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Reflection of Willmore Surfaces with Free
Boundaries

Ernst Kuwert and Tobias Lamm

Abstract. Westudy immersed surfaces inR3 that are critical points of theWillmore functional under

boundary constraints. �e two cases considered are when the surface meets a plane orthogonally

along the boundary and when the boundary is contained in a line. In both cases we derive weak

forms of the resulting free boundary conditions and prove regularity by reflection.

1 Introduction

�is note is concerned with Willmore surfaces under free boundary conditions.
Let Σ be an oriented, two-dimensional manifold with boundary ∂Σ. For a smooth
immersion f ∶Σ → R

3 , the Willmore functional is defined by

W( f ) = 1

4
∫
Σ
H2 dµg .(1.1)

Here, µg is themeasure associatedwith the induced Riemannianmetric g, andH is the
mean curvature with respect to the unit normal ν∶Σ → S

2. We denote by h the second
fundamental form of f and put h○ = h − 1

2
Hg. Let f (⋅, t) be a smooth variation with

velocity field ϕ = φν + D f ⋅ ξ. �e first variation is (see [13, 1]),

d

dt
W( f (⋅, t))∣t=0 = 1

2
∫
Σ
W( f )φ dµg +

1

2
∫
∂Σ

ω(η) dsg ,(1.2)

where η denotes the interior unit normal along ∂Σ with respect to g, and

W( f ) = ∆gH + ∣h○∣2H,(1.3)

ω(η) = φ ∂H
∂η
−
∂φ

∂η
H −

1

2
H2g(ξ, η).(1.4)

In this paper, we address two free boundary situations. First, for a given support
surface S , we consider the class of smooth immersions M̃(S) thatmeet S orthogonally
along the boundary ∂Σ. �e admissible variations ϕ ∈ Tf M̃(S) are characterized by
the equations

∂φ

∂η
+ hS(ν, ν)φ = 0 and g(ξ, η) = 0.(1.5)
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788 E. Kuwert and T. Lamm

For immersions f that are critical in that class, Alessandroni and the first author
computed in [1] the following natural boundary condition

∂H

∂η
+ hS(ν, ν)H = 0 along ∂Σ,(1.6)

where hS is the second fundamental form of S ⊂ R3.
Secondly, we consider immersions that are confined to a given support curve Γ ⊂

R
3 along the boundary, but without prescribing the tangent plane along ∂Σ. In this

case, the critical immersions in the corresponding class satisfy

H = 0 along ∂Σ.(1.7)

�is is referred to as Navier boundary condition in [5]. Our note deals with the cases
of a plane S and a line Γ, proving reflection principles in both situations. For the plane,
the result is due to J. C. C. Nitsche, assuming C4,ν regularity up to the boundary [12].
We extend Nitsche’s theorem to a weak setting, and further adapt our arguments to
the case of a line Γ.

�e class ofW2,2 (Lipschitz) immersions on an open set U ⊂ R2 is defined by

W2,2
imm(U ,R3) = { f ∈W2,2

∩W 1,∞(U ,R3) ∶ ess inf (det g) > 0}.(1.8)

�is is an open subset of W2,2
∩W 1,∞(U ,R3). We remark that the W2,2 conformal

immersions W2,2
conf(U ,R3) introduced in [7] are exactly those f ∈W2,2

imm(U ,R3) sat-
isfying g11 = g22 and g12 = 0. In other words, we have g i j = e2uδ i j where u ∈W 1,2

∩

L∞(U). In the sequel we let Q = (−π, π) × (−1, 1), I = (−π, π) × {0} =∶ (−π, π)
and Q± = {(x , y) ∈ Q ∶ ±y > 0}. �e precise choice of Q will be convenient in the
appendix.

�eorem LetM be the class of f ∈W2,2
imm(Q+ ,R3) satisfying the constraints

f3 = 0 along I,(1.9)

⟨ν, e3⟩ = 0 along I almost everywhere.(1.10)

Assume that f ∈W2,2
conf(Q+,R3) is a critical point of the Willmore energy for variations

inM with compact support in Q+ ∪ I. �en extending f to Q by

f ∶Q− Ð→ R
3 , f (x , y) = ( f1(x ,−y), f2(x ,−y),− f3(x ,−y)),

yields a smooth Willmore immersion f ∈ C∞(Q ,R3).
�e key tool of the proof is the interior regularity theorem of Rivière [14], which

directly implies regularity onQ+ (and onQ−).We show that f is of classW2,2
conf(Q ,R3)

and solves the weakWillmore equation on all ofQ, so that [14] applies. For the second
free boundary problem where f is critical among immersions mapping I into a line
the arguments are quite analogous. �e extension by reflection across the line again
gives a smooth Willmore immersion; see �eorem 4.2 in Section 4.

�e notion of critical point used in �eorem 1 is that the first variation δW( f , ϕ)
vanishes for all admissible vector fields ϕ. Here admissible means that ϕ is formally
a tangent vector to M at f,i.e., it satisfies the equations obtained by linearizing the
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Reflection of Willmore Surfaces with Free Boundaries 789

constraints (1.9) and (1.10) at the immersion f ∈M (clearly only (1.10) is non-linear).
We prove in Section 3 that, locally, any admissible vector field ϕ is indeed the tangent
vector of a curve inM at f. �erefore, our regularity result would apply, for example,
to show the regularity of minimizers.

In the case where the curve and the tangent plane are prescribed along the
boundary, there are substantial existence and regularity results for minimizers by
Schätzle [15] and Da Lio, Palmurella, and Rivière [4]. It is clearly of interest to develop
an analogous theory for the free boundary problems in the case of curved supporting
surfaces or curves.

