase space T0R3 = (R3 − {0}) × R3 with coordinates (Q,V) and sym-

plectic form ω3 =
∑3

i=1 dQi ∧ dVi consider the Kepler Hamiltonian

HK (Q,V) =
1

2
V · V− γ

|Q|
,

where · is the Euclidean inner product on R3 and |Q| is the length of the vector Q.
The integral curves of the Hamiltonian vector field XHK on T0R3 satisfy the equations

Q̇ = V V̇ = −γ Q

|Q|3
,

which (for γ > 0) describe the motion of a particle of mass 1 about the origin under
the influence of the Newtonian gravity. The momentum map of this system is

JK =
(

Q× V,− γ√
−2HK

( 1

γ
V× (Q× V)− Q

|Q|

))
.

This is a classical system, and a detailed analysis can be found in [5] or any good
mechanics book.

As before, S3 is the unit sphere in R4. We now consider the gnomonic projection,
which is the projection onto the tangent plane at the north pole from the center of
the sphere

q = (q0, q) 7→ Q :=
q√

1− |q|2
=

q

q0
.

The induced map on the tangent space at q is given by

v = (v0, v) 7→ v√
1− |q|2

+
(q · v)q

(1− |q|2)
3
2

=
1

q0
v +

q · v
q3

0

q =
1

q0
v− v0

q2
0

q =
1

q2
0

π.
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Recall that

H(q, v) =
1

2
〈v, v〉 − γ q0

(1− q2
0)

1
2

.

On the lower hemisphere, q0 < 0⇒ H > 0 and it follows that negative energy orbits
completely lie in the upper hemisphere.

Theorem 6.1 The Kepler vector field XH on S3 (restricted to the upper hemisphere)
and the Kepler vector field XHK on R3 are C∞-equivalent with maps

Ψ : (q, v) 7→ (Q,V) =
( q

q0
, π
)

and τq =

∫ t

t0

dt

q2
0(t)

.

The map Ψ together with t 7→ τq is called the gnomonic transformation.

Proof Differentiating (Q(t),V(t)) = Ψ(q(t), v(t)) with respect to t along a trajec-
tory (q(t), v(t)) of XH and using Lemma 5.5 yields

dQ

dt
=

1

q0
v +

q · v
q3

0

q =
1

q2
0

V

and

dV

dt
= q0

dv

dt
+
|v|2

q0
q +

(q · dv
dt )

q0
q +

(q · v)2

q3
0

q

= −
(
|v|2 +

(q · v)2

q2
0

+ γ
q0

(1− q2
0)3/2

)(
q2

0 + (q · q)
) q

q0
+
(
|v|2 +

(q · v)2

q2
0

) q

q0

= −γ q

|q|3
= −γ Q

|Q|3
(1 + |Q|2) = − γ

q0

Q

|Q|3
,

where we used the fact that q2
0v2

0 = (q · v)2. Consequently we obtain

Ψ∗(XH) =

(
V
q2

0

−γ Q
q2

0|Q|3

)
=

1

q2
0

XHK .

Let

τq =

∫ t

t0

dt

q2
0(t)

,

then (5.11) holds, and hence the two vector field are smoothly equivalent.

The map Ψ of Theorem 6.1 has properties that are analogous to the map Φ. In
fact it intertwines E and the Kepler Hamiltonian in Euclidean space, and it also in-
tertwines the momentum map JK of the Kepler problem in Euclidean space with the
map J. We prove these properties below.

Proposition 6.2 Consider the smooth map Ψ : (q, v)→ (Q,V)

(i) Ψ intertwines E and the Kepler Hamiltonian in Euclidean space, that is, Ψ∗HK =
E.
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(ii) Ψ intertwines the momentum map JK and the map J, that is Ψ∗ JK = J.

Proof To prove the first part of the proposition we compute Ψ∗HK . A simple com-
putation yields

(Ψ∗HK )(q, v) =
1

2
V · V− γ

|Q|
=

1

2

(
q2

0|v|2 + 2q2
0v2

0 + |q|2v2
0

)
− γq0√

1− q2
0

=
1

2
π · π − γq0√

1− q2
0

= E(q, v),

since
V = q0v +

q · v
q0

q = q0v− q0v0

q0
q = π

and
γ

|Q|
= γ

q0

|q|
= γ

q0√
1− q2

0

.

