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Linear maps preserving (p, k)-norms of
tensor products of matrices
Zejun Huang, Nung-Sing Sze, and Run Zheng
Abstract. Let m, n ≥ 2 be integers. Denote by Mn the set of n × n complex matrices and ∥ ⋅ ∥(p,k)
the (p, k) norm on Mmn with a positive integer k ≤ mn and a real number p > 2. We show that a
linear map ϕ ∶ Mmn → Mmn satisfies

∥ϕ(A⊗ B)∥(p,k) = ∥A⊗ B∥(p,k) for all A ∈ Mm and B ∈ Mn

if and only if there exist unitary matrices U , V ∈ Mmn such that

ϕ(A⊗ B) = U(φ1(A) ⊗ φ2(B))V for all A ∈ Mm and B ∈ Mn ,

where φs is the identity map or the transposition map X ↦ XT for s = 1, 2. The result is also extended
to multipartite systems.

1 Introduction

Throughout this paper, we denote by Mm ,n and Mn the set of m × n and n × n complex
matrices, respectively. Denote by Hn the set of all n × n Hermitian matrices. For two
matrices A = (a i j) ∈ Mm and B ∈ Mn , their tensor product is defined to be A⊗ B =
(a i jB), which is an mn × mn matrix. We denote by

Mm ⊗ Mn = {A⊗ B ∶ A ∈ Mm , B ∈ Mn}
and

Hm ⊗ Hn = {A⊗ B ∶ A ∈ Hm , B ∈ Hn}.

Suppose A ∈ Mm ,n . The singular values of A are always denoted in decreasing
order by s1(A) ≥ ⋅ ⋅ ⋅ ≥ s�(A), where � = min{m, n}. Given a real number p ≥ 1 and
a positive integer k ≤ min{m, n}, the (p, k)-norm of A is defined by

∥A∥(p,k) = [
k
∑
i=1

sp
i (A)]

1
p
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The (p, k)-norm, also known as the Ky Fan (p, k)-norm, was first recognized as a
special class of unitarily invariant norms in the study of isometries by Grone and
Marcus [13] in their notable work from the 1970s. The (p, k)-norms encompass many
commonly used norms. For instance, the (1, k)-norm reduces to the Ky Fan k-norm,
while the (p, K)-norm, with K = min{m, n}, reduces to Schatten p-norm. Moreover,
the Ky Fan 1-norm, Ky Fan K-norm, and Shatten 2-norm are also known as the spectral
norm, the trace norm, and the Frobenius norm, respectively. Some earlier works
exploring the fundamental properties of the (p, k)-norm can be found in [14, 19, 24].

In addition to being a generalization of many well-known norms, the (p, k)-
norm itself has attracted extensive attention from researchers across various fields,
particularly in the study of low-rank approximation (e.g., [5, 16, 30]). The application
of the (p, k)-norm in quantum information science has also gained recent attention.
Researchers in this field have explored the concept of the twisted commutators of
two unitaries and focused on determining the minimum norm value of these twisted
commutators. The authors in [3] succeeded in obtaining an explicit closed form for
the minimum twisted commutation value with respect to the (p, k)-norm. All these
show the growing importance and relevance of the (p, k)-norm across various fields
of study.

Linear preserver problems concern the study of linear maps on matrices or opera-
tors preserving certain special properties. Since Frobenius gave the characterization of
linear maps on Mn that preserve the determinant of all matrices in 1897, a lot of linear
preserver problems have been investigated (see [20, 26] and the references therein).

The study of linear preservers on various matrix norms have been extensively
explored since Schur [29] characterized linear maps on Mn that preserve the spectral
norm. This was followed by a series of subsequent results [1, 12, 13, 23, 27, 28]. Notably,
Li and Tsing [23] provided a complete characterization of linear maps that preserve the
(p, k)-norms. They showed that linear maps on Mm ,n that preserve the (p, k)-norms
(except for the Frobenius norm) have the form

A ↦ UAV or A ↦ UAT V when m = n

for some unitary matrices U ∈ Mm and V ∈ Mn .
Traditional linear preserver problems deal with linear maps preserving certain

properties of every matrix in the whole matrix space Mn or Hn . Recently, linear
maps on Mmn or Hmn only preserving certain properties of matrices in Mm ⊗ Mn or
Hm ⊗ Hn have been investigated. Friedland et al. [11] provided a characterization of
linear maps on Hm ⊗ Hn that preserve the set of separable states in bipartite systems.
The concept of separability is widely recognized as a fundamental and crucial aspect
in the field of quantum information science. Johnston in his paper [17] examined
invertible linear maps on Mm ⊗ Mn that preserve the set of rank one matrices with
bounded Schmidt rank in both row and column spaces. Additionally, the author
investigated linear maps on Mm ⊗ Mn that preserve the Schmidt k-norm, a norm
induced by states with bounded Schmidt rank, which finds extensive application in the
field of quantum information. For more details on the Schmidt k-norm, refer to [18].

Note that Mm ⊗ Mn and Hm ⊗ Hn are small subsets of Mmn and Hmn . Researchers
know much less information on such linear maps. So it is more difficult to characterize
such linear maps. Along this line, linear maps on Hermitian matrices preserving
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the spectral radius were determined in [8]. Linear maps on complex matrices or
Hermitian matrices preserving determinant were studied in [2, 4, 6]. Linear maps on
complex matrices preserving numerical radius, k-numerical range, product numerical
range, and rank-one matrices were characterized in [7, 9, 15, 21].

In [10], the authors characterized linear maps on Mmn preserving the Ky Fan
k-norm and the Schatten p-norm of the tensor products A⊗ B for all A ∈ Mm and
B ∈ Mn . Despite the non-obvious connection to the field of quantum information,
from a mathematical perspective, it is undeniably intriguing to consider the linear
maps that preserve the (p, k)-norm of tensor products of matrices.

Therefore, in this paper, we aim to characterize linear maps ϕ on Mmn such that
for p > 2 and 1 ≤ k ≤ mn,

∥ϕ(A⊗ B)∥(p,k) = ∥A⊗ B∥(p,k) for all A ∈ Mm and B ∈ Mn .(1.1)

The comprehensive characterization in the bipartite systems will be presented in
Section 2, while in Section 3, we will extend the results to multipartite systems.

2 Bipartite system

The linear maps on Mmn satisfying (1.1) are determined by the following theorem.

Theorem 2.1 Let m, n ≥ 2 be integers. Given a real number p > 2 and a positive integer
k ≤ mn, a linear map ϕ ∶ Mmn → Mmn satisfies

∥ϕ(A⊗ B)∥(p,k) = ∥A⊗ B∥(p,k) for all A ∈ Mm and B ∈ Mn ,(2.1)

if and only if there exist unitary matrices U , V ∈ Mmn such that

ϕ(A⊗ B) = U(φ1(A) ⊗ φ2(B))V for all A ∈ Mm and B ∈ Mn ,(2.2)

where φs is the identity map or the transposition map X ↦ XT for s = 1, 2.

