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Abstract
We show that the measure of maximal entropy of every complex Hénon map is exponentially mixing of all orders
for Hölder observables. As a consequence, the Central Limit Theorem holds for all Hölder observables.
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Notation. The pairing 〈·, ·〉 is used for the integral of a function with respect to a measure or, more
generally, the value of a current at a test form. By (𝑝, 𝑝)-currents we mean currents of bi-digree (𝑝, 𝑝).
Given 𝑘 ≥ 1, we denote by 𝜔FS the Fubini-Study form on P𝑘 = P𝑘 (C). The mass of a positive closed
(𝑝, 𝑝)-current R on P𝑘 is equal to 〈𝑅, 𝜔𝑘−𝑝

FS 〉 and is denoted by ‖𝑅‖. The notations � and � stand for
inequalities up to a multiplicative constant. If R and S are two real currents of the same bi-degree, we
write |𝑅 | ≤ 𝑆 when 𝑆 ± 𝑅 ≥ 0. Observe that this forces S to be positive.

1. Introduction

Hénon maps are among the most studied dynamical systems that exhibit interesting chaotic behaviour.
The main goal of this work is to prove that the measure of maximal entropy of any complex Hénon
map is exponentially mixing of all orders with respect to Hölder observables. As a consequence, we
also solve a long-standing question proving the Central Limit Theorem for all Hölder observables with
respect to the maximal entropy measures of complex Hénon maps.

The reader can find in the work of Bedford, Fornaess, Lyubich, Sibony, Smillie and the second author
fundamental dynamical properties of these systems; see [1, 3, 4, 18, 27, 28, 31] and the references
therein. It is shown in [1] that the measure of maximal entropy 𝜇 is Bernoulli. In particular, it is
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mixing of all orders [9]. Namely, for every 𝜅 ∈ N, observables 𝑔0, . . . , 𝑔𝜅 ∈ 𝐿𝜅+1 (𝜇) and integers
0 =: 𝑛0 ≤ 𝑛1 ≤ · · · ≤ 𝑛𝜅 , we have

〈𝜇, 𝑔0 (𝑔1 ◦ 𝑓 𝑛1) . . . (𝑔𝜅 ◦ 𝑓 𝑛𝜅 )〉 −
𝜅∏
𝑗=0

〈𝜇, 𝑔 𝑗〉 → 0.

However, the control of the speed of mixing (i.e., the rate of the above convergence) for general dynamical
systems and for regular enough observables is a challenging problem, and usually one can obtain it only
under strong hyperbolicity assumptions on the system.

Let us recall the following general definition.
Definition 1.1. Let (𝑋, 𝑓 ) be a dynamical system and 𝜈 an f -invariant measure. Let (𝐸, ‖ · ‖𝐸 ) be
a normed space of real functions on X with ‖ · ‖𝐿𝑝 (𝜈) � ‖ · ‖𝐸 for all 1 ≤ 𝑝 < ∞. We say that 𝜈 is
exponentially mixing of order 𝜅 ∈ N∗ for observables in E if there exist constants 𝐶𝜅 > 0 and 0 < 𝜃𝜅 < 1
such that, for all 𝑔0, . . . , 𝑔𝜅 in E and integers 0 =: 𝑛0 ≤ 𝑛1 ≤ · · · ≤ 𝑛𝜅 , we have

���〈𝜈, 𝑔0(𝑔1 ◦ 𝑓 𝑛1) . . . (𝑔𝜅 ◦ 𝑓 𝑛𝜅 )〉 −
𝜅∏
𝑗=0

〈𝜈, 𝑔 𝑗〉
��� ≤ 𝐶𝜅 ·

( 𝜅∏
𝑗=0

‖𝑔 𝑗 ‖𝐸
)
· 𝜃

min0≤ 𝑗≤𝜅−1 (𝑛 𝑗+1−𝑛 𝑗 )
𝜅 .

We say that 𝜈 is exponentially mixing of all orders for observables in E if it is exponentially mixing of
order 𝜅 for every 𝜅 ∈ N.

A recent major result by Dolgopyat, Kanigowski and Rodriguez-Hertz [22] ensures that, under
suitable assumptions on the system, the exponential mixing of order 1 implies that the system is Bernoulli.
In particular, it implies the mixing of all orders (with no control on the rate of decay of correlation). It
is a main open question whether the exponential mixing of order 1 implies the exponential mixing of
all orders; see, for instance, [22, Question 1.5].

Let now f be a complex Hénon map onC2. It is a polynomial diffeomorphism ofC2. We can associate
to f its unique measure of maximal entropy 𝜇 [1, 3, 4, 31]; see Section 2 for details. It was established
by the second author in [13] that such measure if exponential mixing of order 1 for Hölder observables;
see also Vigny [35] and Wu [36]. Similar results were obtained by Liverani [29] in the case of uniformly
hyperbolic diffeomorphisms and Dolgopyat [20] for Anosov flows.
Theorem 1.2. Let f be a complex Hénon map and 𝜇 its measure of maximal entropy. Then, for every
𝜅 ∈ N∗, 𝜇 is exponential mixing of order 𝜅 as in Definition 1.1 for C𝛾 observables (0 < 𝛾 ≤ 2), with
𝜃𝜅 = 𝑑−(𝛾/2) 𝜅+1/2.

For endomorphisms of P𝑘 (C), the exponential mixing for all orders for the measure of maximal
entropy and Hölder observables was established in [15]. We recently proved such property for a large
class of invariant measures with strictly positive Lyapunov exponents [6]. This was done by constructing
a suitable (semi-)norm on functions that turns the so-called Ruelle-Perron-Frobenius operator (suitably
normalized) into a contraction. As far as we know, the present paper gives the first instance where the
exponential mixing of all orders is established for holomorphic dynamical systems with both positive
and negative Lyapunov exponents.

The exponential mixing of all orders is one of the strongest properties in dynamics. It was recently
shown to imply a number of statistical properties; see, for instance, [8, 21]. As an example, a consequence
of Theorem 1.2 is the following result. Take 𝑢 ∈ 𝐿1 (𝜇). As 𝜇 is ergodic, Birkhoff’s ergodic theorem
states that

𝑛−1𝑆𝑛 (𝑢) := 𝑛−1 (𝑢(𝑥) + 𝑢 ◦ 𝑓 (𝑥) + · · · + 𝑢 ◦ 𝑓 𝑛−1(𝑥)
)
→ 〈𝜇, 𝑢〉 for 𝜇 − a.e. 𝑥 ∈ 𝑋.

