
BULL. AUSTRAL. MATH. SOC. 2 6 A 5 1 , 3 5 J 6 0

VOL. 71 (2005) [305-314]

AN ALEXSANDROV TYPE THEOREM FOR fc-CONVEX FUNCTIONS

NlRMALENDU CHAUDHURI AND NEIL S. TRUDINGER

In this note we show that A;-convex functions on Rn are twice differentiable almost
everywhere for every positive integer k > n/2. This generalises Alexsandrov's classical
theorem for convex functions.

1. INTRODUCTION

A classical result of Alexsandrov [1] asserts that convex functions in Rn are twice
differentiable almost everywhere, (see also [3, 8] for more modern treatments). It is well
known that Sobolev functions u € W2iP, for p > n/2 are twice differentiable almlost ev-
erywhere. The following weaker notion of convexity known as fc-convexity was introduced
by Trudinger and Wang [12, 13]. Let ft C Rn be an open set and C2(ft) be the class
of continuously twice differentiable functions on ft. For Jfc = 1, 2, . . . , n and a function
u € C2(fi), the fc-Hessian operator, Fk, is defined by

(11) Fk[u]:=Sk(X(V2u)),

where V2u = (diju) denotes the. Hessian matrix of the second derivatives of u,
X(A) = (Ai,A2,. . . ,An) the vector of eigenvalues of an n x n matrix A € K"xn and
St(A) is the A;-th elementary symmetric function on R", given by

(1.2) 5f c(A):=
h<<it

Alternatively we may write

(1-3) Fk[u] = [V2u]k,

where [̂ 4]̂  denotes the sum of the k x k principal minors of an n x n matrix A, which
may also be called the fc-trace of A. The study of fc-Hessian operators was initiated by
Caffarelli, Nirenberg and Spruck [2] and Ivochkina [6] and further developed by Trudinger
and Wang [10, 12, 13, 14, 15].
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A function u € C2(fi) is called k-convex in fi if Fj[u] ^ 0 in Q for j = 1, 2 , . . . , k;

that is, the eigenvalues A(V2u) of the Hessian V2u of u lie in the closed convex cone
given by

(1.4) rfc := {A € R" : S,(A) > 0, j = 1, 2, . . . , * } .

(see [2] and [13] for the basic properties of Tk.) We notice that F^u] = Au, is
the Laplacian operator and 1-convex functions are subharmonic. When k = n, Fn[u]
— det(V2u), the Monge-Ampere operator and ra-convex functions are convex. To extend
the definition of /c-convexity for non-smooth functions we adopt a viscosity definition as
in [13]. An upper semi-continuous function u : $7 —> [—oo, oo) (u ^ —oo on any con-

nected component of Q) is called k-convex if Fj[q] ^ 0, in Q for j = 1,2,..., k, for every

quadratic polynomial q for which the difference u — q has a finite local maximum in fi.

Henceforth, we shall denote the class of A;-convex functions in Cl by $>fc(fi). When A; = 1
the above definition is equivalent to the usual definition of subharmonic function, see for
example ([5, Section 3.2]) or ([7, Section 2.4]). Thus $1(J2) is the class of subharmonic
functions in fi. We notice that $*(£}) C $'(fi) C L^Q.) for k = 1,2, ...,n, and a
function u £ 3>n(fl) if and only if it is convex on each component of fi. Among other
results Trudinger and Wang [13] (Lemma 2.2) proved that u 6 $fc(O) if and only if

(1.5) j u{x) (£cf%<l>{x)\ dx > 0

for all smooth compactly supported functions 0 ^ 0 , and for all constant nxn symmetric
matrices A = (a1*) with eigenvalues X(A) € T*k, where T'k is the dual cone defined by

(1.6) r£ := {X € R" : (\,ft) > 0 for all /* 6 Tk} .

In this note we prove the following Alexsandrov type theorem for fc-convex functions.