To prove the theorem, we need some notations and preliminary results. Denote
by ∥A∥ and A∗ the Frobenius norm and the conjugate transpose of the matrix A,
respectively. Two matrices A, B ∈ Mn are said to be orthogonal, denoted by A ⊥ B,
if A∗B = AB∗ = 0. Denote by E i j ∈ Mm ,n the matrix whose (i , j)th entry is equal to
one and all the other entries are equal to zero.

The eigenvalues of an n × n Hermitian matrix A are always denoted in decreasing
order by λ1(A) ≥ λ2(A) ≥ ⋅ ⋅ ⋅ ≥ λn(A). For A, B ∈ Hn , we use the notation A ≥ B or
B ≤ A to mean that A− B is positive semidefinite. Let R be the set of all real numbers.
Rearrange the components of x = (x1 , . . . , xn) ∈ Rn in decreasing order as x[1] ≥ ⋅ ⋅ ⋅ ≥
x[n]. For x = (x1 , . . . , xn), y = (y1 , . . . , yn) ∈ Rn , if

k
∑
i=1

x[i] ≤
k
∑
i=1

y[i] for k = 1, . . . , n,

then we say x is weakly majorized by y and denote by y ≻w x or x ≺w y.
Notice that x ↦ xγ(x ≥ 0) is a convex function for any real number γ ≥ 1. One can

easily conclude the following lemma.
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4 Z. Huang, N.S. Sze, and R. Zheng

Lemma 2.2 Let a, b ∈ R. If −a ≤ b ≤ a, then for any real number γ ≥ 1,

(a + b)γ + (a − b)γ ≥ 2aγ .(2.3)

The following lemmas are crucial in our proof.
Lemma 2.3 [25, Lemma 2.1] Let A ∈ Mn be a positive semidefinite matrix. Then

x∗Aγ x ≥ (x∗Ax)γ∥x∥2(1−γ) for all x ∈ Cnand γ ≥ 1.

Lemma 2.4 [31, Lemma 3.7] Let A ∈ Mn be a Hermitian matrix, and let k ≤ n be a
positive integer. Then

k
∑
i=1

λ i(A) = max
U∗U=Ik

tr(U∗AU) and
k
∑
i=1

λn−i+1(A) = min
U∗U=Ik

tr(U∗AU),

where Ik is the identity matrix of order k and U ∈ Mn ,k .
Lemma 2.5 [22, Lemma 1] Let A, B ∈ Mn . Then A ⊥ B if and only if there exist
Â ∈ Mm , B̂ ∈ Mn−m and unitary matrices U , V ∈ Mn such that

UAV = Â⊕ 0 and UBV = 0 ⊕ B̂.

Lemma 2.6 Let A, B, C ∈ Mn . If (A+ B) ⊥ C and A ⊥ B, then

A ⊥ C and B ⊥ C .

Proof Since A ⊥ B, we can apply Lemma 2.5 to conclude that there exist Â ∈ Mm ,
B̂ ∈ Mn−m and unitary matrices U , V ∈ Mn such that

UAV = Â⊕ 0 and UBV = 0 ⊕ B̂.

Let UCV be partitioned as

UCV = [C11 C12
C21 C22

]

with C11 ∈ Mm and C22 ∈ Mn−m . It follows from (A+ B) ⊥ C that

(U(A+ B)V)∗(UCV) = 0 and (U(A+ B)V)(UCV)∗ = 0,

that is,

[Â∗C11 Â∗C12
B̂∗C21 B̂∗C22

] = 0 and [ÂC∗11 ÂC∗21
B̂C∗12 B̂C∗22

] = 0.

Then we have

V∗A∗CV = (UAV)∗(UCV) = [Â∗C11 Â∗C12
0 0 ] = 0

and

UAC∗U∗ = (UAV) (UCV)∗ = [ÂC∗11 ÂC∗21
0 0 ] = 0.

Thus, A∗C = 0 and AC∗ = 0, i.e., A ⊥ C. Similarly, we can also conclude that
B ⊥ C. ∎
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Lemma 2.7 Let C , D ∈ Mn be two Hermitian matrices such that −C ≤ D ≤ C and k ≤
n be a positive integer. Then, for any real number γ ≥ 1,

k
∑
i=1

λγ
i (C + D) +

k
∑
i=1

λγ
i (C − D) ≥ 2

k
∑
i=1

λγ
i (C).(2.4)

Proof Let U ∈ Mn be a unitary matrix such that

U∗CU = diag(λ1(C), λ2(C), . . . , λn(C)).

Denote by u i the ith column of U for i = 1, . . . , n. Let Û = [u1 , u2 , . . . , uk]. Then,
applying Lemma 2.4, we have

k
∑
i=1

λγ
i (C + D) =

k
∑
i=1

λ i((C + D)γ) ≥ tr(Û∗(C + D)γÛ)

and
k
∑
i=1

λγ
i (C − D) =

k
∑
i=1

λ i((C − D)γ) ≥ tr(Û∗(C − D)γÛ).

Since −C ≤ D ≤ C, we have

−x∗Cx ≤ x∗Dx ≤ x∗Cx for all x ∈ Cn .

By Lemma 2.3, we have

u∗i (C + D)γu i ≥ (u∗i (C + D)u i)γ and u∗i (C − D)γu i ≥ (u∗i (C − D)u i)γ

for i = 1, . . . , n. Applying Lemma 2.2 with a = u∗i Cu i and b = u∗i Du i , we get

(u∗i (C + D)u i)γ + (u∗i (C − D)u i)γ ≥ 2(u∗i Cu i)γ for i = 1, . . . , n.

It follows from the above inequalities that

k
∑
i=1

λγ
i (C + D) +

k
∑
i=1

λγ
i (C − D) ≥tr(Û∗(C + D)γÛ) + tr(Û∗(C − D)γÛ)

=
k
∑
i=1

u∗i (C + D)γu i +
k
∑
i=1

u∗i (C − D)γu i

≥
k
∑
i=1
(u∗i (C + D)u i)γ +

k
∑
i=1
(u∗i (C − D)u i)γ

≥2
k
∑
i=1
(u∗i Cu i)γ = 2

k
∑
i=1

λγ
i (C). ∎

Remark 2.8 The inequality (2.4) can be regarded as a generalization of the inequality
(2.3) in Lemma 2.2. It is worth noting that if −a ≤ b ≤ a, then

(a + b)γ + (a − b)γ ≤ 2aγ for all 0 < γ < 1.
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In our attempt to generalize this inequality, we aimed to obtain the following analo-
gous inequality to (2.4):

k
∑
i=1

λγ
i (C + D) +

k
∑
i=1

λγ
i (C − D) ≤ 2

k
∑
i=1

λγ
i (C) for all 0 < γ < 1,

where 1 ≤ k ≤ n and C , D ∈ Mn are Hermitian matrices such that C + D and C − D
are both positive semidefinite. However, it has been demonstrated that this inequality
does not hold in general. A counterexample can be constructed by considering
matrices C and D such that C + D = diag(1, 1, 3, 3) and C − D = diag(3, 3, 1, 1). In this

case, we observe that
2
∑
i=1

λγ
i (C + D) +

2
∑
i=1

λγ
i (C − D) = 4 ⋅ 3γ > 2

2
∑
i=1

λγ
i (C) = 4 ⋅ 2γ .