We say that u satisfies the Central Limit Theorem (CLT) with variance 𝜎2 ≥ 0 with respect to 𝜇 if
𝑛−1/2 (𝑆𝑛 (𝑢) − 𝑛〈𝜇, 𝑢〉) → N (0, 𝜎2) in law, where N (0, 𝜎2) denotes the (possibly degenerate, for
𝜎 = 0) Gaussian distribution with mean 0 and variance 𝜎2; that is, for any interval 𝐼 ⊂ R, we have
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lim
𝑛→∞

𝜇
{ 𝑆𝑛 (𝑢) − 𝑛〈𝜇, 𝑢〉

√
𝑛

∈ 𝐼
}
=

⎧⎪⎪⎨
⎪⎪⎩

1 when 𝐼 is of the form 𝐼 = (−𝛿, 𝛿) if 𝜎2 = 0,

1√
2𝜋𝜎2

∫
𝐼

𝑒−𝑡
2/(2𝜎2)𝑑𝑡 if 𝜎2 > 0.

By a result of Björklund and Gorodnik [8], the following is then a consequence of Theorem 1.2. We
refer to [6, 12, 16, 24, 30, 32, 33] for other cases where the CLT for Hölder observables was established
in holomorphic dynamics. As is the case for Theorem 1.2, this is the first time that this is done for
systems with both positive and negative Lyapunov exponents.

Corollary 1.3. Let f be a complex Hénon map and 𝜇 its measure of maximal entropy. Then all Hölder
observables u satisfy the Central Limit Theorem with respect to 𝜇 with

𝜎2 =
∑
𝑛∈Z

〈𝜇, �̃�(�̃� ◦ 𝑓 𝑛)〉 = lim
𝑛→∞

1
𝑛

∫
𝑋
(�̃� + �̃� ◦ 𝑓 + . . . + �̃� ◦ 𝑓 𝑛−1)2𝑑𝜇,

where �̃� := 𝑢 − 〈𝜇, 𝑢〉.

Theorem 1.2 and Corollary 1.3, in particular, apply to any real Hénon map of maximal entropy [5]
(i.e., complex Hénon maps with real coefficients and whose measure of maximal entropy is supported
in R2). By Friedland-Milnor [26], they apply to all automorphisms of C2 which are not conjugated to
a map preserving a fibration. They hold also in the larger settings of Hénon-Sibony automorphisms
(sometimes called regular, or regular in the sense of Sibony) of C𝑘 in any dimension [31] (see Definition
2.1 and Remark 3.2) and invertible horizontal-like maps in any dimension [14, 17]; see Remark 3.3.
We postpone the case of automorphisms of compact Kähler manifolds to the forthcoming paper [7]; see
Remark 3.4.

Our method to prove Theorem 1.2 relies on pluripotential theory and on the theory of positive closed
currents. The idea is as follows. Using the classical theory of interpolation [34], we can reduce the
problem to the case 𝛾 = 2. For simplicity, assume that ‖𝑔 𝑗 ‖C2 ≤ 1 for all j. The measure of maximal
entropy 𝜇 of a Hénon map f of C2 of algebraic degree 𝑑 ≥ 2 is the intersection 𝜇 = 𝑇+ ∧ 𝑇− of the two
Green currents 𝑇+ and 𝑇− of f [3, 31]. If we identify C2 to an affine chart of P2 in the standard way,
these currents are the unique positive closed (1, 1)-currents of mass 1 on ¶2, without mass at infinity,
satisfying 𝑓 ∗𝑇+ = 𝑑𝑇+ and 𝑓∗𝑇− = 𝑑𝑇−.

Consider the automorphism F ofC4 given by 𝐹 := ( 𝑓 , 𝑓 −1). Such an automorphism also admits Green
currents T+ = 𝑇+ ⊗ 𝑇− and T− = 𝑇− ⊗ 𝑇+. These currents satisfy (𝐹𝑛)∗T+ = 𝑑2

T+ and (𝐹𝑛)∗T− = 𝑑2
T−.

Under mild assumptions on their support, other positive closed (2, 2)-currents S of mass 1 of P4 satisfy
the estimate

|〈𝑑−2𝑛 (𝐹𝑛)∗(𝑆) − T−,Φ〉| ≤ 𝑐𝑆,Φ𝑑−𝑛 (1.1)

when Φ is a sufficiently smooth test form. Here, 𝑐𝑆,Φ is a constant depending on S and Φ.
We show that proving the exponential mixing for 𝜅 + 1 observables 𝑔0, . . . , 𝑔𝜅 with ‖𝑔 𝑗 ‖C2 ≤ 1 can

be reduced to proving the convergence (we assume that 𝑛1 is even for simplicity)

|〈𝑑−𝑛1 (𝐹𝑛1/2)∗ [Δ] − T−,Θ{𝑔 𝑗 }, {𝑛 𝑗 }〉| � 𝑑−min0≤ 𝑗≤𝜅−1 (𝑛 𝑗+1−𝑛 𝑗 )/2, (1.2)

where

Θ{𝑔 𝑗 }, {𝑛 𝑗 } := 𝑔0 (𝑤)𝑔1(𝑧) (𝑔2 ◦ 𝑓 𝑛2−𝑛1 (𝑧)) . . . (𝑔𝜅 ◦ 𝑓 𝑛𝜅−𝑛1 (𝑧))T+,

[Δ] denotes the current of integration on the diagonal Δ of C2 × C2, and (𝑧, 𝑤) denote the coordinates
on C2 × C2. A crucial point here is that the estimate should not only be uniform in the 𝑔 𝑗 ’s but also in
the 𝑛 𝑗 ’s. Note also that the current [Δ] is singular and the dependence of the constant 𝑐𝑆,Φ in (1.1) from
S makes it difficult to employ regularization techniques to deduce the convergence (1.2) from (1.1).
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The key point here is to notice that, when 𝑖𝜕𝜕Φ ≥ 0 (on a suitable open set), one can also get the
following variation of (1.1):

〈𝑑−2𝑛 (𝐹𝑛)∗(𝑆) − T−,Φ〉 ≤ 𝑐Φ𝑑−𝑛. (1.3)

With respect to (1.1), only the bound from above is present, but the constant 𝑐Φ is now independent
of S. This permits to regularize Δ and work as if this current were smooth. Note also that, although
Θ{𝑔 𝑗 }, {𝑛 𝑗 } is not smooth, we can handle it using a similar regularization.

