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AN ALEXSANDROV TYPE THEOREM FOR k-CONVEX FUNCTIONS

NIRMALENDU CHAUDHURI AND NEIL S. TRUDINGER

In this note we show that k-convex functions on R" are twice differentiable almost
everywhere for every positive integer £ > n/2. This generalises Alexsandrov’s classical
theorem for convex functions.

1. INTRODUCTION

A classical result of Alexsandrov [1] asserts that convex functions in R™ are twice
differentiable almost everywhere, (see also [3, 8} for more modern treatments). It is well
known that Sobolev functions u € W2P, for p > n/2 are twice differentiable almlost ev-
erywhere. The following weaker notion of convexity known as k-convexity was introduced
by Trudinger and Wang [12, 13]. Let 2 C R" be an open set and C?(Q) be the class
of continuously twice differentiable functions on Q. For k = 1, 2, ...,n and a function
u € C%(Q), the k-Hessian operator, Fy, is defined by

(1.1) Filu) := Sk(/\(Vzu)) ,
where V?u = (8;;u) denotes the Hessian matrix of the second derivatives of w,
AA) = (A1, Aq, ..., An) the vector of eigenvalues of an n X n matrix A € R™*® and
Sk(A) is the k-th elementary symmetric function on R®, given by
(1.2) Sk = Y Ay Ay,

< <ig

Alternatively we may write
(1.3) Filu] = [V?ul,

where [A]x denotes the sum of the k x k principal minors of an n x n matrix A, which
may also be called the k-trace of A. The study of k-Hessian operators was initiated by
Caffarelli, Nirenberg and Spruck [2] and Ivochkina [6] and further developed by Trudinger
and Wang [10, 12, 13, 14, 15].
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A function u € C?(Q) is called k-convezin Q if Fjju] > 0in Q for j =1, 2,...,k;
that is, the eigenvalues A(V2u) of the Hessian V?u of u lie in the closed convex cone
given by

(14) Fkl—_-{/\E]RnZSj()\)ZO,j=1,2,...,k}.

(see [2] and [13] for the basic properties of I'x.) We notice that Fi[u] = Au, is
the Laplacian operator and 1-convex functions are subharmonic. When k = n, F,[y]
= det(V?u), the Monge-Ampére operator and n-convex functions are convex. To extend
the definition of k-convexity for non-smooth functions we adopt a viscosity definition as
in [13]. An upper semi-continuous function u : Q@ — [—o0,0) (u Z —oo on any con-
nected component of 2) is called k-convez if Fj{g] 2 0, in Q for j = 1,2,...,k, for every
quadratic polynomial q for which the difference uw — q has a finite local mazimum in Q.
Henceforth, we shall denote the class of k-convex functions in 2 by ®*(2). When k =1
the above definition is equivalent to the usual definition of subharmonic function, see for
example ([5, Section 3.2]) or ([7, Section 2.4]). Thus ®!(2) is the class of subharmonic
functions in . We notice that ®*(2) Cc ®'() c LL.(Q) for k = 1,2,...,7n, and a
function u € ®™(R) if and only if it is convex on each component of 2. Among other
results Trudinger and Wang [13] (Lemma 2.2) proved that u € ®*(Q) if and only if

(1.5) /n u(z) (i aijaijda(z)) dz >0

for all smooth compactly supported functions ¢ > 0, and for all constant n x n symmetric
matrices A = (a”) with eigenvalues A(A) € T}, where I'} is the dual cone defined by

(1.6) Tr:={A€R": (\u) >0 for all u€Tx}.

In this note we prove the following Alexsandrov type theorem for k-convex functions.

THEOREM 1.1. Letk >n/2,n 22andu: R* - [~00,00) (u # —co on
any connected subsets of R"), be a k-convex function. Then u is twice differentiable
almost everywhere. More precisely, we have the Taylor’s series expansion for L™ = almost
everywhere,

(1.7) u(y) — u(z) — (Vu(z)y—z) — %(V"’u(z)(y -z)y-— a:)' =o(ly - z[?),
asy —z.