Due to its conformal invariance, it is also interesting to study the corresponding
problem for the functional

T( f ) = 1

2
∫
Σ
∣h○∣2 dµg .

In Section 5, we calculate the first variation of T to be

d

dt
T( f (⋅, t))∣t=0 = 1

2
∫
Σ
W( f )φ dµg +∫

∂Σ
α(η) dsg ,(1.11)

whereW( f ) and the smooth variation f (⋅, t) are as above, and
α(η) = 1

2
φ
∂H

∂η
− h○(gradφ, η) − 1

2
∣h○∣2g(ξ, η).(1.12)

We consider again the free boundary problem when the immersions meet S orthog-
onally along the boundary ∂Σ. In the case of the support surface S being a plane, the
boundary condition is again given by

∂H

∂η
= 0 along ∂Σ.

It follows immediately from the above that our main theorem directly extends to
critical points of T in this situation.

Assume that f ∶D → R
3 is a conformally immersed disk that is critical in M. We

have shown that reflection at R2 extends the surface to a Willmore immersion f ∶
Ĉ→ R

3. Bryant proved that there exists a round sphere, such that under the associated
inversion one obtains a complete minimal immersion of finite total curvature, with a
finite number of flat ends [3]. In fact, Bryant’s theory includes the case of branched
immersions under various assumptions; see [10, 11]. We claim that the center of a
sphere with these properties is unique. Otherwise, by scaling and rotating, we can
assume that f± ∶= I± ○ f are minimal surfaces of that type, where I± are the inversions
at the spheres of radius

√
2 around ±e3. It follows that f+ = I ○ f− where I ∶= I+ ○ I− is

the inversion I(x) = x
∣x ∣2

. Now in general we have the relation (see [2, (2.27)])

1

4
∣ÐÐH⃗+∣2 dµ+ = 1

4
∣ÐÐH⃗−∣2 dµ− + (∆g− log ∣ f−∣2) dµ− .

But in our case, H+ = H− = 0, and hence we get, away from finitely many points,

0 = ∆g− log ∣ f−∣2 = 4∣ f ⊥− ∣2∣ f−∣4 .
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790 E. Kuwert and T. Lamm

It follows that f ⊥− vanishes, whichmeans that f± are conical about the origin. But there
is no smooth minimal cone in R

3 except the plane. �us, unless our initial surface is
a round half-sphere, the center of inversion lies on R

2 and f is an inverted minimal
surface with R

2 symmetry.
In Bryant’s list, the first example is the Morin surface, which is symmetric even

under a rotation by π
2
. It is the inversion of (see e.g., [6])

f ∶C2/{p1 , . . . , p4} Ð→ R
3 , f (w) =R( i(w3

−w), (w3
+w), i

2
(w4
+ 1)

w4 + 2
√
3w2 − 1

) ,
where the p i , 1 ≤ i ≤ 4, are the zeros of the function in the denominator of this
expression. It is easy to see that the image of f contains the y-axis, and hence theMorin
surface is invariant under reflections at this line, and thus we have found an example
for the case in which we confine the immersion to a given support line. Additionally,
it follows that the conjugate surface f ⋆ is invariant under reflections at the xz-plane.
�is inversion of f ⋆ thus yields an example for the other situation considered in this
paper.

Another example for the reflection at a plane is obtained from the catenoid with
conformal parametrization

f (s, θ) = 2 (cosh s cos θ , cosh s sin θ , s) for s, θ ∈ R.
Inverting the catenoid yields a bounded surface that has a double point at the origin
with horizontal tangent plane, corresponding to s → ±∞. Substituting s + iθ = logw ,
where w = ρe iθ , we obtain for the induced metric

g i j = 1 + 2ρ2 + ρ4

(1 + 2ρ2 + ρ4 + 4ρ2 log2 ρ)2 δ i j = (1 − 4ρ2 log
2 ρ +O(ρ2)) δ i j

as ρ → 0. �is parametrization is W2,2-conformally immersed near w = 0. Now
restricting to − π

2
≤ θ ≤ π

2
gives a surface that meets the vertical plane x1 = 0 orthogo-

nally. Moreover, for θ = ± π
2
, the free boundary condition (1.6) holds; namely, we have

∂ηH = 0 by rotational symmetry. But for this we have to exclude the origin, in fact the
mean curvature vector has a singular expansion [9]

ÐÐ

H⃗ = −(log ρ) e3 +O(1) as ρ → 0.

If the first variation would vanish for all admissible vector fields, then we could
apply our main theorem to conclude that reflection at the plane x1 = 0 produces a
smooth extension. �us, the example only matches our assumptions away from the
two singular points. �erefore, the regularity result does not follow if the boundary
condition is only satisfied away from a point.

2 Reflection at a Plane

Let us start by recalling that for u ∈W 1,2(Q±), we have the upper and lower traces
u± ∈ L2(I). We note that u− = ±u+ for u even (resp. odd).
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Lemma 2.1 �e following holds for any u ∈W 1,2(Q±).
(i) ∂xu is the weak derivative on Q.
(ii) ∂yu is the weak derivative on Q if and only if u± coincide.

Proof We have u(⋅, y) ∈W 1,2(I) for almost every y ∈ (−1, 1). For statement (i) we
compute for φ ∈ C∞c (Q) using Fubini:

∫
Q
u∂xφ dxdy = ∫

1

−1
(∫ π

−π
u(x , y)∂xφ(x , y) dx) dy

= −∫
1

−1
(∫ π

−π
∂xu(x , y)φ(x , y) dx) dy

= ∫
Q
(∂xu)φ dxdy.

For statement (ii), we use

∫
Q
u∂yφ = ∫

Q+
u∂yφ +∫

Q−
u∂yφ

= −∫
I
u+φ dx −∫

Q+
(∂yu)φ +∫

I
u−φ dx −∫

Q−
(∂yu)φ

= ∫
I
(u− − u+)φ dx −∫

Q
(∂yu)φ.