Working by induction, we show that it is possible to replace both Θ{𝑔 𝑗 }, {𝑛 𝑗 } and −Θ{𝑔 𝑗 }, {𝑛 𝑗 } in
(1.2) with currents Θ± satisfying 𝑖𝜕𝜕Θ± ≥ 0. This permits to deduce the estimate (1.2) from two upper
bounds given by (1.3) for Θ±, completing the proof.

2. Hénon-Sibony automorphisms of C𝑘 and convergence towards Green currents

Let F be a polynomial automorphism of C𝑘 . We still denote by F its extension as a birational map of
P
𝑘 . Denote by H∞ := P𝑘 \ C𝑘 the hyperplane at infinity and by I+, I− the indeterminacy sets of F and

𝐹−1, respectively. They are analytic sets strictly contained in H∞. If I+ = ∅ or I− = ∅, then both of them
are empty and F is given by a linear map, and its dynamics are easy to describe. Hence, we assume
that I± ≠ ∅. The following definition, under the name of regular automorphism, was introduced by
Sibony [31].

Definition 2.1. We say that F is a Hénon-Sibony automorphism of C𝑘 if I± ≠ ∅ and I+ ∩ I− = ∅.

Given F a Hénon-Sibony automorphism of C𝑘 , it is clear that 𝐹−1 is also Hénon-Sibony. We denote
by 𝑑+(𝐹) and 𝑑−(𝐹) the algebraic degrees of F and 𝐹−1, respectively. Observe that 𝑑±(𝐹) ≥ 2,
𝑑+(𝐹) = 𝑑−(𝐹−1) and 𝑑−(𝐹) = 𝑑+(𝐹−1). Later, we will drop the letter F and just write 𝑑± instead of
𝑑±(𝐹) for simplicity. We will recall here some basic properties of F and refer the reader to [3, 18, 27,
28, 31] for details.

Proposition 2.2. Let F be a Hénon-Sibony automorphism of C𝑘 as above.

(i) There exists an integer 1 ≤ 𝑝 ≤ 𝑘 − 1 such that dim I+ = 𝑘 − 𝑝 − 1, dim I− = 𝑝 − 1 and
𝑑+(𝐹) 𝑝 = 𝑑−(𝐹)𝑘−𝑝.

(ii) The analytic sets I± are irreducible, and we have

𝐹 (H∞ \ I+) = 𝐹 (I−) = I− and 𝐹−1(H∞ \ I−) = 𝐹−1 (I+) = I+.

(iii) For every 𝑛 ≥ 1, both 𝐹𝑛 and 𝐹−𝑛 are Hénon-Sibony automorphisms of C𝑘 , of algebraic degrees
𝑑+(𝐹)𝑛 and 𝑑−(𝐹)𝑛, and indeterminacy sets I+ and I−, respectively.

Example 2.3 (Generalized). Hénon maps on C2 correspond to the case 𝑘 = 2 in Definition 2.1. In this
case, we have 𝑝 = 𝑘 − 𝑝 = 1 and 𝑑+ = 𝑑− = 𝑑, the algebraic degree of the map; see [3, 26, 31].

The set I+ (resp. I−) is attracting for 𝐹−1 (resp. F). Let 𝑊± be the basin of attraction of I±. Set
𝑊± := 𝑊± ∩ C𝑘 . Then the sets K+ := C𝑘 \ 𝑊− and K− := C𝑘 \ 𝑊+ are the sets of points (in C𝑘 ) with
bounded orbit for F and 𝐹−1, respectively. We have K+ = K+ ∪ I+ and K− = K− ∪ I− where the closures
are taken in P𝑘 . We also define K := K+ ∩ K− which is a compact subset of C𝑘 .

In the terminology of [18], the set K+ (resp. K−) is p-rigid (resp. (𝑘 − 𝑝)-rigid): it supports a unique
positive closed (𝑝, 𝑝)-current (resp. (𝑘 − 𝑝, 𝑘 − 𝑝)-current) of mass 1 that we denote by T+ (resp. T−).
The currents T± have no mass on H∞ and satisfy the invariance relations

𝐹∗(T+) = 𝑑 𝑝
+ T+ and 𝐹∗(T−) = 𝑑𝑘−𝑝

− T−

as currents onC𝑘 or P𝑘 . We call them the main Green currents of F. They can be obtained as intersections
of positive closed (1, 1)-currents with local Hölder continuous potentials in C𝑘 . Therefore, the measure
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T+ ∧ T− is well-defined and supported in the compact set K. This is the unique invariant probability
measure of maximal entropy [10, 31] and describes the distribution of saddle periodic points [19]; see
also [1, 2, 3, 4, 23] for the case of dimension 𝑘 = 2.

Using the above description of the dynamics of F, we can fix neighbourhoods 𝑈1, 𝑈2 ofK+ and 𝑉1, 𝑉2
of K− such that 𝐹−1(𝑈𝑖) � 𝑈𝑖 , 𝑈1 � 𝑈2 � ¶𝑘 \ I−, 𝐹 (𝑉𝑖) � 𝑉𝑖 , 𝑉1 � 𝑉2 � ¶𝑘 \ I+ and 𝑈2 ∩ 𝑉2 � C𝑘 .
Let Ω be a real (𝑝 + 1, 𝑝 + 1)-current with compact support in 𝑈1. Assume that there exists a positive
closed (𝑝+1, 𝑝+1)-current Ω′ with compact support in 𝑈1 such that |Ω| ≤ Ω′. Define the norm ‖Ω‖∗,𝑈1

of Ω as

‖Ω‖∗,𝑈1 := inf{‖Ω′‖ : |Ω| ≤ Ω′},

where the infimum is taken over all Ω′ as above. Observe that when Ω is a d-exact current, we can write
Ω = Ω′ − (Ω′ − Ω), which is the difference of two positive closed currents in the same cohomology
class in 𝐻 𝑝+1, 𝑝+1(¶𝑘 ,R). Therefore, the norm ‖ · ‖∗,𝑈1 is equivalent to the norm given by inf ‖Ω±‖,
where Ω± are positive closed currents with compact support in 𝑈1 such that Ω = Ω+ − Ω−. Note that
Ω+ and Ω− have the same mass as they belong to the same cohomology class.