Corollary 2.9 Let p > 2 be a real number, and let k ≤ n be a positive integer. Then

∥A+ B∥p
(p,k) + ∥A− B∥p

(p,k) ≥ 2
k
∑
i=1

λ
p
2
i (A∗A+ B∗B)(2.5)

for all A, B ∈ Mn .

Proof Notice that

∥A+ B∥p
(p,k) =

k
∑
i=1

sp
i (A+ B) =

k
∑
i=1

λ
p
2
i ((A∗A+ B∗B) + (A∗B + B∗A))

and

∥A− B∥p
(p,k) =

k
∑
i=1

sp
i (A− B) =

k
∑
i=1

λ
p
2
i ((A∗A+ B∗B) − (A∗B + B∗A)).

Let C = A∗A+ B∗B and D = A∗B + B∗A. Then C + D = (A+ B)∗(A+ B) and C −
D = (A− B)∗(A− B) are both positive semidefinite, that is, −C ≤ D ≤ C. Applying
Lemma 2.7, we get (2.5). ∎

Lemma 2.10 Let A, B ∈ Mn be nonzero matrices, and let 2 ≤ k ≤ n be an integer. Given
a real number p ≥ 1, if

∥A+ B∥p
(p,k) = ∥A∥p

(p,k) + ∥B∥p
(p,k) and A ⊥ B,

then rank(A+ B) ≤ k.

Proof With the assumption that A ⊥ B, we can assume that the largest k singular
values of A+ B are s1(A), . . . , s�(A), s1(B), . . . , sk−�(B) for some 0 ≤ � ≤ k. Then

∥A+ B∥p
(p,k) =

�

∑
i=1

sp
i (A) +

k−�
∑
i=1

sp
i (B) ≤

k
∑
i=1

sp
i (A) +

k
∑
i=1

sp
i (B).(2.6)

On the other hand, we have

∥A+ B∥p
(p,k) = ∥A∥p

(p,k) + ∥B∥p
(p,k) =

k
∑
i=1

sp
i (A) +

k
∑
i=1

sp
i (B).
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Thus, the equality in (2.6) holds, which implies

�

∑
i=1

sp
i (A) =

k
∑
i=1

sp
i (A) and

k−�
∑
i=1

sp
i (B) =

k
∑
i=1

sp
i (B).(2.7)

Since A and B are both nonzero, we have
k
∑
i=1

sp
i (A) > 0 and

k
∑
i=1

sp
i (B) > 0,

which implies � ≥ 1 and k − � ≥ 1, i.e., 1 ≤ � ≤ k − 1. With (2.7), it follows that

k
∑

i=�+1
sp

i (A) = 0 and
k
∑

i=k−�+1
sp

k(B) = 0,

which implies s�+1(A) = 0 and sk−�+1(B) = 0. Therefore,

rank(A) ≤ � and rank(B) ≤ k − �.

Since A ⊥ B, we have

rank(A+ B) = rank(A) + rank(B) ≤ � + k − � = k. ∎

Lemma 2.11 Let A, B ∈ Mn be two positive semidefinite matrices, let γ > 1 be a real
number, and let k ≤ n be a positive integer. Suppose

k
∑
i=1

λγ
i (A+ αB) ≤

k
∑
i=1

λγ
i (A) +

k
∑
i=1

λγ
i (αB) for all 0 < α < 1(2.8)

and U∗AU = diag(λ1(A), . . . , λn(A)) for some unitary matrix U ∈ Mn .
(a) If λk(A) = 0, then A ⊥ B.
(b) If λk(A) > 0, then U∗BU = 0k+� ⊕ B̂ with B̂ ∈ Mn−k−�, where � is the largest integer

such that λk+�(A) = λk(A).

Proof Denote the ith diagonal entry of U∗BU by b i . Then λ i(A) + αb i is the ith
diagonal entry of U∗(A+ αB)U . It follows that

(λ1(A+ αB), . . . , λk(A+ αB)) ≻w (λ1(A) + αb1 , . . . , λk(A) + αbk).

Notice that g(x) = xγ(x > 0) is an increasing convex function when γ > 1. We can
apply Theorem 3.26 in [31] to obtain

(λγ
1 (A+ αB), . . . , λγ

k(A+ αB)) ≻w ((λ1(A) + αb1)γ , . . . , (λk(A) + αbk)γ).

Thus,
k
∑
i=1

λγ
i (A+ αB) ≥

k
∑
i=1
(λ i(A) + αb i)γ . With the assumption in (2.8), we can

conclude that
k
∑
i=1
(λ i(A) + αb i)γ ≤

k
∑
i=1

λγ
i (A) +

k
∑
i=1

λγ
i (αB) for all 0 < α < 1.(2.9)
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8 Z. Huang, N.S. Sze, and R. Zheng

Let f (α) =
k
∑
i=1
(λ i(A) + αb i)γ −

k
∑
i=1

λγ
i (A) −

k
∑
i=1

λγ
i (αB) be a function on α. Then we

have

f (α) = f (0) + f
′

(0)α + o(α) = [
k
∑
i=1

λγ−1
i (A)b iγ] α + o(α),(2.10)

where a function g(α) = o(α) means lim
α→0

g(α)
α = 0. Since A and B are both posi-

tive semidefinite, we have λ i(A) ≥ 0 and b i ≥ 0 for all i = 1, . . . , n. It follows that
k
∑
i=1

λγ−1
i (A)b iγ ≥ 0. We claim that

k
∑
i=1

λγ−1
i (A)b i γ = 0. Otherwise,

k
∑
i=1

λγ−1
i (A)b i γ > 0

leads to f (α) > 0 when α > 0 is sufficiently small, which contradicts (2.9). It follows
that

λ i(A)b i = 0 for i = 1, . . . , k.

For the case λk(A) = 0, we may assume that t is the largest integer such that
λt(A) > 0. Then U∗AU = diag(λ1(A), . . . , λt(A)) ⊕ 0n−t and b i = 0 for i = 1, . . . , t.
Recall that B is positive semidefinite. Thus, U∗BU = 0t ⊕ B̂ with B̂ ∈ Mn−t . It follows
that A ⊥ B.

For the case λk(A) > 0, we first have b i = 0 for all i = 1, . . . , k. Since B is positive
semidefinite, it follows that U∗BU = 0k ⊕ C with C ∈ Mn−k . Recall that � is the largest
integer such that λk+�(A) = λk(A). If � = 0, then the proof is completed. If � > 0, then
for any i = k + 1, . . . , k + �, replacing the role of λk(A) + αbk with λ i(A) + αb i in the
above argument, we can conclude b i = 0. Thus, we have b i = 0 for i = 1, . . . , k + �. It
follows that U∗BU = 0k+� ⊕ B̂ with B̂ ∈ Mn−k−�. ∎

Corollary 2.12 Let T , S ∈ Mn be two matrices, let p > 2 be a real number, and let k ≤ n
be a positive integer. Suppose

k
∑
i=1

λ
p
2
i (T∗T + x2S∗S) ≤

k
∑
i=1

λ
p
2
i (T∗T) +

k
∑
i=1

λ
p
2
i (x2S∗S)

and
k
∑
i=1

λ
p
2
i (TT∗ + x2SS∗) ≤

k
∑
i=1

λ
p
2
i (TT∗) +

k
∑
i=1

λ
p
2
i (x2SS∗)

for all 0 < x < 1, and UTV = diag(s1(T), . . . , sn(T)) for some unitary matrices
U , V ∈ Mn .
(1) If sk(T) = 0, then T ⊥ S.
(2) If sk(T) > 0, then USV = 0k+� ⊕ Ŝ with Ŝ ∈ Mn−k−�, where � is the largest integer

such that sk+�(T) = sk(T).