∎

By the Sobolev embedding theorem, a function u ∈W2,2(Q±) has a representative
in C0,α(Q±), for any α ∈ [0, 1). In particular, the traces are given by continuous
extension. Furthermore the derivatives have traces (∂ iu)± ∈ L2(I). In the following,
we need the concept ofW2,2 conformal immersions; see [7].

Lemma 2.2 Let f ∶ Q+ → R
3 be a W2,2 conformal immersion meeting the horizontal

plane R2 orthogonally along I; that is,

f3 = 0 on I,(2.1)

⟨ν+, e3⟩ = 0 a.e. on I where ν = ∂x f × ∂y f

∣∂x f × ∂y f ∣ .(2.2)

Let f be extended to Q by reflection at R2, that is

f i(x , y) = f i(x ,−y) for i = 1, 2, f3(x , y) = − f3(x ,−y).(2.3)

�en f ∶Q → R
3 is a W2,2 conformal immersion.

Proof We first note that ∂x f × ∂y f ∈W 1,2
∩ L∞(Q+ ,R3) and

ess inf ∣∂x f × ∂y f ∣ ≥ e2λ > 0 for some λ ∈ R.
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792 E. Kuwert and T. Lamm

�e Sobolev chain rule yields that ν ∈W 1,2(Q+,R3) so that the trace ν+ ∈ L∞(I) is
defined. �e functions f i , i = 1, 2, are even, while f3 is odd and vanishes on I by
assumption (2.1). �us, Lemma 2.1 yields directly f ∈W 1,2(Q ,R3). To see that f is
actually of classW2,2(Q ,R3), we show that

(∂x f3)+ = 0 on I,(2.4)

(∂y f i)+ = 0 on I for i = 1, 2.(2.5)

�ese are the odd derivatives; the others are even. For given φ ∈ C∞c (Q+ ∪ I), we
calculate using the divergence theorem and partial integration with respect to ∂x :

∫
I
(∂x f3)+φ dx = −∫

Q+
∂y(∂x f3)φ dxdy −∫

Q+
(∂x f3) ∂yφ dxdy

= −∫
Q+

∂x(∂y f3)φ dxdy +∫
Q+

f3 ∂x(∂yφ) dxdy
= ∫

Q+
(∂y f3) ∂xφ dxdy +∫

Q+
f3 ∂y(∂xφ) dxdy

= −∫
I
f3 ∂xφ dx

= 0.
Since φ is arbitrary, we get (2.4); more precisely, we have shown that

(∂x f3)+ = ∂x( f3∣I) = 0.
Next we claim that almost everywhere on I, we have the equations

∣(∂x f )+∣2 − ∣(∂y f )+∣2 = ⟨(∂x f )+, (∂y f )+⟩ = 0,(2.6)

∣(∂x f )+ × (∂y f )+∣ ≥ e2λ .(2.7)

To see this, we use that for any u ∈W 1,2(Q+), there exists a sequence yk ↘ 0 such that

u(⋅, yk)→ u+ almost everywhere and in L2(I).
More precisely, there is a null setN ⊂ (0, 1) such that any sequence yk ↘ 0with yk ∉ N
has a subsequence with this property. �erefore, we can chose yk ↘ 0 with

∂x f (⋅, yk)→ (∂x f )+, ∂y f (⋅, yk)→ (∂y f )+, ν(⋅, yk)→ ν+.

We can further assume that almost everywhere on I

∣∂x f (⋅, yk)∣2 − ∣∂y f (⋅, yk)∣2 = ⟨∂x f (⋅, yk), ∂y f (⋅, yk)⟩ = 0,
∣∂x f (⋅, yk) × ∂y f (⋅, yk)∣ ≥ e2λ .

Passing to limits proves (2.6) and (2.7). We now verify (2.5) for a.e. (x , 0) ∈ I. We can
assume (∂y f )+(x , 0) ≠ 0; hence, (2.6) and (2.4) imply (∂x f )+(x , 0) ∈ R2/{0}. Now

ν+ = (∂x f )+ × (∂y f )+
∣(∂x f )+ × (∂y f )+∣ almost everywhere on I.
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By (2.2), we get that (∂y f )+(x , 0) is a linear combination of (∂x f )+(x , 0) and e3.
But then by (2.6) the vector (∂y f )+(x , 0) is a multiple of e3 , which proves (2.5).
Lemma 2.1 implies that the extension is of class W2,2(Q ,R3). Noting that the g i j are
even functions, we conclude that f is a W2,2 conformal immersion on Q as defined
in [7]. ∎

�e next lemma states the linearized version of the constraints (2.1), (2.2) on the
boundary. Here, η denotes the inner (upward) normal of Q+ along I with respect
to g:

η = 1√
g11 det g

(g11e2 − g12e1).(2.8)

Lemma 2.3 Let f ∶ (−δ, δ)→W2,2
imm(Q+,R3), t ↦ f (t), be a curve with derivative

d
dt
f ∣t=0 = ϕ. If f (t) ∈M for all t ∈ (−δ, δ), i.e. , (2.1) and (2.2) hold, then

⟨ϕ, e3⟩ = 0 along I,(2.9)

⟨∂ηϕ, ν⟩ = 0 along I.(2.10)

We say that ϕ ∈W2,2
∩W 1,∞(Q+,R3) is admissible at f if it satisfies (2.9) and (2.10).