The following property was obtained by the second author; see [13, Proposition 2.1].

Proposition 2.4. Let R be a positive closed (𝑘 − 𝑝, 𝑘 − 𝑝)-current of mass 1 with compact support in
𝑉1 and smooth on C𝑘 . Let Φ be a real-valued (𝑝, 𝑝)-form of class C2 with compact support in 𝑈1 ∩C𝑘 .
Assume that 𝑖𝜕𝜕Φ ≥ 0 on 𝑉2. Then there exists a constant 𝑐 > 0 independent of R and Φ such that

〈
𝑑−(𝑘−𝑝)𝑛
− (𝐹𝑛)∗(𝑅) − T−,Φ

〉
≤ 𝑐 𝑑−𝑛

− ‖𝑖𝜕𝜕Φ‖∗,𝑈1 for all 𝑛 ≥ 0.

Note that in what follows, since T− is an intersection of positive closed (1, 1)-currents with local
continuous potentials [31], the intersections 𝑅 ∧ T− and T+ ∧ T− are well-defined and the former
depends continuously on R. In particular, the pairing in the next statement is meaningful and depends
continuously on R.

Corollary 2.5. Let R be a positive closed (𝑘 − 𝑝, 𝑘 − 𝑝)-current of mass 1 supported in 𝑉1. Let 𝜙 be a
C2 function with compact support in C𝑘 such that 𝑖𝜕𝜕𝜙 ≥ 0 in a neighbourhood of K+ ∩𝑉2. Then there
exists a constant 𝑐 > 0 independent of R and 𝜙 such that

〈
𝑑−(𝑘−𝑝)𝑛
− (𝐹𝑛)∗(𝑅) − T−, 𝜙T+

〉
≤ 𝑐 𝑑−𝑛

− ‖𝑖𝜕𝜕𝜙 ∧ T+‖∗,𝑈1 for all 𝑛 ≥ 0. (2.1)

Proof. As P𝑘 is homogeneous, we will use the group PGL(𝑘+1,C) of automorphisms of P𝑘 and suitable
convolutions in order to regularize the currents R and 𝜙T+ and deduce the result from Proposition 2.4.
Choose local coordinates centered at the identity id ∈ PGL(𝑘 + 1,C) so that a small neighbourhood of
id in PGL(𝑘 + 1,C) is identified to the unit ball B of C𝑘2+2𝑘 . Here, a point of coordinates 𝜖 represents
an automorphism of P𝑘 that we denote by 𝜏𝜖 . Thus, 𝜏0 = id.

Consider a smooth non-negative function 𝜌 with compact support in B and of integral 1 with respect
to the Lebesgue measure and, for 0 < 𝑟 ≤ 1, define 𝜌𝑟 (𝜖) := 𝑟−2𝑘2−4𝑘 𝜌(𝑟−1𝜖), which is supported in
{|𝜖 | ≤ 𝑟}. This function allows us to define an approximation of the Dirac mass at 0 ∈ B when 𝑟 → 0.
We define Ψ := 𝜙T+ and consider the following regularized currents

𝑅𝑟 :=
∫

𝜌𝑟 (𝜖) (𝜏𝜖 )∗(𝑅) and Ψ𝑟 :=
∫

𝜌𝑟 (𝜖) (𝜏𝜖 )∗(Ψ) =
∫

𝜌𝑟 (𝜖) (𝜙 ◦ 𝜏𝜖 ) (𝜏𝜖 )∗(T+),

where the integrals are with respect to the Lebesgue measure on 𝜖 ∈ B.
When r is small enough and goes to 0, the current 𝑅𝑟 is smooth, positive, closed and with compact

support in 𝑉1, and it converges to R. Since the RHS of (2.1) depends continuously on R, we can replace
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R by 𝑅𝑟 and assume that R is smooth. When 𝜖 goes to 0, 𝜙 ◦ 𝜏𝜖 converges uniformly to 𝜙 and (𝜏𝜖 )∗(T+)
converges to T+. Using that R is smooth and T− is a product of (1, 1)-currents with continuous potentials,
we deduce that the LHS of (2.1) is equal to

lim
𝑟→0

〈
𝑑−(𝑘−𝑝)𝑛
− (𝐹𝑛)∗(𝑅) − T−,Ψ𝑟

〉
.

Since T+ is supported in K+ and we have 𝑖𝜕𝜕𝜙 ≥ 0 on a neighbourhood of K+ ∩ 𝑉2, we deduce that
𝑖𝜕𝜕Ψ ≥ 0 on 𝑉2. By reducing slightly 𝑉2, we still have 𝑖𝜕𝜕Ψ𝑟 ≥ 0 on 𝑉2 for r small enough. We will
use the last limit and Proposition 2.4 for Ψ𝑟 instead of Φ and 𝑈2 instead of 𝑈1. Observe that for 𝜖 small
enough, since 𝑈1 � 𝑈2, we have ‖(𝜏𝜖 )∗(𝑖𝜕𝜕Ψ)‖∗,𝑈2 ≤ ‖𝑖𝜕𝜕Ψ‖∗,𝑈1 . We deduce that the LHS of (2.1) is
smaller than or equal to

lim
𝑟→0

𝑐 𝑑−𝑛
− ‖𝑖𝜕𝜕Ψ𝑟 ‖∗,𝑈2 ≤ 𝑐 𝑑−𝑛

− ‖𝑖𝜕𝜕Ψ‖∗,𝑈1 = 𝑐 𝑑−𝑛
− ‖𝑖𝜕𝜕𝜙 ∧ T+‖∗,𝑈1 .