Proof If sk(T) = 0, then λk(T∗T) = λk(TT∗) = 0. We can use Lemma 2.11 twice to
conclude that T∗T ⊥ S∗S and TT∗ ⊥ SS∗, and hence T ⊥ S .

If sk(T) > 0, then we have

V∗T∗TV = diag(s2
1 (T), . . . , s2

n(T)) and UTT∗U∗ = diag(s2
1 (T), . . . , s2

n(T)).
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Notice that λ i(TT∗) = λ i(T∗T) = s2
i (T) for i = 1, . . . , n. Thus,

λk(T∗T) = λk(TT∗) = s2
k(T) > 0

and � is the largest integer such that

λk+�(TT∗) = λk(TT∗) and λk+�(T∗T) = λk(T∗T).

Then we use Lemma 2.11 twice to conclude that

V S∗SV = 0k+� ⊕ C and USS∗U∗ = 0k+� ⊕ D.

It follows that USV = 0k+� ⊕ Ŝ . ∎

The following result originates from the last two paragraphs of the proof of
Theorem 2.1 in [10].

Lemma 2.13 Let ϕ ∶ Mmn → Mmn be a linear map. Suppose for any unitary matrix
X ∈ Mm and integer 1 ≤ i ≤ m, there exists a unitary matrix WX such that

ϕ(XE i i X∗ ⊗ B) = WX(E i i ⊗ φ i ,X(B))W∗
X for all B ∈ Mn ,

where φi ,X is the identity map or the transposition map and WI = Imn . Then

ϕ(A⊗ B) = φ1(A) ⊗ φ2(B) for all A ∈ Mm and B ∈ Mn ,

where φ1 is a linear map and φ2 is the identity map or the transposition map.

Proof For any real symmetric matrix S ∈ Mn and any unitary matrix X ∈ Mm ,

ϕ(Im ⊗ S) =
m
∑
i=1

ϕ(XE i i X∗ ⊗ S) = WX(Im ⊗ S)W∗
X .

Since WI = Imn , it follows that

WX(Im ⊗ S)W∗
X = WI(Im ⊗ S)W∗

I = Im ⊗ S .

Thus, WX commutes with Im ⊗ S for all real symmetric S ∈ Mn . This yields that
WX = ZX ⊗ In for some unitary matrix ZX ∈ Mm , and hence

ϕ(XE i i X∗ ⊗ B) = (ZX E i i Z∗X) ⊗ φ i ,X(B) for all i = 1, . . . , m and B ∈ Mn .(2.11)

Define linear maps tr1 ∶ Mmn → Mn and Tr1 ∶ Mmn → Mn as

tr1(A⊗ B) = tr(A)B and Tr1(A⊗ B) = tr1(ϕ(A⊗ B))

for all A ∈ Mm and B ∈ Mn . The map tr1 is also called the partial trace function in
quantum science. Then

Tr1(XE i i X∗ ⊗ B) = φ i ,X(B).

Note that Tr1 is linear and therefore continuous and the set

{XE i i X∗ ∣ 1 ≤ i ≤ m, X ∈ Mm is unitary} = {xx∗ ∈ Mm ∣ x∗x = 1}

is connected. So, all the maps φ i ,X are the same, and hence we can rewrite (2.11) as

ϕ(XE i i X∗ ⊗ B) = (ZX E i i Z∗X) ⊗ φ2(B) for all i = 1, . . . , m and B ∈ Mn ,
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where φ2 is the identity map or the transposition map. By the linearity of ϕ, it follows
that

ϕ(A⊗ B) = φ1(A) ⊗ φ2(B) for all A ∈ Mm and B ∈ Mn

for some linear map φ1 . ∎
Now we are ready to present the proof of Theorem 2.1.

Proof of Theorem 2.1. Notice that the (p, k)-norm reduces to the spectral norm
when k = 1. It was shown in [10] that a linear map ϕ preserves the spectral norm of
tensor products A⊗ B for all A ∈ Mm and B ∈ Mn if and only if ϕ has form A⊗ B ↦
U(φ1(A) ⊗ φ2(B))V for some unitary matrices U , V ∈ Mmn , where φs is the identity
map or the transposition map for s = 1, 2. So we need only consider the case when
k ≥ 2 in the following discussion. Since the sufficiency part is clear, we consider only
the necessity part.

Suppose a linear map ϕ ∶ Mmn → Mmn satisfies (2.1) and k ≥ 2. We need the
following three claims.

Claim 1 For any unitary matrices X ∈ Mm and Y ∈ Mn , we have

ϕ(XE i i X∗ ⊗ YE j jY∗) ⊥ ϕ(XE i i X∗ ⊗ YEssY∗)
and

ϕ(XE j j X∗ ⊗ YE i i Y∗) ⊥ ϕ(XEss X∗ ⊗ YE i i Y∗)
for any possible i , j, s with j ≠ s. Moreover,

rank(ϕ(XE i i X∗ ⊗ Y(E j j + Ess)Y∗)) ≤ k

and

rank(ϕ(X(E j j + Ess)X∗ ⊗ YE i i Y∗)) ≤ k,

for any possible i , j, s with j ≠ s. ∎
Proof of Claim 1. For simplicity, we denote

T = ϕ(XE i i X∗ ⊗ YE j jY∗) and S = ϕ(XE i i X∗ ⊗ YEssY∗).

We need to show

T ⊥ S and rank(T + S) ≤ k.

With the assumption in (2.1), we have

∥ϕ(XFX∗ ⊗ YGY∗)∥(p,k) = ∥XFX∗ ⊗ YGY∗∥(p,k) = ∥F ⊗ G∥(p,k)

for all F ∈ Mm and G ∈ Mn . It follows that

∥T + xS∥p
(p,k) = ∥E i i ⊗ (E j j + xEss)∥p

(p,k) = 1 + x p ,

∥T − xS∥p
(p,k) = ∥E i i ⊗ (E j j − xEss)∥p

(p,k) = 1 + x p ,

∥T∥p
(p,k) = 1 and ∥xS∥p

(p,k) = x p
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for all 0 < x < 1. We can conclude from the above equalities that

∥T + xS∥p
(p,k) + ∥T − xS∥p

(p,k) = 2∥T∥p
(p,k) + 2∥xS∥p

(p,k) for all 0 < x < 1.(2.12)