Proof Equation (2.9) is obvious. At t = 0 the we have the following derivatives:

gαβ ∶ (−δ, δ)→W 1,2
∩ L∞(Q+), d

dt
gαβ ∣t=0 = ⟨∂αϕ, ∂β f ⟩ + ⟨∂α f , ∂βϕ⟩,

ν ∶ (−δ, δ)→W 1,2
∩ L∞(Q+ ,R3), d

dt
ν∣t=0 = −gαβ⟨ν, ∂αϕ⟩∂β f ,

η∶ (−δ, δ)→ L∞(I,R2), d

dt
η∣t=0 = −(⟨∂ηϕ, ∂τ f ⟩ + ⟨∂τϕ, ∂η f ⟩) τ
− ⟨∂ηϕ, ∂η f ⟩ η.

Here, τ = e1/√g11 is the unit tangent of I with respect to g. As g is the metric induced
by f, the vector d f ⋅ η is by definition orthogonal to d f ⋅ e1 and also to ν. But these
two vectors span R

2 by (2.1) and (2.2); thus, d f ⋅ η = ±e3. We now compute at t = 0
along I

0 = d

dt
⟨ν, e3⟩∣t=0 (using ν ⊥ e3 by (2.2))

= ±⟨ d
dt

ν∣t=0 , d f ⋅ η⟩ (using d f ⋅ η = ±e3 , see above)

= ∓⟨ν, d
dt
(d f ⋅ η)∣t=0⟩ (using ν ⊥ d f ⋅ η)

= ∓⟨ν, dϕ ⋅ η⟩ (using ν ⊥ d f ⋅ d
dt

η∣t=0).
In this calculation we actually used the traces of the functions g i j , ν, ∂ i f and ∂ iϕ.
�e trace operator is continuous from W 1,2

∩ L∞(Q+) to L∞(I), and therefore
interchanges with the time derivative at t = 0. �is justifies our computation. ∎
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794 E. Kuwert and T. Lamm

Next recall the first variation formula for the Willmore energy; see [14]. �e Will-
more functionalW( f ) is Fréchet differentiable onW2,2

imm(Q+,R3), with derivative

DW( f )ϕ = 1

2
∫
Q+
⟨ÐÐH⃗ , ∆gϕ⟩ dµg

−∫
Q+

g i j gkl ⟨ÐÐH⃗ ,A ik⟩⟨∂ j f , ∂kϕ⟩ dµg

+
1

4
∫
Q+
∣ÐÐH⃗∣2g i j⟨∂ i f , ∂ jϕ⟩ dµg .(2.11)

�eorem 2.4 Let f ∈W2,2
conf(Q+,R3) satisfy (2.1), (2.2) along I. Assume that f is

Willmore critical under these constraints; i.e., whenever ϕ ∈W2,2
∩W 1,∞(Q+,R3) is

admissible at f with compact support in Q+ ∪ I, then

DW( f )ϕ = 0.(2.12)

�en extending f by reflection at R2 yields a smooth Willmore immersion f ∶Q → R
3.

Proof We establish the weak version of the Willmore equation on all of Q. Let
R = diag(1, 1,−1). We say that ϕ ∶ Q → R

3 is even (resp. odd) if and only if ϕ(x , y) =
±Rϕ(x ,−y). By definition, the immersion f and its derivatives ∂1 f , ∂

2
1 f , ∂

2
2 f are even,

while ∂2 f , ∂
2
12 f are odd. �e derivative ∂1 preserves the parity, while ∂2 changes it.

One checks that the integrand in the first variation formula is odd in the case when ϕ
is odd, so that the integral vanishes trivially in this case. For ϕ even, the integrand is
even and

DW( f )ϕ = 2DW( f ∣Q+)ϕ∣Q+ .
As ϕ is even, we have ϕ3(x , 0) = 0 and ∂yϕ i(x , 0) = 0 for i = 1, 2. Since f ∣Q+ is confor-
mally parametrized, this implies ∂ηϕ i(x , 0) = 0. �us, the variation ϕ is admissible,
and by assumption,

DW( f ∣Q+)ϕ∣Q+ = 0.
It follows that the W2,2 conformal immersion f ∶Q → R

3 is a critical point of the
Willmore functional with respect to all compactly supported variations.�e regularity
theorem of Rivière [14] implies that f is a smooth Willmore immersion. ∎

3 Nondegeneracy of the Boundary Condition

Here, we address the question whether any admissible ϕ is the tangent vector of some
curve f (t) of W2,2 immersions satisfying the boundary constraints. For this, we let
f ∈W2,2

imm(Q+,R3) be a given conformal immersion satisfying

B( f ) = (⟨ f , e3⟩, ⟨ν f , e3⟩) = 0 along I.(3.1)

Formally linearizingB at f yields the operator

L f ϕ = (⟨ϕ, e3⟩, ⟨Dϕ ⋅ η, ν⟩).(3.2)
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For f conformal, i.e., g i j = e2uδ i j , the operator L f becomes

L f ϕ = (⟨ϕ, e3⟩, e−u⟨∂yϕ, ν⟩).(3.3)

Putting K = [− π
2
, π
2
], we consider the Banach spaces

X = {(a, b) ∈W 3
2
,2
∩W 1,∞(I)⊕W

1
2
,2
∩ L∞(I) ∶ spt (a, b) ⊂ K},

Y = {ϕ ∈W2,2
∩W 1,∞(Q+,R2

⊕R) ∶ spt L f ϕ ⊂ K}.
We have the linear map, using the extension BH from the appendix,

Φ f ∶X Ð→ Y , Φ f (a, b) = BH(0, eubν f )⊕ BH(a, 0)e3 .(3.4)

Note that ν f ∶ I → R
2 by (3.1). Since u ∈W 1,2

∩ L∞(Q+) and ν f ∈W 1,2
∩ L∞(Q+,R3)

by assumption, we can estimate

∥Φ f (a, b)∥Y ≤ C ∥(a, b)∥X .(3.5)