This completes the proof of the corollary. �

In order to use the above corollary, we will need the following lemmas.

Lemma 2.6. Let 𝜅 ≥ 1 be an integer and 𝑔0, . . . , 𝑔𝜅 functions with compact support in C𝑘 with
‖𝑔 𝑗 ‖C2 ≤ 1. Then there is a constant 𝑐𝜅 > 0 independent of the 𝑔 𝑗 ’s such that for all ℓ0, . . . , ℓ𝜅 ≥ 0, we
have

‖𝑖𝜕𝜕
(
(𝑔0 ◦ 𝐹ℓ0 ) . . . (𝑔𝜅 ◦ 𝐹ℓ𝜅 )

)
∧ T+‖∗,𝑈1 ≤ 𝑐𝜅 .

Proof. Set �̃� 𝑗 := 𝑔 𝑗 ◦ 𝑓 ℓ 𝑗 for simplicity. We have

𝑖𝜕𝜕
(
�̃�0 . . . �̃�𝜅

)
=

𝜅∑
𝑗=0

𝑖𝜕𝜕�̃� 𝑗

∏
𝑙≠ 𝑗

�̃�𝑙 +
∑

0≤ 𝑗≠𝑙≤𝜅
𝑖𝜕�̃� 𝑗 ∧ 𝜕�̃�𝑙

∏
𝑚≠ 𝑗 ,𝑙

�̃�𝑚.

Since ‖𝑔 𝑗 ‖C2 ≤ 1, we have |𝑔 𝑗 | ≤ 1. Denote by 𝜔FS the Fubini-Study form on ¶𝑘 . Then

��� 𝜅∑
𝑗=0

𝑖𝜕𝜕�̃� 𝑗

∏
𝑙≠ 𝑗

�̃�𝑙

��� � 𝜅∑
𝑗=0

(𝐹ℓ 𝑗 )∗𝜔FS

and an application of Cauchy-Schwarz inequality gives

��� ∑
0≤ 𝑗≠𝑙≤𝜅

𝑖𝜕�̃� 𝑗 ∧ 𝜕�̃�𝑙
∏
𝑚≠ 𝑗 ,𝑙

�̃�𝑚

��� � 𝜅∑
𝑗=0

𝑖𝜕�̃� 𝑗 ∧ 𝜕�̃� 𝑗

=
𝜅∑
𝑗=0

(𝐹ℓ 𝑗 )∗(𝑖𝜕𝑔 𝑗 ∧ 𝜕𝑔 𝑗 )

�
𝜅∑
𝑗=0

(𝐹ℓ 𝑗 )∗(𝜔FS).

As we have 𝑖𝜕𝜕
(
�̃�0 . . . �̃�𝜅

)
= 0 near H∞, its intersection with T+ can be computed on C𝑘 . We deduce

from the above inequalities and 𝑑𝑘−𝑝
− = 𝑑 𝑝

+ that
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��𝑖𝜕𝜕
(
(𝑔0 ◦ 𝐹ℓ0 ) . . . (𝑔𝜅 ◦ 𝐹ℓ𝜅 )

)
∧ T+

�� � 𝜅∑
𝑗=0

(
𝐹ℓ 𝑗 )∗(𝜔FS

)
∧ T+

=
𝜅∑
𝑗=0

(𝐹ℓ 𝑗 )∗(𝜔FS) ∧ 𝑑
−𝑝ℓ 𝑗
+ (𝐹ℓ 𝑗 )∗T+

=
𝜅∑
𝑗=0

𝑑
−(𝑘−𝑝)ℓ 𝑗
− (𝐹ℓ 𝑗 )∗

(
𝜔FS ∧ T+

)
.

(2.2)

We will use that the (𝑝 + 1, 𝑝 + 1)-current 𝜔FS ∧ T+ is positive, closed and of mass 1, and its support
is contained in K+ ⊂ 𝑈1. We have

‖(𝐹ℓ 𝑗 )∗
(
𝜔FS ∧ T+

)
‖ =

〈
(𝐹ℓ 𝑗 )∗

(
𝜔FS ∧ T+

)
, 𝜔𝑘−𝑝−1

FS

〉
=
〈
𝜔FS ∧ T+, (𝐹−ℓ 𝑗 )∗(𝜔𝑘−𝑝−1

FS )
〉
,

where the last form is positive closed and smooth outside I−. The last pairing only depends on the
cohomology classes of 𝜔FS,T+, and (𝐹−ℓ 𝑗 )∗(𝜔𝑘−𝑝−1

FS ). Hence, it is equal to the mass of (𝐹−ℓ 𝑗 )∗(𝜔𝑘−𝑝−1
FS ),

which is equal to 𝑑
(𝑘−𝑝−1)ℓ 𝑗
− ; see [31]. It follows that each term in the last sum in (2.2) is bounded by 1,

which implies that the sum is bounded by 𝜅 + 1. The lemma follows. �

Lemma 2.7. Let 𝐷 � 𝐷 ′ be two bounded domains in C𝑘 . Let g be a function with compact support in
D and such that ‖𝑔‖C2 ≤ 1. Then there are a constant 𝐴 > 0 independent of g and functions 𝑔± with
compact supports in 𝐷 ′ and ‖𝑔±‖C2 ≤ 1 such that

𝑔 = 𝐴(𝑔+ − 𝑔−), 𝑖𝜕𝑔+ ∧ 𝜕𝑔+ ≤ 𝑖𝜕𝜕𝑔+ on 𝐷 and 𝑖𝜕𝑔− ∧ 𝜕𝑔− ≤ 𝑖𝜕𝜕𝑔− on 𝐷.