In Section 3 (see Theorem 3.2.), we also prove that the absolutely continuous part of
the k-Hessian measure (see {12, 13]) u[u], associated to a k-convex function for & > n/2
is represented by Fi[u]. For the Monge-Ampére measure pufu] associated to a convex
function u, a similar result is obtained in [16].

To conclude this introduction we note that it is equivalent to assume only Fx[q] > 0
in the definition of k-convexity {13]. Moreover [, may also be characterised as the closure
of the positivity set of Sx containing the positive cone 'y, [2].
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2. NOTATIONS AND PRELIMINARY RESULTS

Throughout the text we use the following standard notations. |-| and (-,-) will
stand for the Euclidean norm and inner product in R*, and B(z,r) will denote the open
ball in R™ of radius r centred at z. For measurable E C R", L*(E) will denote its
Lebesgue measure. For a smooth function u, the gradient and Hessian of u are denoted
by Vu = (u,...,0,u) and Viu = (Oiju)1gijgn respectively. For a locally integrable
function f, the distributional gradient and Hessian are denoted by Df = (D;f,...,D.f)
and D*u = (D;ju)igijgn Tespectively.

For the convenience of the readers, we cite the following Hélder and gradient es-
timates for k-convex functions, and the weak continuity result for k-Hessian measures,
(12, 13].

THEOREM 2.1. ([13, Theorem 2.7].) For k > n/2, ®(Q) C CY2(Q) with
a = 2 — n/k and for any subdomain ¥ CC Q, u € ®*(Q), there exists C > 0, de-
pending only on n and k such that

(21) sup dn+a|u’(x) - u(y)l
sy 0 Tyl
T#Y

where d, := dist(z, ') and d;y := min{d,, dy}.

THEOREM 2.2. ({13, Theorem 4.1].) Fork=1,...,n, and 0 < ¢ < nk/(n - k),

the space of k-convex functions ®*(Q) lies in the local Sobolev space W.?(2). Moreover,

for any ' cC Q" cC Q and u € *(Q) there exists C > 0, depending on n, k, ¢, Q' and
Q", such that

(22) (/n |Du|"> " c/n" lul.

THEOREM 2.3. ([13, Theorem 1.1).) For any u € ®*(Q), there exists a Borel
measure p[u] in Q such that
(1) w[u](V) = [, Fxlu](z) dz for any Borel set V C §, ifu € C?(2) and
(i) if (um)m>1 is a sequence in ®*(Q) converging in L} () to a function
u € ®*(Q2), the sequence of Borel measures (pi[um))
to pklul.
Let us recall the definition of the dual cones, [11]

<C [ |ul,
QI

m31 ConVerges weakly

T;p:={AeR*: (\pu) >0 for all ux€ Iy},

which are also closed convex cones in R". We notice that I'; C I'; for j < k with
[i=T,={A€R": )20, j=1,2,...,n}, I'{ is the ray given by

ry={tQ1,...,1):t >0},
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and I'; has the following interesting characterisation,

(2.3) FE:{’\EF":WQSE%I(;’\‘Y}‘

We use this explicit representation of I'} to establish that the distributional derivatives
D;;u of the k-convex function u are signed Borel measures for k > 2, (see also [13]).

THEOREM 2.4. Let2<k < nandu:R"— [—00,00), be a k-convex function.
Then there exist signed Borel measures u = p/* such that

(2.4) /R" u(z)0;¢(z) dr = /Rﬂ é(z) du(x), for i, j=1,2,...,n,

for all ¢ € CX(R"). .

PROOF: Letk > 2 and u € ®(R"). Since ®*(R") C ®?(R") for k > 2, it is enough
to prove the theorem for k = 2. Let u be a 2-convex function in R®. For A € S**", the
space of n x n symmetric matrices, define the distribution T4 : C?(R") — R, by

Ta@) = [ u(0)Y a0y8(0)da.