�e constant depends on the bound for f inW2,2
∩W 1,∞(Q+,R3), and on the lower

bound for u, i.e., for the Jacobian of f. Now L f is a continuous operator

L f ∶Y → X , L f (ϕ) = (⟨ϕ, e3⟩, e−u⟨∂yϕ, ν⟩).
Clearly, ϕ ∈ ker L f if and only if ⟨ϕ, e3⟩ = 0, ⟨∂yϕ, ν⟩ = 0, along I. By construction,

L f ○Φ f = id, in particular, ker L f ∩ imΦ f = {0}.
�e subspace imΦ f ⊂ Y is closed: let ϕk = Φ f (ak , bk)→ ϕ in Y. �en (ak , bk) =
L f ϕk → L f ϕ =∶ (a, b) in X, which yields ϕ = limk→∞Φ f (ak , bk) = Φ f (a, b). It fol-
lows that restricting L f gives the isomorphism

L f ∣im Φ f
∶ imΦ f → X ,

with inverse bounded by (3.5). Moreover, we have the direct sum decomposition

Y = imΦ f ⊕ ker L f , ϕ = Φ f (L f ϕ)⊕ (ϕ −Φ f (L f ϕ)).
By the implicit function theorem, there exist open neighborhoodsU ⊂ ker L f andV ⊂
imΦ f of the origin, and a C

1 mappingG∶U → V withG(0) = 0, such that for ϕ ⊕ ψ ∈
U ⊕ V the following equivalence holds:

f + ϕ + ψ satisfies (3.1) ⇐⇒ ψ = G[ϕ].
Here, we use thatW2,2

imm(Q+,R3) is an open subset ofW2,2
∩W 1,∞(Q+ ,R3); whence,

for U ,V sufficiently small the map f + ϕ + ψ is weakly immersed. For any ϕ ∈ ker L f ,
we thus obtain the admissible curve of weak immersions

f (t) = f + tϕ +G[tϕ], t ∈ (−δ, δ).
We have DG[0] = 0 from the general construction. To see this explicitely, we note that
DG[0]ϕ ∈ imΦ f by definition, while differentiating at t = 0 shows DG[0]ϕ ∈ ker L f :

0 = d

dt
B( f (t))∣t=0 = L f (ϕ + DG[0]ϕ) = L fDG[0]ϕ.
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4 Reflection in a line

�e condition of prescribing a line for the boundary with free tangent plane is similar
and in fact simpler than the previous one. We indicate the main points.

Lemma 4.1 Let f ∶ Q+ → R
3 be a W2,2 conformal immersion, that is

∣∂x f × ∂y f ∣ ≥ µ > 0 in Q+ ,(4.1)

⟨∂x f , ∂y f ⟩ = 0 in Q+,(4.2)

∣∂x f ∣2 − ∣∂y f ∣2 = 0 in Q+ .(4.3)

Assume that f ∣I maps into the line L = {0} ×R ⊂ R3; i.e. ,

f i = 0 along I for i = 1, 2.(4.4)

Let f be extended to all of Q by reflection at L, that is

f i(x , y) = − f i(x ,−y) for i = 1, 2,(4.5)

f3(x , y) = f3(x ,−y).(4.6)

�en f ∶Q → R
3 is a W2,2 conformal immersion.

Proof �e function f3 is even, while f i , i = 1, 2, are odd with f i(x , 0) = 0 by assump-
tion (4.4). �us f ∈W 1,2(Q ,R3) by Lemma 2.1. To see that f ∈W2,2(Q ,R3)we need
to show the vanishing of the odd first derivatives, i.e.,

∂x f i = 0 on I for i = 1, 2 and ∂y f3 = 0 on I.

�e first follows by differentiating the equation f i(x , 0) = 0 (copy the argument for
f3 from Lemma 2.2). To show the second statement at a point (x , 0), we can assume
∂y f (x , 0) ≠ 0. �en ∂x f (x , 0) is also nonzero. But ∂x f (x , 0) is a multiple of e3. By
conformality, ∂y f (x , 0) then lies in R

2, i.e., ∂y f3(x , 0) = 0. ∎

�eorem 4.2 Let f ∶ Q+ → R
3 be a W2,2 conformal immersion with f i = 0 for i = 1, 2

along I. Assume that f is critical under these constraints, i.e. ,

DW( f )ϕ = 0 for all admissible ϕ ∈W2,2
∩W 1,∞(Q+,R3),(4.7)

that is, ϕ has compact support in Q+ ∪ I and ϕ i ∣I = 0 for i = 1, 2. �en extending f by
reflection at L = {0} ×R yields a smooth Willmore immersion f ∶Q → R

3.

Proof We establish the weak version of the Willmore equation on all of Q. Let
S = diag(−1,−1, 1). We say that ϕ ∶ Q → R

3 is even (resp. odd) if and only if ϕ(x , y) =
±Sϕ(x ,−y). By definition, the immersion f and its derivatives ∂1 f , ∂

2
11 f , ∂

2
22 f are

even, while ∂2 f , ∂12 f are odd.�e derivative ∂1 preserves the parity, while ∂2 changes
it. One checks (!) that the integrand in the first variation formula is odd in the case
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when ϕ is odd, so that the integral vanishes trivially in this case. For ϕ even the
integrand is even, and one obtains

DW( f )ϕ = 2DW( f ∣Q+)ϕ∣Q+ .
Now ϕ even implies ϕ i(x , 0) = 0 for i = 1, 2, and hence the variation ϕ is admissible
on Q+, so that by assumption

DW( f ∣Q+)ϕ∣Q+ = 0.
It follows that the W2,2 conformal immersion ϕ ∶ Q → R

3 is a critical point of the
Willmore functional.�e regularity theorem of Rivière [14] implies that f is a smooth
Willmore immersion. ∎

In contrast to Section 3, here both boundary constraints are linear; hence, the affine
variation suffices to generate any given admissible field ϕ.