Proof. Let 𝜌 be a smooth non-negative function with compact support in 𝐷 ′ and equal to 1 in a
neighbourhood of 𝐷. Observe that 𝜌𝑔 = 𝑔. We denote by z the coordinates of C𝑘 . Since ‖𝑔‖C2 ≤ 1
and g has compact support in D, there exists a constant 𝐴1 > 0 independent of g such that |𝑖𝜕𝜕𝑔 | ≤
𝐴1𝑖𝜕𝜕(‖𝑧‖2). Set 𝑔+ := 𝐴−1𝜌(𝑔 + 2𝐴1‖𝑧‖2) and 𝑔− := 2𝐴−1 𝐴1𝜌‖𝑧‖2 for some constant 𝐴 > 0. It is
not difficult to check that we have 𝑖𝜕𝜕𝑔± ≥ 𝐴−1 𝐴1𝑖𝜕𝜕 (‖𝑧‖2) on D, ‖𝑖𝜕𝑔± ∧ 𝜕𝑔±‖∞ = 𝑂 (𝐴−2) on D,
𝑔 = 𝐴(𝑔+ − 𝑔−) and ‖𝑔±‖C2 = 𝑂 (𝐴−1). Taking A large enough gives the lemma. �

3. Exponential mixing of all orders for Hénon maps and further remarks

Throughout this section (except for Remarks 3.2 and 3.3), f denotes a Hénon map on C2 of algebraic
degree 𝑑 = 𝑑+ = 𝑑− ≥ 2. Define 𝐹 := ( 𝑓 , 𝑓 −1). It is not difficult to check that F is a Hénon-Sibony
automorphism of C4 = C2 × C2; see, for instance, [13, Lemma 3.2]. We will use the notations and the
results of Section 2 with 𝑘 = 4 and 𝑝 = 2. We denote in this section by 𝑇± the Green (1, 1)-currents
of f and reserve the notation T± for the main Green currents of F. Observe that T+ = 𝑇+ ⊗ 𝑇− and
T− = 𝑇− ⊗ 𝑇+; see [25, Section 4.1.8] for the tensor (or cartesian) product of currents. We denote by 𝐾±

the sets of points of bounded orbit for 𝑓 ±1. The wedge product 𝜇 := 𝑇+ ∧ 𝑇− is well-defined and is the
measure of maximal entropy of f [1, 3, 4, 31]. Its support is contained in the compact set 𝐾 = 𝐾+ ∩𝐾−.
We haveK+ = 𝐾+ ×𝐾− andK− = 𝐾− ×𝐾+. Note also that the diagonal Δ of C2 ×C2 satisfies Δ ∩ I+ = ∅
and Δ ∩ I− = ∅ in P4; see also [13].

We now prove Theorem 1.2. By a standard interpolation [34] (see, for instance, [13, pp. 262-263]
and [20, Corollary 1] for similar occurrences), it is enough to prove the statement for 𝛾 = 2 (i.e., in
the case where all the functions 𝑔 𝑗 are of class C2). The statement is clear for 𝜅 = 0 (i.e., for one test
function). By induction, we can assume that the statement holds for up to 𝜅 test functions and prove it
for 𝜅 + 1 ≥ 1 test functions – that is, show that

���〈𝜇, 𝑔0(𝑔1 ◦ 𝑓 𝑛1) . . . (𝑔𝜅 ◦ 𝑓 𝑛𝜅 )〉 −
𝜅∏
𝑗=0

〈𝜇, 𝑔 𝑗〉
��� � ( 𝜅∏

𝑗=0
‖𝑔 𝑗 ‖C2

)
· 𝑑−min0≤ 𝑗≤𝜅−1 (𝑛 𝑗+1−𝑛 𝑗 )/2.
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Recall that 𝑛0 = 0. The induction assumption implies that we are allowed to modify each 𝑔 𝑗 by adding
a constant. Moreover, using the invariance of 𝜇, the desired estimate does not change if we replace 𝑛 𝑗

by 𝑛 𝑗 − 1 for 1 ≤ 𝑗 ≤ 𝜅 and 𝑔0 by 𝑔0 ◦ 𝑓 −1. Therefore, we can for convenience assume that 𝑛1 is even.
We fix a large bounded domain 𝐵 ⊂ C2 satisfying

𝐾 ⊂ 𝐵, 𝐾− ∩ 𝐵 ⊂ 𝑓 (𝐵), and 𝐾+ ∩ 𝐵 ⊂ 𝑓 −1(𝐵).

By induction, the inclusions above imply that

𝐾 ⊂ 𝐵, 𝐾− ∩ 𝐵 ⊂ 𝑓 𝑛 (𝐵), and 𝐾+ ∩ 𝐵 ⊂ 𝑓 −𝑛 (𝐵) for all 𝑛 ≥ 1. (3.1)

Because of Lemma 2.7 and the fact that we are only interested in the values of the 𝑔 𝑗 ’s on the support
of 𝜇, we can assume that all the 𝑔 𝑗 ’s are compactly supported in C2 and satisfy

‖𝑔 𝑗 ‖C2 ≤ 1 on C2 and 𝑖𝜕𝑔 𝑗 ∧ 𝜕𝑔 𝑗 ≤ 𝑖𝜕𝜕𝑔 𝑗 on 𝐵. (3.2)

For simplicity, write ℎ := 𝑔1 (𝑔2 ◦ 𝑓 𝑛2−𝑛1) . . . (𝑔𝜅 ◦ 𝑓 𝑛𝜅−𝑛1 ). We need to prove that

|〈𝜇, 𝑔0 (ℎ ◦ 𝑓 𝑛1)〉 − 〈𝜇, 𝑔0〉 · 〈𝜇, ℎ〉| � 𝑑−min0≤ 𝑗≤𝜅−1 (𝑛 𝑗+1−𝑛 𝑗 )/2

since this estimate, together with the induction assumption applied to 〈𝜇, ℎ〉, would imply the desired
statement. In order to obtain the result, we will prove separately the two estimates

〈𝜇, 𝑔0 (ℎ ◦ 𝑓 𝑛1)〉 − 〈𝜇, 𝑔0〉 · 〈𝜇, ℎ〉 � 𝑑−min0≤ 𝑗≤𝜅−1 (𝑛 𝑗+1−𝑛 𝑗 )/2 (3.3)

and

−〈𝜇, 𝑔0(ℎ ◦ 𝑓 𝑛1)〉 + 〈𝜇, 𝑔0〉 · 〈𝜇, ℎ〉 � 𝑑−min0≤ 𝑗≤𝜅−1 (𝑛 𝑗+1−𝑛 𝑗 )/2. (3.4)

