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Abstract
We give a lattice-theoretic characterization for a manifold of OG10 type to be birational to some moduli space
of (twisted) sheaves on a K3 surface. We apply it to the Li–Pertusi–Zhao variety of OG10 type associated to any
smooth cubic fourfold. Moreover, we determine when a birational transformation is induced by an automorphism
of the K3 surface, and we use this to classify all induced birational symplectic involutions.
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1. Introduction

Knowing birational models of irreducible holomorphic symplectic (ihs) manifolds is a significant step
toward the full comprehension of their geometry. In recent years, the birational geometry of ihs manifolds
and their deformation theory have had extensive applications in many fields of algebraic geometry: not
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only they are a fundamental tool for hunting new examples of ihs varieties in both the smooth and
singular case (see, for example, [5, 35]), but also they turned out to be one of the key ingredients in
the investigation of P=W phenomena arising from non-abelian Hodge theory; see, for example, [10, 11,
12, 48]. Many examples of ihs manifolds are realized from moduli spaces of sheaves on abelian or K3
surfaces. This is the case of the two O’Grady examples OG6 and OG10 of dimensions 6 and 10, which
are constructed as symplectic resolutions of these moduli spaces. In this paper, we focus on ihs manifolds
deformation equivalent to OG10, and throughout the dissertation, we refer to them as manifolds of OG10
type. Since any two birational ihs manifolds are deformation equivalent but the converse is far from being
true (see [21, Theorem 2.5]), it is natural to investigate when an ihs manifold in this deformation class is
birational to a symplectic resolution of a moduli space of sheaves on a K3 surface. The first motivation
for this paper was to provide an answer to this question. As it is well known, the geometry of an ihs
manifold X is encoded in its second integral cohomology group 𝐻2 (𝑋,Z). This group is torsion-free and
carries a symmetric non-degenerate bilinear form, called the Beauville–Bogomolov–Fujiki form, which
induces a lattice structure on it. The first main result of the paper provides an answer to this question
via a lattice-theoretic characterization. To this end, in accordance with the already existing terminology
[17, 38], we introduce the lattice-theoretic notion of numerical moduli space (see Theorem 3.12).

Theorem (3.13). Let (𝑋, 𝜂) be a marked pair of OG10 type. The following conditions are equivalent:

1. There exists a K3 surface S, a Mukai vector 𝑣 = 2𝑤 where w is a primitive Mukai vector of square
2, and a 𝑣−generic polarization 𝜃 on S such that X is birational to 𝑀𝑣 (𝑆, 𝜃);

2. The manifold X is a numerical moduli space.

While this extends analogous results for the other known deformation types of ihs manifolds [17,
38], the theory of moduli spaces of sheaves on K3 surfaces developed into considering also their twisted
analogues. On the one hand, the generalization to twisted K3 surfaces was motivated by the existence of
coarse moduli spaces; on the other hand, it has become evident that allowing twists has quite unexpected
applications (see, for example, [22] for further details). In Theorem 4.3, we then consider the twisted
picture and extend the above result to this setting.

Later, we consider the ihs manifold of OG10 type 𝑋𝑌 , defined by Li, Pertusi and Zhao (LPZ), which
is associated with a smooth cubic fourfold Y [29]. We are able to provide a purely lattice-theoretic
characterization for 𝑋𝑌 to be birational to a moduli space of sheaves on a (possibly twisted) K3 surface,
providing a new proof of [15, Theorem 3.2].

Theorem (5.1 and 5.3). Let 𝑋𝑌 be an LPZ-variety associated to a smooth cubic fourfold Y. The following
conditions are equivalent.

1. The cubic fourfold Y lies in the Hassett divisor C𝑑 with d satisfying (∗∗) (resp. (∗∗′)).
2. The LPZ-variety 𝑋𝑌 is a (resp. twisted) numerical moduli space.

The same question for Fano varieties of lines of cubic fourfolds and for the so-called Lehn–Lehn–
Sorger–van Straten symplectic eightfolds has been previously answered in [1, 24] and [2, 30].

Once we know under which conditions an ihs manifold of OG10 type is birational to a moduli space
of sheaves on a K3 surface S, it is then natural to investigate which birational transformations are induced
by an automorphism of S (see Theorem 6.1). To this end, we introduce the notion of numerically induced
birational transformations (see Theorem 6.2), which is a characterization in terms of their action on the
second integral cohomology lattice.

Theorem (6.8). Let (𝑋, 𝜂) be a smooth marked pair of OG10 type and let 𝐺 ⊂ Bir(𝑋) be a finite
subgroup. If G is a numerically induced group of birational transformations, then there exists a K3
surface S with an injective group homomorphism 𝐺 ↩→ Aut(𝑆), a G-invariant Mukai vector v and a
v-generic polarization 𝜃 on S such that X is birational to 𝑀𝑣 (𝑆, 𝜃) and 𝐺 ⊂ Bir(𝑋) is an induced group
of birational transformations.