Applying Corollary 2.9 with A = T and B = xS, we get

∥T + xS∥p
(p,k) + ∥T − xS∥p

(p,k) ≥ 2
k
∑
i=1

λ
p
2
i (T∗T + x2S∗S)(2.13)

for all 0 < x < 1. Since ∥T∥p
(p,k) =

k
∑
i=1

λ
p
2
i (T∗T) and ∥xS∥p

(p,k) =
k
∑
i=1

λ
p
2
i (x2S∗S), it

follows from (2.12) and (2.13) that
k
∑
i=1

λ
p
2
i (T∗T + x2S∗S) ≤

k
∑
i=1

λ
p
2
i (T∗T) +

k
∑
i=1

λ
p
2
i (x2S∗S)(2.14)

for all 0 < x < 1.
Replacing the role of (T , S) with (T∗ , S∗) in the above argument, we have

k
∑
i=1

λ
p
2
i (TT∗ + x2SS∗) ≤

k
∑
i=1

λ
p
2
i (TT∗) +

k
∑
i=1

λ
p
2
i (x2SS∗)(2.15)

for all 0 < x < 1. We claim that sk(T) = 0. Otherwise, suppose sk(T) > 0. Then, by
(2.14) and (2.15), we can apply Corollary 2.12 to conclude that there exist unitary
matrices U , V ∈ Mn such that

UTV = diag(s1(T), . . . , smn(T)) and USV = 0k+� ⊕ Ŝ ,

where � is the largest integer such that sk+�(T) = sk(T). Thus, there exists a suf-
ficiently small number t > 0 such that the largest k singular values of T + tS are
s1(T), . . . , sk(T). Since ∥T∥p

(p,k) = ∥E i i ⊗ E j j∥p
(p,k) = 1, we have

∥T + tS∥p
(p,k) =

k
∑
i=1

sp
i (T + tS) =

k
∑
i=1

sp
i (T) = ∥T∥p

(p,k) = 1,

which contradicts the fact that

∥T + xS∥p
(p,k) = ∥E i i ⊗ (E j j + xEss)∥p

(p,k) = 1 + x p for all 0 < x < 1.

So, our claim is correct, that is, sk(T) = 0.
Now, applying Corollary 2.12 again, we have T ⊥ S . Notice that

∥T + S∥p
(p,k) = ∥T∥p

(p,k) + ∥S∥p
(p,k) .

Applying Lemma 2.10 on S and T, we have

rank(T + S) ≤ k.

Similarly, we can also show that

ϕ(XE j j X∗ ⊗ YE i i Y∗) ⊥ ϕ(XEss X∗ ⊗ YE i i Y∗)
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and

rank(ϕ(X(E j j + Ess)X∗ ⊗ YE i i Y∗)) ≤ k

for any possible i , j, s with j ≠ s.

Claim 2 For any unitary matrices X ∈ Mm and Y ∈ Mn , we have

ϕ(XE i i X∗ ⊗ Y(E j j + Ess)Y∗) ⊥ ϕ(XEt t X∗ ⊗ Y(E j j + Ess)Y∗)
whenever i ≠ t.

Proof of Claim 2. For simplicity, we denote

T = ϕ(XE i i X∗ ⊗ Y(E j j + Ess)Y∗) and S = ϕ(XEt t X∗ ⊗ Y(E j j + Ess)Y∗).

We need to show S ⊥ T . Applying Corollary 2.9 on T and xS, we get

∥T + xS∥p
(p,k) + ∥T − xS∥p

(p,k) ≥ 2
k
∑
i=1

λ
p
2
i (T∗T + x2S∗S)(2.16)

for all 0 < x < 1. With the assumption in (2.1), we have
(i) ∥T + xS∥p

(p,k) + ∥T − xS∥p
(p,k) = 2∥T∥p

(p,k) + 2∥xS∥p
(p,k) for the case k ≥ 4;

(ii) ∥T + xS∥p
(p,k) + ∥T − xS∥p

(p,k) = 2∥T∥p
(p,k) + ∥xS∥p

(p,k) for the case k = 3;
(iii) ∥T + xS∥p

(p,k) + ∥T − xS∥p
(p,k) = 2∥T∥p

(p,k) for the case k = 2.
So we can conclude that for any integer k ≥ 2,

∥T + xS∥p
(p,k) + ∥T − xS∥p

(p,k) ≤ 2∥T∥p
(p,k) + 2∥xS∥p

(p,k)

= 2
k
∑
i=1

λ
p
2
i (T∗T) + 2

k
∑
i=1

λ
p
2
i (x2S∗S).(2.17)

It follows that
k
∑
i=1

λ
p
2
i (T∗T + x2S∗S) ≤

k
∑
i=1

λ
p
2
i (T∗T) +

k
∑
i=1

λ
p
2
i (x2S∗S)(2.18)

for all 0 < x < 1. The above observations also hold if (T , S) is replaced by (T∗ , S∗),
that is,

k
∑
i=1

λ
p
2
i (TT∗ + x2SS∗) ≤

k
∑
i=1

λ
p
2
i (TT∗) +

k
∑
i=1

λ
p
2
i (x2SS∗)(2.19)

for all 0 < x < 1.
If sk(T) = 0, then applying Corollary 2.12, we have T ⊥ S. Otherwise, sk(T) > 0.

Notice that Claim 1 implies rank(T) ≤ k. Thus, by (2.18) and (2.19), we can apply
Corollary 2.12 to conclude that there exist unitary matrices U , V ∈ Mmn such that

UTV = diag(s1(T), . . . , sk(T)) ⊕ 0mn−k and USV = 0k ⊕ Ŝ .

It follows that T ⊥ S . This completes the proof.

Claim 3 For any unitary matrices X ∈ Mm and Y ∈ Mn ,

ϕ(XE i i X∗ ⊗ YE j jY∗) ⊥ ϕ(XErr X∗ ⊗ YEssY∗) for any (i , j) ≠ (r, s).
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Proof of Claim 3. If i = r or j = s, then applying Claim 1 directly, we have

ϕ(XE i i X∗ ⊗ YE j jY∗) ⊥ ϕ(XErr X∗ ⊗ YEssY∗).

Next, we suppose that i ≠ r and j ≠ s. With Claim 1, we have

ϕ(XE i i X∗ ⊗ YE j jY∗) ⊥ ϕ(XE i i X∗ ⊗ YEssY∗)(2.20)

and

ϕ(XErr X∗ ⊗ YE j jY∗) ⊥ ϕ(XErr X∗ ⊗ YEssY∗).(2.21)

With Claim 2, we have

ϕ(XE i i X∗ ⊗ Y(E j j + Ess)Y∗) ⊥ ϕ(XErr X∗ ⊗ Y(E j j + Ess)Y∗).(2.22)

Applying Lemma 2.6, we conclude from (2.20) and (2.22) that

ϕ(XE i i X∗ ⊗ YE j jY∗) ⊥ ϕ(XErr X∗ ⊗ Y(E j j + Ess)Y∗).(2.23)

Then, applying Lemma 2.6 again, we can conclude from (2.21) and (2.23) that

ϕ(XE i i X∗ ⊗ YE j jY∗) ⊥ ϕ(XErr X∗ ⊗ YEssY∗).