THEOREM 1 . 1 . Let k > n/2, n ^ 2 and u : K" -> [-co, oo) (u ^ - o o on
any connected subsets of.TSL71), be a k-convex function. Then u is twice differentiate
almost everywhere. More precisely, we have the Taylor's series expansion for Cn x almost
everywhere,

(1.7) \u(y) - u(x) - (Vu(x) y - x ) - i < V 2 u ( x ) ( 2 / -x)y-x)\= o(\y - x \ 2 ) ,

as y -> x.

In Section 3 (see Theorem 3.2.), we also prove that the absolutely continuous part of
the A;-Hessian measure (see [12, 13]) M*[u], associated to a A;-convex function for k > n/2
is represented by Fk[u]. For the Monge-Ampere measure y\u] associated to a convex
function u, a similar result is obtained in [16].

To conclude this introduction we note that it is equivalent to assume only Fk[q] ^ 0,

in the definition of ^-convexity [13]. Moreover Tk may also be characterised as the closure

of the positivity set of 5* containing the positive cone Tn, [2].
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2. NOTATIONS AND PRELIMINARY RESULTS

Throughout the text we use the following standard notations. | • | and (•, •) will
stand for the Euclidean norm and inner product in E n , and B(x, r) will denote the open
ball in E" of radius r centred at x. For measurable E C Rn, £"(E) will denote its
Lebesgue measure. For a smooth function u, the gradient and Hessian of u are denoted
by Vu = (d\u,... ,dnu) and V2u = (9yu) i$i j^ n respectively. For a locally integrable
function / , the distributional gradient and Hessian are denoted by Df = (£> i / , . . . ,Dnf)
and D2u = (Aj")i$i j$n respectively.

For the convenience of the readers, we cite the following Holder and gradient es-
timates for fc-convex functions, and the weak continuity result for A;-Hessian measures,
[12, 13].

THEOREM 2 . 1 . ([13, Theorem 2.7].) For k > n/2, <l>*(ft) C C?£(Cl) with
a := 2 — n/k and for any subdomain ft' CC ft, u € $fc(ft), there exists C > 0, de-
pending only on n and k such that

(Zl> SUP

where dx := dist(x, dQ') and dx<y := min{dx , dy}.

THEOREM 2 . 2 . ([13, Theorem 4.1].) For k = 1 , . . . ,n, and 0 < q < nk/{n - k),
the space of k-convex functions <&k(Q) lies in the local Sobolev space W^(Q). Moreover,
for any Q,' CC ft" CC ft and u € $*(ft) there exists C > 0, depending on n, k, q, Q' and
ft", such that

(2.2) (/ \Du\oY\c [ |u|.
\Jn' / Jn"

THEOREM 2 . 3 . ([13, Theorem 1.1].) For any u 6 $*(ft), there exists a Borel
measure /x*[u] in ft such that

(i) Hk[u\{V) = Jv Fk[u]{x) dx for any Borel set V C ft, ifu € C2(ft) and

(ii) if (um)m^i is a sequence in <3>fc(ft) converging in ^^ ( f t ) to a function

u e $*(ft), the sequence of Borel measures (/ifc[um])m>1 converges weakly

to nk[u}.

Let us recall the definition of the dual cones, [11]

T'k := {A € Rn : (X,n) > 0 for all ft € Tk) ,

which are also closed convex cones in Kn. We notice that Tj C T*k for j ^ k with

r ; = Tn = {X e K" : \ t Z 0, j = 1, 2, . . . ,n], r j is the ray given by
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and FJ has the following interesting characterisation,

(2.3) r; = {A e rn: |A|2 ̂  - L - ^ A * ) 2 } .

We use this explicit representation of FJ to establish that the distributional derivatives
DijU of the ^-convex function u are signed Borel measures for k ^ 2, (see also [13]).

THEOREM 2 . 4 . Let 2 < k ^ n and u : Rn ->• [-co, co), be a fc-convex function.

Then there exist signed Borel measures p1* = /*>'* such that

(2.4) / u(x)^,-^(af) dx = / ^( i ) dfj.ij(x), for i, j = 1,2, . . . , n,

for aJJ gi> € Cc°°(Rn).