We prove the second part by computing Ψ∗ JK . A computation gives

(Ψ∗ JK )(q, v) =
(

Q× V,− γ√
−2HK

( 1

γ
V× (Q× V)− Q

|Q|

))
= (µ, ẽ) = J(q, v)

since

Q× V = q×
(

v +
(q× v)

1− |q|2
q
)

= q× v = µ,

− Q

|Q|
+

1

γ
V× (Q× V) = − q√

1− q2
0

+
1

γ
π × µ = e,

and Ψ∗HK = E by part (i) of the proposition.

Recall that if (M, ωM) and (N, ωN ) are symplectic manifolds and f : M → N is a
diffeomorphism, then f is symplectic if and only if for all h ∈ C∞(N),

(6.1) f ∗Xh = Xh◦ f ;

see [1] for a proof. With this in mind we show that Ψ is not symplectic.

Proposition 6.3 The map Ψ is not symplectic.

Proof To show that the map is not symplectic it is enough to find a Hamiltonian for
which (6.1) is not satisfied. Let h = HK , and let f = Ψ, then it can be shown that
(6.1) is equivalent to writing

XHK (Ψ(q, v)) = Ψ∗XHK◦Ψ(q, v) = Ψ∗XE(q, v).

The left-hand side of the equation is

(XHK (Ψ(q, v)) =

(
V

−γ Q
|Q|3

)
=

(
q0v + (q · v)q−1

0 q

−γ qq2
0
|q|3

)
.
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To compute the right-hand side note that

{µi , q j}∗|TS3 = εi jkqk and {µi , v j}∗|TS3 = εi jkvk

(see the Appendix), and thus {q, |µ|2}∗|TS3 = µ × q and {v, |µ|2}∗|TS3 = µ × v.
Consequently

X(q,v)
E =

(
{q,H − |µ|2/2}∗|TS3

{v,H − |µ|2/2}∗|TS3

)
X(q,v)

H − 1

2

(
µ× q

µ× v

)
,

where X(q,v)
E denotes the part of the vector field corresponding to

{
q,H − 1

2
|µ|2
}∗∣∣∣

TS3
and

{
v,H − 1

2
|µ|2
}∗∣∣∣

TS3
.

Differentiating Q(t) with respect to t along a trajectory of XE yields

dQ

dt
=

v− 1
2µ× q√

1− |q|2
+

q[q · (v− 1
2µ× q)]

(1− |q|2)3/2

=
1

q2
0

(q0v + (q · v)q−1
0 q) +

1

2q0

(
−|q|2v + (q · v)q

)
.

This gives the first three components of Ψ∗XE. Comparing with the first three com-
ponents of XHK (Ψ(q, v)) yields

−|q|
2

q2
0

(
q0v + (q · v)q−1

0 q
)

=
1

2q0

(
−|q|2v + (q · v)q

)
.

If v is non-zero, one can compare the coefficients of v. This comparison yields the
impossibility 1 = 1

2 , and hence the identity (6.1) is not satisfied for h = HK .

Remark 6.4 The non-symplecticness of the map Ψ can be seen alternatively as
follows. It can be shown that Ψ is the composition of the tangent lift with a scaling
κ : TS3

+ → TS3
+ of the fiber direction by the factor of q2

0 = 1− |q|2. As shown below,
κ is not symplectic with respect to the standard symplectic structure, which implies
that the map Ψ is not symplectic either:

κ∗dq∧dv = dq∧d
(

(1−|q|2)v
)

= (1−|q|2)dq∧dv−2
3∑

i, j=1

viq jdqi∧dq j 6= dq∧dv.

Here, q is used as coordinates on S3
+, via the projection along the q0 direction.
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6.1 Relation to the Ligon–Schaaf Regularization for the Kepler Problem in R3

Recall the description of the Ligon–Schaaf regularization for the Kepler problem on
R3 as given in [4,5]. The symplectomorphism Φc intertwining the vector fields of the
Kepler problem and one of the Delaunay vector fields is given by

Φc : (Q,V) 7→ (xc, yc) =
(
αc sinϕc + βc cosϕc, νc(−αc cosϕc + βc sinϕc)

)
,

where νc = γ√
−2HK

, ϕc = αc,0 and

αc = (αc,0, αc) =
( 1

νc
V ·Q, Q

|Q|
− V ·Q

γ
V
)
,

βc = (βc,0, βc) =
( |Q|
γ

(V · V)− 1,
|Q|
νc

V
)
.

This calculation proves the following proposition.

Proposition 6.5 Φc ◦Ψ = Φ

A straightforward consequence of this proposition is the following corollary.

Corollary 6.6 Φ is not symplectic.

Proof Suppose Φ is symplectic. Then we can rewrite the proposition as Ψ = Φ−1
c ◦

Φ. Since Φ−1
c and Φ are symplectic, it follows that Ψ is symplectic. This is in contra-

diction with Proposition 6.3.