Now we prove that ϕ has the desired form (2.2). For any unitary matrix Y ∈ Mn ,
applying Claims 1 and 3, we know

F = {ϕ(E i i ⊗ YE j jY∗) ∶ i = 1, . . . , m and j = 1 . . . , n}

is a set of mn orthogonal matrices in Mmn . By Claim 1, each matrix in F has exactly
one nonzero singular value, which equals 1. Thus, there exist unitary matrices UY , VY ∈
Mmn such that

ϕ(E i i ⊗ YE j jY∗) = UY(E i i ⊗ E j j)V∗Y(2.24)

for all i = 1, . . . , m and j = 1, . . . , n. Without loss of generality, we may assume that
UI = VI = Imn , i.e.,

ϕ(E i i ⊗ E j j) = E i i ⊗ E j j(2.25)

for all i = 1, . . . , m and j = 1, . . . , n. By (2.24) and (2.25), we have:
(i) Imn = ϕ(Im ⊗ In) = UY(Im ⊗ In)V∗Y ;

(ii) E i i ⊗ In = ϕ(E i i ⊗ In) = UY(E i i ⊗ In)V∗Y for all i = 1, . . . , m.
It follows that UY = VY and UY commutes with E i i ⊗ In for all i = 1, . . . , m. Therefore,
UY commutes with E11 ⊗ In + 2E22 ⊗ In + ⋅ ⋅ ⋅ + mEmm ⊗ In , which implies that UY =
m
⊕
i=1

U i ,Y with unitary matrices U i ,Y ∈ Mn . It follows that

ϕ(E i i ⊗ YE j jY∗) = E i i ⊗ U i ,Y E j jU∗i ,Y .

So far, we have showed that for any unitary matrix Y ∈ Mn , there exists a unitary
matrix U i ,Y ∈ Mn depending on i and Y such that

ϕ(E i i ⊗ YE j jY∗) = E i i ⊗ U i ,Y E j jU∗i ,Y for j = 1, . . . , n.
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By the linearity of ϕ, we conclude from the above equation that for any i = 1, . . . , m,
there exists a linear map ψ i such that

ϕ(E i i ⊗ B) = E i i ⊗ ψ i(B) for all B ∈ Mn .

Let k̂ = min{k, n}. Then it is easy to check that

∥ψ i(B)∥(p, k̂) = ∥E i i ⊗ ψ i(B)∥(p,k) = ∥E i i ⊗ B∥(p,k) = ∥B∥(p, k̂)

for all B ∈ Mn . That is, ψ i is a linear map on Mn preserving the (p, k̂)-norm.
Thus, by Theorem 1 in [23], ψ i has form B ↦ Wi BW̃i or B ↦ Wi BT W̃i for some
unitary matrices Wi , W̃i ∈ Mn . Let W =

m
⊕
i=1

Wi and W̃ =
m
⊕
i=1

W̃i . It follows that for any
i = 1, . . . , m,

ϕ(E i i ⊗ B) = W(E i i ⊗ φ i(B))W̃ for all B ∈ Mn ,

where φ i is the identity map or the transposition map. Recall that Imn = ϕ(Im ⊗ In).
Thus, we have W̃ = W∗.

Applying Claim 3 again, we can repeat the same argument above to show that for
any unitary matrix X ∈ Mm and any integer 1 ≤ i ≤ m, there exists a unitary matrix
WX such that

ϕ(XE i i X∗ ⊗ B) = WX(E i i ⊗ φ i ,X(B))W∗
X for all B ∈ Mn ,

where φ i ,X is the identity map or the transposition map. We may further assume that
WI = Imn . Then, applying Lemma 2.13, we have

ϕ(A⊗ B) = φ1(A) ⊗ φ2(B) for all A ∈ Mm and B ∈ Mn ,

where φ2 is the identity map or the transposition map and φ1 is a linear map on Mm .
Let k̃ = min{k, m}. It is easy to verify that φ1 is a linear map on Mm preserving the
(p, k̃)-norm. Hence, φ1 also has the form A ↦ UAV or A ↦ UAT V for some unitary
matrices U , V ∈ Mm . This completes the proof. ∎

3 Multipartite system

In this section, we extend Theorem 2.1 to multipartite systems. The proof of the
following lemma can be found in the proof of Theorem 3.1 in [10]. For completeness,
we present it as follows.

Lemma 3.1 Given an integer m ≥ 2, let n i ≥ 2 be integers for i = 1, . . . , m and
N =

m
∏
i=1

n i . Let ϕ ∶ MN → MN be a linear map. Suppose for any unitary matrices X i ∈
Mn i and any integers 1 ≤ j i ≤ n i with 1 ≤ i ≤ m − 1, there exists a unitary matrix WX ∈
MN depending on X = (X1 , . . . , Xm−1) such that

ϕ(
m−1
⊗
i=1

X i E j i j i X∗i ⊗ B) = WX (
m−1
⊗
i=1

E j i j i ⊗ φ j1 , . . . , jm−1 ,X(B))W∗
X(3.1)
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for all B ∈ Mnm , where φ j1 , . . . , jm−1 ,X is the identity map or the transposition map and
WX = IN when X = (In1 , . . . , Inm−1). Then

ϕ(A1 ⊗ ⋅ ⋅ ⋅ ⊗ Am−1 ⊗ B) = φ1(A1 ⊗ ⋅ ⋅ ⋅ ⊗ Am−1) ⊗ φ2(B),

where φ1 is a linear map and φ2 is the identity map or the transposition map.

Proof Considering all symmetric real matrices as in the proof of Lemma 2.13, one
can conclude that there exists some unitary matrix ZX such that

ϕ(
m−1
⊗
i=1

X i E j i j i X∗i ⊗ B) = (ZX (
m−1
⊗
i=1

E j i j i)Z∗X) ⊗ φ j1 , . . . , jm−1 ,X(B)(3.2)

for all B ∈ Mnm and integers 1 ≤ j i ≤ n i with 1 ≤ i ≤ m − 1. Define linear maps tr1 ∶
MN → Mnm and Tr1 ∶ MN → Mnm by

tr1(A⊗ B) = tr(A)B and Tr1(A⊗ B) = tr1(ϕ(A⊗ B))

for all A ∈ Mn1 ⋅ ⋅ ⋅ nm−1 and B ∈ Mnm . Then

Tr1 (
m−1
⊗
i=1

X i E j i j i X∗i ⊗ B) = φ j1 , . . . , jm−1 ,X(B).

Notice that Tr1 is linear and therefore continuous. Besides, the set

{
m−1
⊗
i=1

X i E j i j i X∗i ∣ 1 ≤ j i ≤ n i and X i ∈ Mn i is unitary for i = 1, . . . , m − 1}

= {
m−1
⊗
i=1

x i x∗i ∣ x i ∈ Cn i with x∗i x i = 1 for i = 1, . . . , m − 1}(3.3)

is connected. So, all the maps φ j1 , . . . , jm−1 ,X are the same. Then (3.2) can be rewritten as

ϕ(
m−1
⊗
i=1

X i E j i j i X∗i ⊗ B) = (ZX (
m−1
⊗
i=1

E j i j i)Z∗X) ⊗ φ2(B),

where φ2 is the identity map or the transposition map. With the linearity of ϕ, it follows
that

ϕ(A1 ⊗ ⋅ ⋅ ⋅ ⊗ Am−1 ⊗ B) = φ1(A1 ⊗ ⋅ ⋅ ⋅ ⊗ Am−1) ⊗ φ2(B)

for some linear map φ1 . ∎

Theorem 3.2 Given an integer m ≥ 2, let n i ≥ 2 be integers for i = 1, . . . , m and N =
m
∏
i=1

n i . Then, for any real number p > 2 and any positive integer k ≤ N , a linear map

ϕ ∶ MN → MN satisfies

∥ϕ(A1 ⊗ ⋅ ⋅ ⋅ ⊗ Am)∥(p,k) = ∥A1 ⊗ ⋅ ⋅ ⋅ ⊗ Am∥(p,k)(3.4)

for all Ai ∈ Mn i , i = 1, . . . , m, if and only if there exist unitary matrices U , V ∈ MN such
that

ϕ(A1 ⊗ ⋅ ⋅ ⋅ ⊗ Am) = U(φ1(A1) ⊗ ⋅ ⋅ ⋅ ⊗ φm(Am))V(3.5)
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for all Ai ∈ Mn i , i = 1, . . . , m, where φi is the identity map or the transposition map
A ↦ AT for i = 1, . . . , m.