PROOF: Let Jfc ^ 2 and u G $*(Rn). Since $*(Rn) C $2(Rn) for Jfc ^ 2, it is enough
to prove the theorem for k = 2. Let u be a 2-convex function in R". For A G S"xn, the
space of n x n symmetric matrices, define the distribution T,i : C|(R") —>• R, by

TA(<j>) := y ^ u(x) ̂  a«3y0(z) dr.

By (1.5), Tyi^) ^ 0 for ^ e Snxn with eigenvalues A(A) e FJ, and fli ̂  0. Therefore, by
Riesz representation (see for example [9, Theorem 2.14] or [3, Theorem 1, Section 1.8]),
there exist a Borel measure nA in Rn, such that

f V^ i- f
(2.5) TA\4>) = I 4> / o, Dijiidx= I <f>dfi ,

JRn • • ./R**

for all (j> e C2(Rn) and all n x n symmetric matrices A with A(^) G Fj. In order to prove
that the second order distributional derivatives Z3y-u of u to be signed Borel measures,
we need to make special choices for the matrix A. By taking A — In, the identity matrix,
X(A) £ T\ C T\, we obtain a Borel measure //» such that

(2.6) / 4>^DiiUdx= f
JR" i=i JR"

for all 4> € C2(Rn). Therefore, the trace of the distributional Hessian D2u, is a Borel
measure. For each i = 1 , . . . , n, let A{ be the diagonal matrix with all entries 1 but the
z-th diagonal entry being 0. Then by the characterisation of FJ in (2.3), it follows that
X(Ai) € FJ. Hence there exist a Borel measure fil in R" such that

f v ^ /"
(2.7) / <f> } Djjudx = /

y*. fe y»
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for all <j> e C|(Rn) . From (2.6) and (2.7) it follows that the diagonal entries
Dau = fiIn - n' := /x" are signed Borel measure and

(2.8) f udij4>dx= f <j>df,

for all <j> € C^(R"). Let {e i , . . . , en} be the standard orthonormal basis in Rn and for
a, b € R", a ® 6 :— (a'frj), denotes the n x n rank-one matrix. For 0 < t < 1 and
i ± j , let us define Atj := In + t[et ® ej + ej <8> e^]. By a straight forward calculation, it
is easy to see that the vector of eigenvalues is X(Aij) = (1 — t, 1 + t, 1 , . . . , 1) S Fj, for
0 < t < (n/2(n - 1))1 /2. Note that for this choice of-Ay

- ^ dkkcj> + It dij(j>.
fc,(=l k=l

Thus for i ^ j , (2.5) and (2.6) yields

/ udij(f>dx—— / u V^ akldki<t>dx — I uVdkk(j>dx\

- f
(2.9)

/R"

where

Therefore .DyU = /zu are signed Borel measures and satisfy the identity (2.4). D

A function / e L1
1
OC(R") is said to have locally bounded variation in Rn if for each

bounded open subset Q! of Rn,

s u p j f fdiv<f>dx: <f> <E Cl
c{Q.';M.n), \4>(x)\ ^ 1 for all x € fi'j < oo.

We use the notation BVioc(R
n) to denote the space of such functions. For the theory of

functions of bounded variation readers are referred to [4, 17, 3].

THEOREM 2 . 5 . Let n ^ 2, k > n/2 and u : Rn ->• [-00,00), be a k-convex

function. Then u is differentia We almost everywhere C" and diU 6 BV1OC(R"), for all

PROOF: Observe that for k > n/2, we can take n < q < nk/(n — A;) and by the

gradient estimate (2.2), we conclude that A:-convex functions are differentiable £ " almost
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everywhere x. Let Q' CC Kn, <t> = ( 0 \ . . .,</>") € C^fi'jK") such that \4>(x)\ s£ 1 for
x e O'. Then by integration by parts and the identity (2.4), we have for i — 1 , . . . , n,

-^•div0dx= - V / ua Q dx

where |/zlJ| is the total variation of the Radon measure fi'K This proves the theorem. D