6.2 Relation to Moser’s Regularization for the Kepler Problem in R3

First we recall [20, Theorem 2] for the Kepler problem in R3. For a given constant
value of h = HK , define the space Mh = {V | V · V > 2h} ∪ {∞}. Define also a
Riemannian metric

ds2 =
4dV · dV

(V · V− 2h)2

on Mh. The arc-length parameter
∫

ds of this metric along any velocity circle τ →
V(τ ) is equal to the parameter

∫
dτ/|Q|, where τ denotes the time.

Proposition 6.7 The Moser’s regularization for the Kepler problems in R3 and the
upper hemisphere are related by the gnomonic transformation.

Proof The gnomonic transformation is given by (Q,V) = Ψ(q, v) = (q/q0, π) and
dτ = dt/q2

0 along the trajectory q(t). It is clear that Ψ maps M+
E to ME and the

metrics correspond. The arc-length parameter becomes

∫
dτ

|Q|
=

∫ dt
q2

0∣∣ q
q0

∣∣ =

∫
dt

q0|q|
.
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Appendix

Proof of Lemma 5.1 We verify only the third equation in (5.2). Using Lemma 2.1
we obtain

{µi , q j}∗|TS3 = εi jkqk, {µi , v j}∗|TS3 = εi jkvk, {µi , π j}∗|TS3 = εi jkπk

and

{πi , π j}∗|TS3 = qiv j − q jvi , {µi , |q|2}∗|TS3 = 0,{
πi ,

1

|q|

}∗∣∣∣
TS3

=
q0qi

|q|3
, {πi , q j}∗|TS3 = 0.

Using the bilinearity property of Poisson brackets, expand

{Ai ,A j} =
{
εlmiπlµm − γ

qi

|q|
, εpq jπpµq − γ

q j

|q|

}
to obtain

{Ai ,A j}∗|TS3 = −2(H − |µ|2)εi jkµk.

It helps to recall the identity εi jkεilm = δkmδ jl − δ jmδkl.

Proof of Proposition 5.2. Let Ẽ = η(|µ|2,H)A, and let Ẽ = (Ẽ1, Ẽ2, Ẽ3), then the
proposition amounts to showing that {µ1, µ2, µ3, Ẽ1, Ẽ2, Ẽ3} satisfies (5.1) with the
Poisson bracket { · , · }∗.

We start with (5.2) and compute the brackets of the components of Ẽ. For η =
η(|µ|2,H),

{ηAi , ηA j}∗|TS3 = η2{Ai ,A j}∗|TS3 + η{Ai , η}∗|TS3 A j + η{η,A j}∗|TS3 Ai

{η,Al}∗|TS3 = εi jkAk
∂η

∂µi
δ jl = εilkAk

∂η

∂|µ|2
∂|µ|2

∂µi
= −2εiklµiAk

∂η

∂|µ|2

= −2
∂η

∂|µ|2
(µ× A)l.

Consequently,

{ηAi , ηA j}∗|TS3 = η2{Ai ,A j}∗|TS3 + 2η
∂η

∂|µ|2
(

(µ× A)iA j − (µ× A) jAi

)
.

Simple computations show that

{ηAi , ηA j}∗|TS3 = −2η2(H − |µ|2)εi jkµk −
∂η2

∂|µ|2
|A|2εi jkµk

=
[
−2η2(H − |µ|2)− ∂η2

∂|µ|2
(
γ2 + 2H|µ|2 − (|µ|2)2

)]
εi jkµk
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Since |A|2 = γ2 + |µ|2(2H − |µ|2), we have that ∂|A|2
∂|µ|2 = 2(H − |µ|2). Therefore,

(6.2) {Ẽi , Ẽ j}∗|TS3 = {ηAi , ηA j}∗|TS3 = −∂|ηA|2

∂|µ|2
εi jkµk = −(εi jkµk)

∂

∂|µ|2
.|̃e|2

Lastly, we determine the function η. Equation (6.2) implies that η has to satisfy

∂|ηA|2

∂|µ|2
= −1

Integrating, we obtain η2|A|2 = −|µ|2 + C(H), and if |A|2 6= 0, we have

η2 =
−|µ|2 + C(H)

|A|2

where C(H) is an arbitrary function of H. For |A|2 = 0 we have |µ|2 = C(H).
Substituting in the expression |A|2 = γ2 + |µ|2(2H − |µ|2) yields

γ2 + C(H)(2H −C(H)) = 0.

Then the positive solution gives C(H) = H +
√
γ2 + H2.
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