Proof By Theorem 3.2 of [10], we know the result holds for k = 1. So we may assume
k ≥ 2.

We use induction on m. By Theorem 2.1, the result holds for m = 2. Now suppose
that m ≥ 3 and the result holds for any (m − 1)-partite system. We need to show that
the result holds for any m-partite system.

We first show that for any unitary matrices X i ∈ Mn i , i = 1, . . . , m,

ϕ(X1E i1 i1 X∗1 ⊗ ⋅ ⋅ ⋅ ⊗ Xm E im im X∗m) ⊥ ϕ(X1E j1 j1 X∗1 ⊗ ⋅ ⋅ ⋅ ⊗ Xm E jm jm X∗m)(3.6)

for any (i1 , . . . , im) ≠ ( j1 , . . . , jm). Without loss of generality, we need only to prove
that (3.6) holds when X i = In i for i = 1, . . . , m. By Lemma 2.6, it suffices to show that
for any integer 1 ≤ s ≤ m, we have

ϕ(
s−1
⊗
u=1

(E iu iu + E ju ju) ⊗ E is is ⊗
m
⊗

u=s+1
E iu iu)

⊥ ϕ(
s−1
⊗
u=1

(E iu iu + E ju ju) ⊗ E js js ⊗
m
⊗

u=s+1
E iu iu)(3.7)

for all i = (i1 , . . . , im) and j = ( j1 , . . . , jm) with iu ≠ ju for u = 1, . . . , s. Denote by
As(i, j) and Bs(i, j) the two matrices in (3.7) accordingly. It is easy to check that for
any integer 1 ≤ s ≤ m and real number 0 < x < 1,

∥As(i, j) + xBs(i, j)∥p
(p,k) + ∥As(i, j) − xBs(i, j)∥p

(p,k)

≤ 2∥As(i, j)∥p
(p,k) + 2∥xBs(i, j)∥p

(p,k).

Then, applying the same argument as in the proof of Theorem 2.1, we conclude that
for any integer 1 ≤ s ≤ m and real number 0 < x < 1,

k
∑
i=1

λ
p
2
i (A∗s (i, j)As(i, j) + x2B∗s (i, j)Bs(i, j))

≤
k
∑
i=1

λ
p
2
i (A∗s (i, j)As(i, j)) +

k
∑
i=1

λ
p
2
i (x2B∗s (i, j)Bs(i, j))(3.8)

and
k
∑
i=1

λ
p
2
i (As(i, j)A∗s (i, j) + x2Bs(i, j)B∗s (i, j))

≤
k
∑
i=1

λ
p
2
i (As(i, j)A∗s (i, j)) +

k
∑
i=1

λ
p
2
i (x2Bs(i, j)B∗s (i, j))(3.9)

for all i = (i1 , . . . , im) and j = ( j1 , . . . , jm) with iu ≠ ju for u = 1, . . . , s. Now we distin-
guish two cases.

Case 1. Suppose k > 2m−1. Then

∥As(i, j) + xBs(i, j)∥p
(p,k) = 2s−1 + as x p for 0 < x < 1,(3.10)
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where as = 2s−1 for s = 1, . . . , m − 1 and am = min{k − 2m−1 , 2m−1}. We claim that

sk(As(i, j)) = 0 for s = 1, . . . , m.(3.11)

Otherwise, sk(As(i, j)) > 0 for some 1 ≤ s ≤ m. Then, by (3.8) and (3.9), we can use the
same argument as in Claim 1 in the proof of Theorem 2.1 to conclude that there exists
a sufficiently small x > 0 such that

∥As(i, j) + xBs(i, j)∥p
(p,k) = ∥As(i, j)∥p

(p,k) = 2s−1 ,

which contradicts (3.10). Thus, (3.11) holds. Applying Corollary 2.12, we have

As(i, j) ⊥ Bs(i, j) for s = 1, . . . , m.

Case 2. Suppose k ≤ 2m−1. Let s0 be the integer such that 2s0−1 < k ≤ 2s0 . We can use
the same argument as in Case 1 to show that for any integer 1 ≤ s ≤ s0,

As(i, j) ⊥ Bs(i, j) and sk(As(i, j)) = 0(3.12)

for all i = (i1 , . . . , im) and j = ( j1 , . . . , jm) with iu ≠ ju for u = 1, . . . , s.
Next, we use induction on s to prove that for any s0 + 1 ≤ s ≤ m, i = (i1 , . . . , im) and

j = ( j1 , . . . , jm) with iu ≠ ju for u = 1, . . . , s, there exist unitary matrices U , V ∈ MN
depending on s and (i, j) such that

UAs(i, j)V = I2s−1 ⊕ 0N−2s−1 and As(i, j) ⊥ Bs(i, j).(3.13)

First, by (3.12), we have As0(i, j) ⊥ Bs0(i, j) and there exist unitary matrices U , V ∈ MN
and an integer 0 ≤ r < k such that

UAs0(i, j)V = diag(a1 , . . . , ar) ⊕ 0

and

UBs0(i, j)V = 0r ⊕ diag(br+1 , . . . , bN),

with a1 ≥ ⋅ ⋅ ⋅ ≥ ar > 0 and br+1 ≥ ⋅ ⋅ ⋅ ≥ bN ≥ 0. If a1 > 1, then by (3.12), applying
Lemma 2.6, we have s1(ϕ(

m
⊗
u=1

E iu iu)) > 1 for some (i1 , . . . , im). It follows that

∥ϕ(
m
⊗
u=1

E iu iu)∥
(p,k)

> 1, which contradicts (3.4). Thus, a1 ≤ 1, and similarly br+1 ≤ 1.
Then we have

r
∑
j=1

ap
j +

k
∑

j=r+1
bp

j ≤ k.(3.14)

Clearly, a1 ≥ ⋅ ⋅ ⋅ ≥ ar ≥ xbr+1 ≥ ⋅ ⋅ ⋅ ≥ xbk are the largest k singular values of
As0(i, j) + xBs0(i, j) for all 0 < x ≤ ar

br+1
. Hence,

∥As0(i, j) + xBs0(i, j)∥p
(p,k) =

r
∑
j=1

ap
j + x p

k
∑

j=r+1
bp

j for all 0 < x ≤ ar

br+1
.