5 Critical points of related curvature energies

In this section, we discuss the same subject for the two related functionals

E( f ) = 1

2
∫
Σ
∣h∣2 dµg ,(5.1)

T( f ) = 1

2
∫
Σ
∣h○∣2 dµg .(5.2)

As is well known, the integrand of the�omsen functional T( f ) is pointwise confor-
mally invariant [17]. Clearly, ∣h∣2 = ∣h○∣2 + 1

2
H2; hence,

E( f ) = T( f ) +W( f ).(5.3)

Assuming enough regularity, we can rewrite the functionals using Gauı-Bonnet, i.e.,

E( f ) = 2W( f ) +∫
∂Σ

κg ds − 2πχ(Σ),(5.4)

T( f ) =W( f ) +∫
∂Σ

κg ds − 2πχ(Σ).(5.5)

�erefore, both functionals haveW( f ) as Euler–Lagrange operator, with factor 1
2
for

T( f ). Let N S be the interior unit normal along S = ∂Ω, and let η be the interior unit
normal along ∂Σ with respect to the induced metric g. As before, we denote by M̃(S)
the class of smooth immersions f ∶Σ → R

3 satisfying the constraints

f (∂Σ) ⊂ S and
∂ f

∂η
= N S

○ f .(5.6)

Differentiating in the direction of the unit tangent τ = ∂
∂s

along ∂Σ, we obtain, using

also ⟨ν,N S
○ f ⟩ = 0,
0 = ∂s⟨∂s f ,N S

○ f ⟩ = ⟨D f ⋅ ∇ττ,N
S
○ f ⟩ + ⟨∂s f , (DN S) ⋅ ∂s f ⟩.
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Now by definition∇ττ = κgη. Using (5.6) again, we see that

κg = hS(∂s f , ∂s f ).(5.7)

We conclude that for f ∈ M̃(S), we have
E( f ) = 2W( f ) +∫

∂Σ
hS(∂s f , ∂s f ) ds − 2πχ(Σ),(5.8)

T( f ) =W( f ) +∫
∂Σ

hS(∂s f , ∂s f ) ds − 2πχ(Σ).(5.9)

On M̃(R2) the three functionals E, T, and W coincide up to a topological constant,
in particular they have the same critical points. Next we compute the resulting free
boundary conditions.

Lemma5.1 For a smooth variation f (⋅, t) ∶ Σ → R
3, t ∈ (−δ, δ)with velocity ϕ = φν +

D f ⋅ ξ, we have

d

dt
E( f (⋅, t))∣t=0 = ∫

Σ
W( f )φ dµg +∫

∂Σ
τ(η) dsg , where(5.10)

τ(η) = ∂H

∂η
φ − h(gradgφ, η) − 1

2
∣h∣2g(ξ, η).(5.11)

Proof Assume first that ϕ is normal.�e following identities in general codimension
are computed in [8]:

∂t gαβ = −2hαβφ,
∂t(dµg) = −Hφ dµg ,

∂thαβ = ∇2
αβφ − g

λµhαλhβµφ.

We compute further, using normal coordinates at t = 0, p ∈ Σ,

∂t( 1
2
∣h∣2dµg) = 1

2
∂t(gαλ gβµhαβhλµ dµg)

= (∇2
αβφ − hαγhβγφ)hαβ dµg −

1

2
∣h∣2 Hφ dµg

+ 2 hαλhαβhλβφ dµg .

Decomposing hαβ = h○αβ + 1
2
Hδαβ yields

hαλhαβhλβ = 3

2
∣h○∣2H + 1

4
H2H.(5.12)

We finally arrive at

∂t( 1
2
∣h∣2dµg) = (h∇2φ + ∣h○∣2Hφ) dµg .(5.13)
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Now we compute, still in normal coordinates, using that ∇ih ik = ∇kH by Codazzi,

h∇2φ − φ∆H = 1√
det g

∂α(√det g gαβτβ), where

τβ = gλµ∇λφhβµ − φ∇βH.

Next, consider a tangential variation of the form f ○ φt , where φt is the flow of a
vectorfield ξ. �en we have

E( f ○ φt , Ω) = E( f , φt(Ω))
= 1

2
∫
Ω
∣h∣2(φt(x))Jgφt(x) dµg(x).

Differentiating at t = 0, we obtain
d

dt
E( f ○ φt , Ω)∣t=0 = 1

2
∫
Ω
(d∣h∣2(ξ) + ∣h∣2divgξ) dµg = 1

2
∫
Ω
divg(∣h∣2ξ) dµg .

Now g(∣h∣2ξ, X) = ∣h∣2⟨ϕ, d f ⋅ X⟩. �e claim of the lemma follows by combining the
two computations. ∎

Now assume that f is a critical point inM(S). As computed in [1], a variation ϕ =
φν + D f ⋅ ξ is admissible if and only if

g(ξ, η) = 0 and
∂φ

∂η
+ φhS(ν, ν) = 0 on ∂Σ.(5.14)

It is easy to see that for given functions φ, µ on ∂Σ, there exists an admissible variation
ϕ such that ϕ = φν + µ∂s f along ∂Σ. Now if f is critical in M̃(S), thenW( f ) = 0 and
further for ϕ admissible

0 = ∫
∂Σ
(φ ∂H

∂η
− h(gradgφ, η) − 1

2
∣h∣2g(ξ, η)) dsg .