By (1.5), Ta(¢) = 0 for A € S**" with eigenvalues A\(A) € I'}, and ¢ > 0. Therefore, by
Riesz representation (see for example [9, Theorem 2.14] or (3, Theorem 1, Section 1.8]),
there exist a Borel measure y? in R”, such that

(2.5) TA(¢)=[Rn¢ZaUD,~judx= A bdu?,
ij "

for all ¢ € C2(R") and all n x n symmetric matrices A with A(A4) € T'5. In order to prove
that the second order distributional derivatives D;;ju of u to be signed Borel measures,
we need to make special choices for the matrix A. By taking A = I,, the identity matrix,
AM(A) € T} C T3, we obtain a Borel measure p/* such that

(2.6) / ¢>Z DiiUd$=/ pdu™
R R"

for all ¢ € C?(R"). Therefore, the trace of the distributional Hessian D?u, is a Borel
measure. For each i = 1,...,n, let A; be the diagonal matrix with all entries 1 but the
i-th diagonal entry being 0. Then by the characterisation of I'} in (2.3), it follows that
A(A;) € T'3. Hence there exist a Borel measure 4* in R such that

27) /R"Q"ju,-,-udz=/m¢du",

J#
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for all ¢ € C*R"). From (2.6) and (2.7) it follows that the diagonal entries
Dyu = p» — pt := u¥ are signed Borel measure and

(28) / 'U,aij¢ dr = ¢ d[l.ii ,
n Rn

for all ¢ € C*(R"). Let {e),...,en} be the standard orthonormal basis in R™ and for
a,b € R*, a®b := (a't’), denotes the n x n rank-one matrix. For 0 < t < 1 and
i # j, let us define A;; := I, + tle; ® ¢; + ¢; @ e;]. By a straight forward calculation, it
is easy to see that the vector of eigenvalues is A(4;;) = (1 —¢,1+¢,1,...,1) € T3, for
0<t< (n/2(n— 1))1/2 Note that for this choice of A;;

Z aklak1¢ Z 6lck¢ +2t 6t]¢

k=1

Thus for i # 7, (2.5) and (2.6) yields

/ udijpdz = oy [/" Z aklaktlﬁdl‘—/nugakmdl‘]

k=1
1
d Aij _ d I,
2t[ ¢du /R _dp ]
(2.9) = [ ¢adu¥,
R»
where ‘ n
1 1
LY Ai; _ , In . A,'J' _ kk .
p = (s — ) 2t(“ kz:;u )
Therefore D;ju = u* are signed Borel measures and satisfy the identity (2.4). 0

A function f € L (R") is said to have locally bounded variation in R™ if for each
bounded open subset ' of R,

sup{ fdivedz: ¢ € CHY;RY), |o(z)] < 1forallz€Q’}<oo.
QI

We use the notation BVj,.(R") to denote the space of such functions. For the theory of
functions of bounded variation readers are referred to (4, 17, 3].

THEOREM 2.5. Letn > 2,k > n/2 and u : R* — [-00,00), be a k-convex
function. Then v is differentiable almost everywhere L™ and O;u € BVj,(R"), for all
t=1...,n

PRrROOF: Observe that for k > n/2, we can take n < ¢ < nk/(n — k) and by the
gradient estimate (2.2}, we conclude that k-convex functions are differentiable L™ almost
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everywhere z. Let & CC R*, ¢ = (¢',...,4") € CH(Q;R") such that |¢(z)| < 1 for
z € . Then by integration by parts and the identity (2.4), we have fori =1,...,n,

9 i

ou _ e ey
9,3-1:,-dw¢dx— ;/’uaxiaxjdx

== [ & du
j=17%
n
< Y W9)(@) < oo,
J=1
where || is the total variation of the Radon measure . This proves the theorem. [

3. TWICE DIFFERENTIABILITY

Let u be a k-convex function, ¥ > 2. Then by the Theorem 2.4, we have
D*u = (p*); ;, where p*7 are Radon measures. By Lebesgue’s Decomposition Theorem,
we may write