Set 𝑀 := 10𝜅 and fix a smooth function 𝜒 with compact support in C2 and equal to 1 in a
neighbourhood of 𝐵 (we will not need any information on the value of 𝜒 outside of B). Consider the
following four functions, which will later allow us to produce some p.s.h. test functions:

𝑔+
0 := 𝜒 · (𝑔0 + 𝑀) and ℎ+ := 𝜒 · (𝑔1 + 𝑀) (𝑔2 ◦ 𝑓 𝑛2−𝑛1 + 𝑀) . . . (𝑔𝜅 ◦ 𝑓 𝑛𝜅−𝑛1 + 𝑀)

and

𝑔−
0 := 𝜒 · (𝑀 − 𝑔0) and ℎ− := 𝜒 ·

(
(𝑔1 + 𝑀) (𝑔2 ◦ 𝑓 𝑛2−𝑛1 + 𝑀) . . . (𝑔𝜅 ◦ 𝑓 𝑛𝜅−𝑛1 + 𝑀) − 2(𝑀 + 1)𝜅

)
.

Recall that 𝑛0 = 0. To prove (3.3) and (3.4), it is enough to show that

〈𝜇, 𝑔+
0 (ℎ

+ ◦ 𝑓 𝑛1)〉 − 〈𝜇, 𝑔+
0 〉 · 〈𝜇, ℎ+〉 � 𝑑−𝑛1/2 (3.5)

and

〈𝜇, 𝑔−
0 (ℎ

− ◦ 𝑓 𝑛1)〉 − 〈𝜇, 𝑔−
0 〉 · 〈𝜇, ℎ−〉 � 𝑑−𝑛1/2. (3.6)

Indeed, we observe that 𝜒 does not play any role in (3.5) and (3.6). Hence, the difference between the
LHS of (3.5) and the one of (3.3) (resp. of (3.6) and of (3.4)) is a finite combination of expressions
involving no more than 𝜅 functions among 𝑔0, . . . , 𝑔𝜅 that we can estimate using the induction hypothesis
on the mixing of order up to 𝜅 − 1. It remains to prove the two inequalities (3.5) and (3.6).
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Denote by (𝑧, 𝑤) the coordinates on C4 = C2 × C2 and define

𝜙±(𝑧, 𝑤) := 𝑔±
0 (𝑤) ℎ±(𝑧).

We have the following lemma for a fixed domain 𝑈1 as in Section 2.

Lemma 3.1. The functions 𝜙± satisfy

(i) 𝑖𝜕𝜕𝜙± ∧ T+ ≥ 0 on 𝐵 × 𝐵;
(ii) ‖𝑖𝜕𝜕𝜙± ∧ T+‖∗,𝑈1 ≤ 𝑐𝜅 ,

where 𝑐𝜅 is a positive constant depending on 𝜅, but not on the 𝑔 𝑗 ’s and the 𝑛 𝑗 ’s.

Proof. (i) For simplicity, we set ℓ0 = ℓ1 := 0 and ℓ 𝑗 := 𝑛 𝑗 − 𝑛1. Define also �̃� 𝑗 := 𝑔 𝑗 ◦ 𝑓 ℓ 𝑗 . In what
follows, �̃�0 depends on w and �̃� 𝑗 depends on z when 𝑗 ≥ 1. Observe that by the invariance property of
𝐾+∩𝐵 in (3.1) and the constraints in (3.2), the following inequalities hold in a neighbourhood of 𝐾+∩𝐵:

𝑖𝜕�̃� 𝑗 ∧ 𝜕�̃� 𝑗 = ( 𝑓 ℓ 𝑗 )∗(𝑖𝜕𝑔 𝑗 ∧ 𝜕𝑔 𝑗 ) ≤ ( 𝑓 ℓ 𝑗 )∗(𝑖𝜕𝜕𝑔 𝑗 ) = 𝑖𝜕𝜕�̃� 𝑗 . (3.7)

In particular, we have 𝑖𝜕𝜕�̃� 𝑗 ≥ 0 in a neighbourhood of 𝐾+ ∩ 𝐵. Note that for �̃�0 = 𝑔0, the properties
hold on B, which contains 𝐾− ∩ 𝐵.

Now, since T+ is closed, positive and supported inK+ = 𝐾+ × 𝐾−, in order to prove the first assertion,
it is enough to show that 𝑖𝜕𝜕𝜙± ≥ 0 on a neighbourhood of (𝐾+ ∩ 𝐵) × (𝐾− ∩ 𝐵) in C4 where 𝜒 = 1.
In what follows, we only work on such a neighbourhood. Recall that 𝑖𝜕𝜕 = 𝑖

𝜋 𝜕𝜕. We have

𝑖𝜕𝜕𝜙+ =
𝜅∑
𝑗=0

𝑖𝜕𝜕�̃� 𝑗

∏
𝑙≠ 𝑗

(�̃�𝑙 + 𝑀) +
∑

0≤ 𝑗≠𝑙≤𝜅
𝑖𝜕�̃� 𝑗 ∧ 𝜕�̃�𝑙

∏
𝑚≠ 𝑗 ,𝑙

(�̃�𝑚 + 𝑀),

where we recall that �̃�0 is �̃�0 (𝑤) and the other �̃� 𝑗 ’s are �̃� 𝑗 (𝑧) for 1 ≤ 𝑗 ≤ 𝜅. For the first term in the
RHS of the last expression, we have

𝜅∑
𝑗=0

𝑖𝜕𝜕�̃� 𝑗

∏
𝑙≠ 𝑗

(�̃�𝑙 + 𝑀) ≥ (𝑀 − 1)𝜅
𝜅∑
𝑗=0

𝑖𝜕𝜕�̃� 𝑗 .

For the second term, an application of the Cauchy-Schwarz inequality and (3.7) give

�� ∑
0≤ 𝑗≠𝑙≤𝜅

𝑖𝜕�̃� 𝑗 ∧ 𝜕�̃�𝑙
∏
𝑚≠ 𝑗 ,𝑙

(�̃�𝑚 + 𝑀)
�� ≤ 𝜅(𝑀 + 1)𝜅−1

𝜅∑
𝑗=0

𝑖𝜕�̃� 𝑗 ∧ 𝜕�̃� 𝑗

≤ 𝜅(𝑀 + 1)𝜅−1
𝜅∑
𝑗=0

𝑖𝜕𝜕�̃� 𝑗 .