We have g(ξ, η) = 0 from (5.14). Furthermore,

h(gradgφ, η) = (∂τφ)h(τ, η) + (∂ηφ)h(η, η)
= ∂τ(φh(τ, η)) − φ∇τh(τ, η) − φh(∇ττ, η) − φh(τ,∇τη)
= ∂τ(φh(τ, η)) − φ∇τh(τ, η) − φκgh(η, η) + φκgh(τ, τ).

We arrive at the formula

0 = ∫
∂Σ
(φ ∂H

∂η
−
∂φ

∂η
h(η, η) + φ[∇τh(τ, η) + κg(h(η, η) − h(τ, τ))]) dsg .

Now differentiating the constraint ⟨ν,N S
○ f ⟩ = 0 in direction of τ, we get

0 = ∂τ⟨ν,N S
○ f ⟩

= ⟨D f ⋅Wτ,D f ⋅ η⟩ + ⟨ν, (DN S) ○ f D f ⋅ τ⟩
= h(τ, η) + hS(ν,D f ⋅ τ).
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Differentiating once more yields

∇τh(τ, η) + κg(h(η, η) − h(τ, τ)) + ∂s[hS(ν, ∂s f )] = 0.
Inserting this into the boundary condition, we finally get

0 = ∫
∂Σ
(φ ∂H

∂η
−
∂φ

∂η
h(η, η) − φ ∂s[hS(ν, ∂s f )]) dsg

= ∫
∂Σ

φ (∂H
∂η
+ h(η, η)hS(ν, ν) − ∂s[hS(ν, ∂s f )]) dsg .

�us, we obtained the boundary condition

∂H

∂η
+ hS(ν, ν)h(η, η) − ∂s[hS(ν, ∂s f )] = 0.(5.15)

Clearly, this reduces to ∂H
∂η
= 0 when S is a plane. For a sphere S = ∂BR(0), we get

∂H

∂η
+

1

R
h(η, η) = 0.

To get the boundary condition for the �omsen functional T, one just combines the
results forW( f ) and E( f ); we just state the equations:

0 = ∂H

∂η
+ hS(ν, ν)H = 0,

0 = ∂H

∂η
+ hS(ν, ν)(h(η, η − h(τ, τ)) − ∂s[hS(ν, ∂s f )].

�e above computations all assumed sufficient regularity. For the application of our
main theorem, we need (5.8) and (5.9) for conformal immersions that are only inM.
�is follows directly from a reflection argument using Lemma 2.2 and the Gauss–
Bonnet theorem for closed surfaces from [7].

A APPENDIX Extension Lemma

Here we extend compactly supported functions on R to the upper halfplane with
certain bounds. Such an extension was also mentioned in [16]. In addition to the
previous notation, we put K = [− π

2
, π
2
] andH = R × [0,∞).

LemmaA.1 (Extension) Let φ ∈W 3
2
,2
∩W 1,∞(R), ψ ∈W 1

2
,2
∩ L∞(R) have support

in K.�ere exists u ∈W2,2
∩W 1,∞(H) with compact support in I × [0, 1), such that
u(⋅, 0) = φ and

∂u

∂y
(⋅, 0) = ψ,(A.1)

and such that for a universal constant C <∞, one has the estimates

∥u∥C 1 ≤ C (∥φ∥W 1,∞ + ∥ψ∥L∞),(A.2)

∥u∥W2,2 ≤ C (∥φ∥
W

3
2
,2 + ∥ψ∥W 1

2
,2),(A.3)
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Proof We start by considering the harmonic extension

Hφ∶HÐ→ R, Hφ(x , y) = ∞∑
k=0

φk(x)e−ky .(A.4)

Here, φ = ∑∞k=0 φk is the Fourier decomposition on I. We compute

Hφ(x , y) = 1

π

∞

∑
k=0

(∫
I
φ(x′) cos(kx′) dx′) cos kx e−ky

+
1

π

∞

∑
k=0

(∫
I
φ(x′) sin(kx′) dx′) sin kx e−ky

= 1

π ∫I φ(x
′) ∞∑

k=0

cos k(x − x′) e−ky dx′

= 1

π
Re ∫

I
φ(x′) ∞∑

k=0

ek(−y+i(x−x
′)) dx′

= 1

π
Re ∫

I
φ(x′) 1

1 − e−y+i(x−x′)
dx′

= 1

π ∫I φ(x
′) 1 − e−y cos(x − x′)
1 − 2e−y cos(x − x′) + e−2y dx

′

= 1

2π ∫I φ(x
′) e y − cos(x − x′)
cosh y − cos(x − x′) dx

′ .

�us, we have

Hφ(x , y) = ∫
I
G(x − x′ , y)φ(x′) dx′ , where G(x , y) = 1

2π

e y − cos x

cosh y − cos x
.

For φ(x) ≡ 1, we have Hφ ≡ 1, which yields noting G(−x , y) = G(x , y),
∫
I
G(x , y) dx = 1 for all y > 0.