P o=yl Y for 4,5 =1,...,n,

where i is absolutely continuous with respect to L™ and p¥ is supported on a set with
Lebesgue measure zero. Let u;; be the density of the absolutely continuous part, that is,
dpil = uijdz, u; € LL (R®). Set uy; := Gu, Viu:= du = (uij)i; € LL (R R™")
and [D%u]s := (¢¥); ;. Thus the vector valued Radon measure D?u can be decomposed
as D?>u = [D?u),c + [D?u],, where d[D?ul,, = V2udz. Now we are in a position prove
theorem 1.1. To carry out the proof, we use a similar approach to Evans and Gariepy,
see [3, Section 6.4].

PROOF OF THEOREM 1.1: Letn > 2 and u be a k-convex function on R*, k£ > n/2.
Then by Theorem 2.4, and Theorem 2.5, we have for £* almost everywhere z

3.1 vlim Vu(y) - Vu(z)|dy =0,
(3.1) lim f |Valy) - Vula)
(3.2) lim | V2u(y) - V2u(z)|dy = 0
r—0 B(z,r)
and
2
(3.3) li L224l(Blz: 1)) _

r—0 "

where . f dz we denote the mean value (L*(E))™" [ fdz. Fix a point x for which
(3.2)-(3.3) holds. Without loss generality we may assume z = 0. Then following similar
calculations as in the proof of [3, Theorem 1, Section 6.4}, we obtain,

(3.4) fB(r)
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as 7 — 0. In order to establish

(3.5) sup {u(y) — u(0) — (Vu(0),y) — %(Vzu(o)y, y)' =o(r?) asr—0,
B(r/2)

we need the following lemma.

LEMMA 3.1.  Let h(y) := u(y) —u(0) — (Vu(0),y) — (V>u(0)y,y)/2. Then there
exists a constant C > 0 depending only on n, k and |V2u(0)|, such that forany 0 <r < 1

h(y) - h
y,2€B(r) |y - Z' ™ JB(2r)
y#z

|h(y)ldy + Cr*—,

where a := (2 — n/fk).

PROOF: Let A := |V?u(0)| and define g(y) := h(y) + Aly|?/2. Since Aly|2/2 —
u(0) — (Vu(0),y) — (V2u(0)y,y)/2 is convex and the sum of two k-convex functions
are k-convex (follows from (1.4)), we conclude that g is k-convex. Applying the Holder
estimate in (2.1) for g with ' = B(2r), there exists C := C(n, k) > 0, such that

e gup 19W) = g£2)l — dist(B(r), 0B(2r))™" sup l9(y) — g((f)l
v,2€B(r) |y - Zl y,2€B(r) |y - Zl
y#z Yy#z
< sup d'n,-:a Ig(y) - giz)l
y,2€B(2r) |y - ZI
S y#2
<C / l9(v)| dy
B(2r)
(3.7) £C |h(y)| dy + Cr™*2,
B(2r)

where d,, , = min{dist (y,0B(2r)) , dist(z, BB(ZT))}. Therefore the estimate (3.6) for h

follows from the estimate (3.7) and the definition of g. 0
PROOF OF THEOREM 1.1. To prove (3.5), take 0 < ¢, § < 1, such that §'/* < 1/2.
Then there exists ry depending on ¢ and 4, sufficiently small, such that, for 0 < r < g

[,"{z € B(r) : |h(z)| > 67‘2} < -1—/3( )|h(z)|dz

= er?
= o(r") by (3.4)
(3.8) < 6L"(B(r))

Set o := §'/"r. Then for each y € B(r/2) there exists z € B(r) such that

|h(z)| <er? and |y—z| <o
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Hence for each y € B(r/2), we obtain by (3.4) and (3.6),
[h(¥)| < |R(2)] + |h(y) = h(z)]
er’ +Cly —2|° (-1—f |h.(y)|dy+r2"°)
B(2r)

7@

< er? 4+ C°/nre (i/ |h(y)] dy + r2‘°)
(2r)

L))