3. TWICE DIFFERENTIABILITY

Let u be a A;-convex function, k ~£ 2. Then by the Theorem 2.4, we have
D2u = {^)i,j, where /itJ are Radon measures. By Lebesgue's Decomposition Theorem,
we may write

A ^ = / 4 + /4J for M = l , . . . , n ,

where nQ is absolutely continuous with respect to £" and /x*-7 is supported on a set with
Lebesgue measure zero. Let u -̂ be the density of the absolutely continuous part, that is,
d / 4 = Uijdx, Uij e LJUR"). Set uy := ft>U> V2u := flyu = (^-Jij- € t1

1
0C(E";Knx'1)

and [D2u]s := (^)ij- Thus the vector valued Radon measure £>2u can be decomposed
as D2u = [Z?2u]ac + [D2u]s, where d\D2u]ac, = V2udx. Now we are in a position prove
theorem 1.1. To carry out the proof, we use a similar approach to Evans and Gariepy,
see [3, Section 6.4].

P R O O F OF THEOREM 1.1: Let n ^ 2 and u be a fc-convex function on Rn, k > n/2.
Then by Theorem 2.4, and Theorem 2.5, we have for Cn almost everywhere x

(3.1) limi \Vu(y)-Vu(x)\dy = 0,
T-*°JB{x,r)

(3.2) lim / I V2u(y) - V2u(x)| dy = 0
M0Jfl(j,r)

and

(3.3) l i m J J ^ M f e l ) ) = o .

where $Efdx we denote the mean value (Cn(E))~l JE f dx. Fix a point x for which
(3.2)-(3.3) holds. Without loss generality we may assume x = 0. Then following similar
calculations as in the proof of [3, Theorem 1, Section 6.4], we obtain,

(3.4) / u(y)-u(0)-(Vu(0),y)-l(V2u(0)y,y)\dy = o(r2),
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as r —> 0. In order to establish

(3.5) sup \u(y) - u(0) - <Vu(0),y> - l(V2u(0)y,y)\ - o(r2) as r -> 0 ,
B(r/2)' 2 I

we need the following lemma.

LEMMA 3 . 1 . Leth(y) :=u(y)-u{0)-(Vu{0),y)-(V2u(0)y,y)/2. Then there

exists a constant C > 0 depending only on n, k and |V2u(0)|, such that for any 0 < r < 1

(3.6) sup
y,z€B{r) 12/ ~ z\ r JB(2r)
y*z

where a := (2 — n/k).

PROOF: Let A := |V 2 u(0) | and define g(y) := h{y) + A\y\2/2. Since A|j/ |2/2 -

u(0) — ( V u ( 0 ) , y ) — (V2u(0)y,y)/2 is convex and the sum of two fc-convex functions

are fc-convex (follows from (1.4)), we conclude tha t g is A;-convex. Applying the Holder

estimate in (2.1) for g with Q' = B(2r), there exists C := C(n, k) > 0, such t ha t

sup lgyf)l^dist(B(r),^(2r))+ sup ^

y,z€B(2r)

(3.7) / |
JB(2T)

where dy^ := min|dist(y,9B(2r)) , dist(z,9B(2r)) | . Therefore the estimate (3.6) for h

follows from the estimate (3.7) and the definition of g. D

PROOF OF THEOREM 1.1. To prove (3.5), take 0 < e, S < 1, such that 61/n ^ 1/2.
Then there exists r0 depending on e and 6, sufficiently small, such that, for 0 < r < r0

Cn{z € B(r) : \h(z)\ > er2} ^ -L / \h(z)\ dz
1 ) ET JB(T)

= o{rn) by (3.4)

(3.8) <SCn{B(r))

Set a := 5l<nr. Then for each y 6 B{r/2) there exists z € B(r) such that

|/i(2)| < £T2 and \y - z\ ̂  a.
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Hence for each y 6 B(r/2), we obtain by (3.4) and (3.6),

B(2r)

er2 + C5a'nra ( - J \h(y) | dy + r2~a

B{2r)'

\h(y)\dy +
lB(2r)

= r2(e + C8aln) + o{r2) as r ^ O

By choosing 6 such that, C5a/n — e, we have for sufficiently small e > 0 and 0 < r < r0,

sup \h{y)\ ^ 2 e r 2 + o(r2).
fl(r/2)

Hence

sup
B(r/2)

u(y) - u(0) - <Vtt(0), y) - i<V2u(0)y, y) | dj/ = o(r2) as r -+ 0 .