On the other hand, with (3.4), we have

∥As0(i, j) + xBs0(i, j)∥p
(p,k) = 2s0−1 + x p(k − 2s0−1) for all 0 < x ≤ 1.
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It follows from the above two equations that
r
∑
j=1

ap
j = 2s0−1 and

k
∑

j=r+1
bp

j = k − 2s0−1 .

Therefore, ∑r
j=1 ap

j +∑k
j=r+1 bp

j = k, i.e., the equality in (3.14) holds, which implies
that a j = 1 for j = 1, . . . , r. Notice that ∥As0(i, j)∥p

(p,k) = 2s0−1. Thus, r = 2s0−1 , that is,
UAs0(i, j)V = I2s0−1 ⊕ 0N−2s0−1 . Hence, (3.13) holds for s0.

Suppose that (3.13) holds for s − 1 with s0 < s ≤ m. We will show that (3.13) also
holds for s. Notice that As(i, j) = As−1(̂i, ĵ) + Bs−1(̂i, ĵ) for some î = (î1 , . . . , îm) and
ĵ = ( ĵ1 , . . . , ĵm) with îu ≠ ĵu for u = 1, . . . , s − 1. By our assumption, we have

UAs−1(̂i, ĵ)V = I2s−2 ⊕ 0N−2s−2 and UBs−1(̂i, ĵ)V = 02s−2 ⊕ I2s−2 ⊕ 0N−2s−1

for some unitary matrices U , V ∈ MN . It follows that

UAs(i, j)V = I2s−1 ⊕ 0N−2s−1 .

Then, with (3.8) and (3.9), we apply Corollary 2.12 to conclude that

UBs(i, j)V = 02s−1 ⊕ B̂

for some B̂ ∈ MN−2s−1 . It follows that As(i, j) ⊥ Bs(i, j). Now we have proved that (3.13)
holds for s. Then we can conclude from the above discussion that for any s = 1, . . . , m,

As(i, j) ⊥ Bs(i, j)

for all i = (i1 , . . . , im) and j = ( j1 , . . . , jm) with iu ≠ ju for u = 1, . . . , s, that is, (3.6)
holds.

It follows that for any unitary matrix Xm ∈ Mnm , there exist unitary matrices UXm

and VXm such that

ϕ(
m−1
⊗
i=1

E j i j i ⊗ Xm E jm jm X∗m) = UXm(E j1 j1 ⊗ ⋅ ⋅ ⋅ ⊗ E jm jm)V∗Xm
(3.15)

for all j i = 1, . . . , n i with 1 ≤ i ≤ m. For simplicity, we may assume that UI = VI = I,
i.e.,

ϕ(E j1 j1 ⊗ ⋅ ⋅ ⋅ ⊗ E jm jm) = E j1 j1 ⊗ ⋅ ⋅ ⋅ ⊗ E jm jm .(3.16)

Then we have ϕ(IN) = IN . Applying a similar argument as in the last two paragraphs
of the proof of Theorem 2.1, one can conclude from (3.15) and (3.16) that there are
unitary matrices W , W̃ ∈ MN such that for all j i = 1, . . . , n i with 1 ≤ i ≤ m − 1,

ϕ(
m−1
⊗
i=1

E j i j i ⊗ B) = W (
m−1
⊗
i=1

E j i j i ⊗ φ j1 , . . . , jm−1(B)) W̃ ,

where φ j1 , . . . , jm−1 is the identity map or the transposition map. It follows that
ϕ(IN) = WW̃ . Recall that ϕ(IN) = IN and W and W̃ are both unitary matrices. We
have W̃ = W∗ .

Following a similar argument as above, one can show that for any
X = (X1 , . . . , Xm−1) and any integer j i = 1, . . . , n i with 1 ≤ i ≤ m − 1, there exists
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a unitary matrix WX ∈ MN such that

ϕ(
m−1
⊗
i=1

X i E j i j i X∗i ⊗ B) = WX (
m−1
⊗
i=1

E j i j i ⊗ φ j1 , . . . , jm−1 ,X(B))W∗
X(3.17)

for all B ∈ Mnm , where φ j1 , . . . , jm−1 ,X is the identity map or transposition map. Denote
I = (In1 , . . . , Inm−1). For simplicity, we may further assume that WI = IN , i.e., for any
integer j i = 1, . . . , n i with 1 ≤ i ≤ m − 1,

ϕ(
m−1
⊗
i=1

E j i j i ⊗ B) =
m−1
⊗
i=1

E j i j i ⊗ φ j1 , . . . , jm−1 ,I(B) for all B ∈ Mnm .

Then we apply Lemma 3.1 to conclude that

ϕ(A1 ⊗ ⋅ ⋅ ⋅ ⊗ Am−1 ⊗ B) = ψ(A1 ⊗ ⋅ ⋅ ⋅ ⊗ Am−1) ⊗ φm(B)

for all B ∈ Mnm and A i ∈ Mn i , 1 ≤ i ≤ m − 1, where φm is the identity map or the

transposition map and ψ is a linear map. Let k̂ = min{k,
m−1
∏
i=1

n i}. It is easy to check

that

∥ψ(A1 ⊗ ⋅ ⋅ ⋅ ⊗ Am−1)∥(p, k̂) = ∥A1 ⊗ ⋅ ⋅ ⋅ ⊗ Am−1∥(p, k̂)

for all A i ∈ Mn i , i = 1, . . . , m − 1. Then, by the induction hypothesis, we conclude that
there exist unitary matrices Ũ and Ṽ such that

ψ(A1 ⊗ ⋅ ⋅ ⋅ ⊗ Am−1) = Ũ(φ1(A1) ⊗ ⋅ ⋅ ⋅ ⊗ φm−1(Am−1))Ṽ ,

where φ i is the identity map or the transposition map for i = 1, . . . , m − 1. Therefore,
ϕ has the desired form and the proof is completed. ∎

4 Conclusion and remarks

In this paper, we determined the structures of linear maps on Mmn that preserve
the (p, k)-norms of tensor products of matrices for p > 2 and 1 ≤ k ≤ mn. Our study
generalized the results in [10] concerning the maps preserving the Ky Fan k-norm and
Schatten p-norms. Furthermore, we have also extended the result on bipartite systems
to multipartite systems using mathematical induction.

The proofs of the main results in [10] heavily rely on Lemmas 2.2 and 2.7 from the
same paper, which specifically address Ky Fan k-norms and Schatten p-norms. How-
ever, it is important to note that these two lemmas are not applicable for (p, k)-norms.
To overcome this limitation, we derived two inequalities involving the eigenvalues
of Hermitian matrices and (p, k)-norms, which are presented in Lemma 2.7 and its
corollary. These two inequalities play a crucial role in our proofs.

To characterize linear maps that preserve the (p, k)-norms of tensor products of
matrices for 1 < p ≤ 2, we attempted to derive an analogue to the inequality (2.4).
However, as demonstrated in Remark 2.8, this analogous inequality does not hold in
general. Consequently, the techniques employed in this paper are not able to address
the case 1 < p ≤ 2. Therefore, novel approaches need to be introduced to tackle this
particular scenario.
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