In particular, for any y > 0, we can estimate

∥Hφ(⋅, y)∥C0(I) ≤ ∥φ∥L∞(I).(A.5)

Using the Cauchy estimate on the disk Dy((x , y)) we get, again for y > 0,

∥D(Hφ)(⋅, y)∥C0(I) ≤ C

y
∥φ∥L∞(I) .(A.6)

Now the biharmonic extension u = BH(φ,ψ) is given by

u(x , y) = Hφ(x , y) − y ∂y(Hφ)(x , y) + yHψ(x , y).
�e extension has initial values

u(x , 0) = Hφ(x , 0) = φ(x) and ∂yu(x , 0) = Hψ(x , 0) = ψ(x).
To see that u(x , y) is biharmonic, we note for h(x , y) harmonic that

∆(yh(x , y)) = 2 ∂yh(x , y); thus, ∆2(yh(x , y)) = 2∂y∆h(x , y) = 0.
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Now we collect the relevant estimates. By (A.5) and (A.6), we get, for 0 < y ≤ 1,
∥u(⋅, y)∥C0(I) ≤ C∥φ∥L∞(I) + y∥ψ∥L∞(I).(A.7)

Writing ∂xu = Hφ′ − y ∂y(Hφ′) + y∂x(Hψ), we get by the above estimates,

∥∂xu(⋅, y)∥C0(I) ≤ C(∥φ′∥L∞(I) + ∥ψ∥L∞(I)).(A.8)

Using that Hφ is harmonic, now we have

∂yu = −y ∂2y(Hφ) +Hψ + y ∂y(Hψ) = y ∂x(Hφ′) +Hψ + y ∂y(Hψ);
whence, by the above estimates,

∥∂yu(⋅, y)∥C0(I) ≤ C (∥φ′∥L∞(I) + ∥ψ∥L∞(I)).(A.9)

For the L2 estimates, we have for any s ∈ R by orthogonality of the φk ,

∥ ∞∑
k=1

ksφk(x)e−ky∥2L2(I×(0,∞)) =
∞

∑
k=1

k2s∥φk∥2L2(I) ∫
∞

0
e−2ky dy

= 1

2

∞

∑
k=1

k2s−1∥φk∥2L2(I)

= 1

2
[φ]2

W s− 1
2
,2(I)

.

Now for i , j ∈ N0 , we have ∂
i
x∂

j
y (Hφ) = (−1) j∑∞k=0 φ(i)k (x) k je−ky . As ∥φ(i)

k
∥L2(I) =

k i ∥φk∥L2(I), by putting s = 0, 1, 2, we get
∥H(φ − φ0)∥L2(I×(0,∞)) ≤ C[φ]W−

1
2
,2(I)

,

∥D(Hφ)∥L2(I×(0,∞)) ≤ C[φ]W 1
2
,2(I)

,

∥D2(Hφ)∥L2(I×(0,∞)) ≤ C[φ]W 3
2
,2(I)

.

In the following we put ∥φ∥2W s ,2(I) = ∣φ0∣2 + [φ]2W s ,2(I). For the biharmonic extension

u we deduce the following estimates:

∥u∥L2(I×(0,1)) ≤ C (∥φ∥W 1
2
,2(I)
+ ∥ψ∥

W−
1
2
,2(I)
),

∥Du∥L2(I×(0,1)) ≤ C ([φ]W 3
2
,2(I)
+ [ψ]

W
1
2
,2(I)
),

∥∆u∥L2(I×(0,1)) = 2 ∥ − ∂2y(Hφ) + ∂y(Hψ)∥L2(I×(0,1))

= 2 ∥Hφ′′ + ∂y(Hψ)∥L2(I×(0,1))

≤ C ([φ′′]
W−

1
2
,2(I)
+ [ψ]

W
1
2
,2(I)
)

= C ([φ]
W

3
2
,2(I)
+ [ψ]

W
1
2
,2(I)
).
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To estimate the full second derivatives we integrate by parts:

∫
I×(0,1)

∣D2u∣2

= ∫
I×(0,1)

∣∆u∣2 +∫
I×(0,1)

2

∑
i , j=1

(∂ i(∂ ju ∂
2
i ju) − ∂ j(∂ ju ∂

2
i iu))

= ∫
I×(0,1)

∣∆u∣2 + [∫
I×{y}

(∂ ju ∂
2
2 ju − ∂2u ∂

2
i iu) dx]

y=1

y=0

= ∫
I×(0,1)

∣∆u∣2 + [∫
I×{y}

(∂xu ∂2x yu − ∂yu ∂
2
xxu) dx]

y=1

y=0
.

At y = 0, we get

∫
I×{0}

(∂xu ∂2x yu − ∂yu ∂
2
xxu) dx = ∫

I
(φ′ψ′ − φ′′ψ) dx

= −2
∞

∑
k=1

k2⟨φk ,ψk⟩L2(I) .

�e Cauchy–Schwarz inequality yields

∣∫
I×{0}

(∂xu ∂2x yu − ∂yu ∂
2
xxu) dx∣

≤ 2( ∞∑
k=1

k3∥φk∥2L2(I))
1
2 ( ∞∑

k=1

k∥ψk∥2L2(I))
1
2

= 2[φ]
W

3
2
,2(I)
[ψ]

W
1
2
,2(I)

.

On the other hand, standard interior estimates imply that

∣∫
I×{1}
(∂xu ∂2x yu − ∂yu ∂

2
xxu) dx∣ ≤ C (∥φ∥L2(I) + ∥ψ∥L2(I)).

We have proved that

∥u∥C 1(I×(0,1)) ≤ C (∥φ∥W 1,∞(I) + ∥ψ∥L∞(I)),(A.10)

∥u∥L2(I×(0,1)) ≤ C (∥φ∥W 1
2
,2(I)
+ ∥ψ∥

W−
1
2
,2(I)
),(A.11)

∥Du∥L2(I×(0,1)) ≤ C ([φ]W 3
2
,2(I)
+ [ψ]

W
1
2
,2(I)
),(A.12)

∥D2u∥L2(I×(0,1)) ≤ C ([φ]W 3
2
,2(I)
+ [ψ]

W
1
2
,2(I)
).(A.13)

�e estimate for ∥Du∥L2 is not optimal. To conclude the proof of the lemmawe choose
a cutoff function η ∈ C∞c (I × [0, 1)) such that

η ≡ 1 on [ − π

2
,
π

2
] × [0, 1

2
].

�e function ηu has all properties required in the lemma. ∎
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