It follows that

𝑖𝜕𝜕𝜙+ ≥ (𝑀 − 1)𝜅
𝜅∑
𝑗=0

𝑖𝜕𝜕�̃� 𝑗 − 𝜅(𝑀 + 1)𝜅−1
𝜅∑
𝑗=0

𝑖𝜕𝜕�̃� 𝑗

= (𝑀 − 1)𝜅
[
1 − 𝜅

𝑀 + 1
(
1 + 2

𝑀 − 1
) 𝜅 ] 𝜅∑

𝑗=0
𝑖𝜕𝜕�̃� 𝑗 ,

which gives 𝑖𝜕𝜕𝜙+ ≥ 0 since the choice 𝑀 = 10𝜅 implies that (1 + 2
𝑀−1

) 𝜅
< (1 + 1

𝜅

) 𝜅
< 3. Similarly,

in the same way, we also have
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𝑖𝜕𝜕𝜙− ≥ (𝑀 − 1)𝜅
𝜅∑
𝑗=0

𝑖𝜕𝜕�̃� 𝑗 − (𝑀 + 1)𝜅−1
∑

0≤ 𝑗≠𝑙≤𝜅

��𝑖𝜕�̃� 𝑗 ∧ 𝜕�̃�𝑙
��,

which gives 𝑖𝜕𝜕𝜙− ≥ 0. This concludes the proof of the first assertion of the lemma.
(ii) The second assertion of the lemma is a consequence of Lemma 2.6. �

End of the proof of Theorem 1.2. Recall that it remains to prove (3.5) and (3.6). Since 𝜇 is invariant and
𝑛1 is even, we have

〈𝜇, 𝑔±
0 · (ℎ± ◦ 𝑓 𝑛1)〉 =

〈
𝜇, (𝑔±

0 ◦ 𝑓 −𝑛1/2) (ℎ± ◦ 𝑓 𝑛1/2)
〉
.

Recall that we have 𝜇 = 𝑇+ ∧ 𝑇− and that the currents 𝑇± have local continuous potentials in C2. It
follows that the intersections of T± with positive closed currents on C4 are meaningful. Moreover, the
invariance of 𝑇± implies that (𝐹𝑛1/2)∗(T+) = 𝑑−𝑛1T+ on C4. Thanks to the above identities, using the
coordinates (𝑧, 𝑤) on C4 = C2 × C2 and denoting by Δ := {(𝑧, 𝑤) : 𝑧 = 𝑤} the diagonal of C2 × C2, we
have

〈𝜇, 𝑔±
0 · (ℎ± ◦ 𝑓 𝑛1)〉 =

〈
𝑇+ ∧ 𝑇−, (𝑔±

0 ◦ 𝑓 −𝑛1/2) (ℎ± ◦ 𝑓 𝑛1/2)
〉

=
〈
(𝑇+ ⊗ 𝑇−) ∧ [Δ], (𝑔±

0 ◦ 𝑓 −𝑛1/2(𝑤)) (ℎ± ◦ 𝑓 𝑛1/2(𝑧))
〉

=
〈
T+ ∧ [Δ], (𝐹𝑛1/2)∗(𝜙±)

〉
=
〈
𝑑−𝑛1T+ ∧ (𝐹𝑛1/2)∗ [Δ], 𝜙±〉

=
〈
𝑑−𝑛1 (𝐹𝑛1/2)∗ [Δ], 𝜙±

T+
〉
.

(3.8)

We apply Corollary 2.5 with the functions 𝜙± = 𝑔±
0 (𝑤) · ℎ±(𝑧) instead of 𝜙 and the current [Δ]

instead of R. For this purpose, since Δ ∩ I+ = ∅, we can choose a suitable open set 𝑉1 containing Δ . We
also fix an open set 𝑉2 as in Section 2. Since B is large enough, Lemma 3.1 implies that 𝑖𝜕𝜕𝜙± ≥ 0 on
a neighbourhood of K+ ∩𝑉2. Thus, we obtain from Corollary 2.5 that

〈𝑑−𝑛1 (𝐹𝑛1/2)∗ [Δ] − T−, 𝜙±
T+〉 � 𝑑−𝑛1/2,

or equivalently,

〈𝑑−𝑛1 (𝐹𝑛1/2)∗ [Δ], 𝜙±
T+〉 − 〈T−, 𝜙±

T+〉 � 𝑑−𝑛1/2. (3.9)

Together, (3.8), (3.9) and the fact that

〈T−, 𝜙±
T+〉 = 〈T+ ∧ T−, 𝜙±〉 = 〈𝜇 ⊗ 𝜇, 𝑔±

0 (𝑤) · ℎ±(𝑧)〉 = 〈𝜇, 𝑔±
0 〉 · 〈𝜇, ℎ±〉

give the desired estimates (3.5) and (3.6). The proof of Theorem 1.2 is complete.

Remark 3.2. When f is a Hénon-Sibony automorphism of C𝑘 with k even and 𝑝 = 𝑘/2, the map
( 𝑓 , 𝑓 −1) is a Hénon-Sibony automorphism of C2𝑘 . The same proof as above gives us the exponential
mixing of all orders and the CLT for f. The results still hold for every Hénon-Sibony automorphism, but
the proof requires some extra technical arguments that we choose not to present here for simplicity; see,
for instance, de Thélin and Vigny [11, 35].

Remark 3.3. When f is a horizontal-like map such that the main dynamical degree is larger than the
other dynamical degrees, the same strategy gives the exponential mixing of all orders and the CLT; see
the papers [14, 17] by Nguyen, Sibony and the second author, and, in particular, [14] for the necessary
estimates. In particular, these results hold for all Hénon-like maps in dimension 2; see also Dujardin [23].

Remark 3.4. In the companion paper [7], we explain how to adapt our strategy to get the exponential
mixing of all orders and the Central Limit Theorem for automorphisms of compact Kähler manifolds
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with simple action on cohomology. As the proof in that case requires the theory of super-potentials,
which is not needed for Hénon maps, we choose not to present it here.
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