This proves (1.7) for x = 0 and hence u is twice differentiable at x = 0. Therefore u is
twice differentiable at almost every x and satisfies (1.7), for which (3.2)-(3.3) holds. This
proves the theorem. D

Let u be a A-convex function and Hk[u) be the associated fc-Hessian measure. Then
/ifc[u] can be decomposed as the sum of a regular part nf'lu] and a singular part n*k[u\.

As an application of the Theorem 1.1, we prove the following theorem.

THEOREM 3 . 2 . Let Q C K" be an open set and u £ $k(Q), k > n/2. Then the

absolutely continuous part of fj.k[u] is represented by the k-Hessian operator Fk[u]. That

is

(3.9) lif[u) = Fk[u]dx.

PROOF: Let u be a fc-convex function, k > n/2 and ut be the mollification of u.

Then by (1.5) and the properties of mollification (see for example [3, Theorem 1, Section
4.2]) it follows that us € $*(n)nC°°(n). Since u is twice differentiable almost everywhere
(by Theorem 1.1) and u 6 W££(Q) (by Theorem 2.5), we conclude that V2ue -> V2u in
L\oc. Let fik[ue] and fik[u] be the Hessian measures associated to the functions ue and u

respectively. Then by weak continuity Theorem 2.3 ([13, Theorem 1.1]), /i*[uE] converges
to Hk{v\ in measure and fj,k[ue] = Fk[ue] dx. It follows that for any compact set E C ft,

(3.10) l*k[v]{E) 2 limsnp fxk[ue)(E) = limsup f Fk[u£].
£->0 £->0 JE
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Since Fk[u£] > 0 and F*[u£](z) —¥ Fk[u](x) almost everywhere, by Fatou's Lemma, for
every relatively compact measurable subset E of fi, we have

(3.11) f Fk{u]^\imm{ f Fk[u£\.
JE

 e~>0
 JE

Therefore by Theorem 3.1, [13], it follows that Fk[u] € Lloc(n). Let nk[u] = /xf[u]+/4[u],
where /ij^fu] = hdx, h 6 Lloc(Q) and fJt%[u} is the singular part supported on a set
of Lebesgue measure zero. We would like to prove that h(x) — Fk[u](x) Cn almost
everywhere x. By taking E := B(x,r), from (3.10) and (3.11), we obtain

P.")

Hence by letting e —> 0, we obtain

(3.13) Fk[u]{x) ^ h(x) Cn almost everywhere x.

To prove the reverse inequality, let us recall that h is the density of the absolutely
continuous part of the measure //fc[u], that is for Cn almost everywhere x

,%yA\ hM r t T 1

(3.14) h(x) = hmrtT1

hm Cn{B{xr)) = Jim £ n ( B ( x r ) ) •

Since nk[u\ is supported on a set of Lebesgue measure zero,

Hk[u](dB(x,r)) = 0, C1 almost everywhere r > 0.

Therefore by the weak continuity oi fik[ue] (see for example Theorem 1, [3, Theorem 1]),
we conclude that

(3.15) \imnk[ue}(B(x,r)) = fik[u](B(x,r)), Cl almost everywhere r > 0.

Let 5 > 0. Then for e < e' = e(6) and for Cl almost everywhere r > 0, Cn almost
everywhere x

/llX) ^ hm
Cn(B(x,r))

- ( 1 + 5) U r n / Fk[ue}dy

(3.16) = ( l + 5)F*[ue](x)

By letting e -* 0 and finally £ -4 0, we obtain

h(z) ^ Fjt[u](i),£n almost everywhere i .

This proves the theorem.
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