L er? 4+ Co/m (/’ |h(y)l dy + r2>
B(2r)
=7%(e+C8*™) +o(r®) as r—0
By choosing 4 such that, C6%/™ = ¢, we have for sufficiently small € > 0 and 0 < 7 < rg,

sup |h(y)| < 2er? + o(r?).
B(r/2)

Hence

Bs(lrlg) u(y) — u(0) — (Vu(0),y) - %(Vzu(O)y, y)l dy=o(r?) asr —0.
This proves (1.7) for £ = 0 and hence u is twice differentiable at x = 0. Therefore u is
twice differentiable at almost every z and satisfies (1.7), for which (3.2)-(3.3) holds. This
proves the theorem.

Let u be a k-convex function and u[u] be the associated k-Hessian measure. Then
pxlu] can be decomposed as the sum of a regular part pi°[u] and a singular part p[u].
As an application of the Theorem 1.1, we prove the following theorem.

THEOREM 3.2. Let Q C R” be an open set and u € ®*(2), k > n/2. Then the
absolutely continuous part of pglu] is represented by the k-Hessian operator Fi[u]. That
is

(3.9) pi'lu] = Filu]dz.

Proor: Let u be a k-convex function, k > n/2 and u. be the mollification of .
Then by (1.5) and the properties of mollification (see for example [3, Theorem 1, Section
4.2)) it follows that u, € ®(Q)NC>(Q). Since u is twice differentiable almost everywhere
(by Theorem 1.1) and u € W23 () (by Theorem 2.5), we conclude that V2u, — V?u in

L. Let pk[u.] and pxfu] be the Hessian measures associated to the functions u. and u

respectively. Then by weak continuity Theorem 2.3 ([13, Theorem 1.1]), pg[ue] converges
to pk[u] in measure and pxlu.] = Fi[u,] dz. It follows that for any compact set E C €,

(3.10) p[u](E) 2 limsup pilu](E) = lim sup/ Fylug].
=0 £-0 E
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Since Fy[u,] > 0 and Fi[u.)(z) — Fx[u](z) almost everywhere, by Fatou’s Lemma, for
every relatively compact measurable subset E of {2, we have

(3.11) /I;Fk[u] < lirerl)iglf/EFk[ue].

Therefore by Theorem 3.1, [13], it follows that Fi[u] € L} (Q). Let pg[u] = p2[u]+ui[u),
where p[u] = hdz, h € L (Q) and pi[u] is the singular part supported on a set
of Lebesgue measure zero. We would like to prove that h{z) = Fi[u](z) L™ almost
everywhere z. By taking E := B(z,r), from (3.10) and (3.11), we obtain

wlul(Blz,r) wilu)(B(z, 7))
(3.12) ﬁwfwwwgmwwﬂ)‘ﬁwf®+zmmLm'

Hence by letting € — 0, we obtain
(3.13) Fi[u}(z) < h(z) L" almost everywhere z.

To prove the reverse inequality, let us recall that h is the density of the absolutely
continuous part of the measure g fu), that is for £* almost everywhere z

B ) _ |l (Blzr)

(3.14) h(z) = lim L(B(z,r))  r=0 Lo(B(z,r)

Since pilu] is supported on a set of Lebesgue measure zero,
pi(u](8B(z,7)) =0, L' almost everywhere r > 0.

Therefore by the weak continuity of px[u,] (see for example Theorem 1, [3, Theorem 1]),
we conclude that

(3.15) lim pxfue) (B(z, 7)) = mlu)(B(z, 7)), L' almost everywhere r > 0.

Let 6 > 0. Then for € < ¢ = ¢(6) and for £! almost everywhere 7 > 0, £™ almost
everywhere z

(1 + 8)u[ue)(B(z, 1))
L(B(z,r))

= (1+6)lim Felu) dy

B(z,r)

h(z) < lim
r—=0

(3.16) = (1 + 8) Fi[u](z)
By letting € — 0 and finally § — 0, we obtain
h{z) € Filu)(z), L" almost everywhere z.

This proves the theorem. O
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