For what concerns symplectic actions on OG10 type manifolds, we know that the unique symplectic
regular automorphism of finite order is the identity [16, Theorem 1.1], and symplectic birational
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involutions are classified [33]. Lattice-theoretic constraints for nonsymplectic automorphisms of OG10
type are treated in [7]. Nonsymplectic automorphisms of OG10 obtained from a cubic fourfold via
the construction of [27] will be treated in the paper in preparation [6], where many techniques similar
to the ones used to treat automorphisms of the O’Grady six dimensional example (see [19] and [18])
are exploited. Applying our criterion, we show that there exists a unique induced birational symplectic
involution on an ihs manifold of OG10 type. More precisely, we give the following characterization.

Theorem (6.10). Let (𝑋, 𝜂) be a marked pair of OG10 type. Assume that X is a numerical moduli space,
and let 𝜑 ∈ Bir(𝑋) be a birational symplectic involution. Then 𝜑 is induced if and only if

𝐻2(𝑋,Z)𝜑 � U⊕3 ⊕ E8 (−2) ⊕ A2 (−1) and 𝐻2 (𝑋,Z)𝜑 � E8 (−2),

where 𝐻2(𝑋,Z)𝜑 and 𝐻2(𝑋,Z)𝜑 denote, respectively, the invariant and the coinvariant lattice under
the action of 𝜑.

1.1. Outline of the paper

In Section 2, we recall some preliminary results about lattice theory and briefly describe the lattice
structure of the second cohomology group of an ihs manifold. In Section 3, we specialize to manifolds
of OG10 type: after describing their construction and properties, we state and prove Theorem 3.13. In
Section 4, we provide a generalization of it to the twisted case. In Section 5, we apply the birationality
criteria of Section 3 and Section 4 to the LPZ variety. Finally, in Section 6, we examine birational
transformations of OG10 type to determine which ones are induced.

2. Preliminaries in lattice theory

In this section, we recall some basic facts of lattice theory for irreducible holomorphic symplectic
manifolds, focusing on the special case of manifolds of OG10 type.

2.1. Abstract lattices

Definition 2.1. A lattice L is a free finite rank Z-module with a non-degenerate symmetric bilinear form

· : L×L → Z

(𝑒, 𝑓 ) ↦→ 𝑒 · 𝑓 .

With an abuse of notation, we denote 𝑒 · 𝑒 simply by 𝑒2. Moreover, we say that the lattice L is even
if 𝑒2 is even for any element 𝑒 ∈ L, and we denote the determinant, the rank and the signature of the
lattice L by det(L), rk(L) and sign(L), respectively.

Definition 2.2. Given 𝑒 ∈ L, we define the divisibility of e in L as

(𝑒,L) � gcd{𝑒 · 𝑓 | 𝑓 ∈ L}.

Given a lattice L, we define the dual lattice of L to be the lattice L∨ � HomZ(L,Z). The dual lattice
can be characterized uniquely as

L∨ = {𝑥 ∈ L ⊗Q | 𝑥 · 𝑦 ∈ Z for all 𝑦 ∈ L}.

One can show that the quotient 𝐴L � L∨/L is a finite group, called discriminant group of L, of
order | det(L) |. We say that a lattice L is unimodular if 𝐴L is trivial.

Notation 2.3. We denote the unique unimodular even indefinite rank 2 lattice by U. Moreover, the
symbols A𝑛,D𝑛,E𝑛 denote the positive definite ADE lattices of rank n. The notation [𝑚] for some
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𝑚 ∈ Z indicates a rank 1 lattice generated by a vector of square m. For any lattice L, we denote by L(𝑛)
the lattice with the same structure as L as a Z-module and quadratic form multiplied by n.

Whenever we have a lattice L, we can consider a subgroup 𝐺 ⊂ 𝑂 (L) of isometries on L. We denote
by L𝐺 the invariant sublattice of L with respect to the action of G, and by L𝐺 � (L𝐺)⊥ its orthogonal
complement in L, which is called coinvariant sublattice.

2.1.1. Hodge structure on L
Given a lattice L with a weight 2 Hodge structure (i.e., a decomposition

LC � L ⊗ZC = L2,0
C

⊕ L1,1
C

⊕ L0,2
C

with L2,0
C
� L0,2

C
and L1,1

C
� L1,1

C
), we set

L1,1 � L1,1
C

∩L

and refer to it as the (1, 1) - part of the lattice L.

Definition 2.4. An embedding of lattices M ↩→ L is called primitive if the group L/M is torsion-free.
In this setting, we denote by M⊥ the orthogonal complement of M in L with respect to the bilinear form
on L.

Remark 2.5. If L and M are two lattices with pairings respectively denoted by ·L and ·M, then the
Z-module L ⊕M inherits a lattice structure with the pairing ·L ⊕M given by

𝑒 ·L ⊕M 𝑓 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
𝑒 ·L 𝑓 if 𝑒, 𝑓 ∈ L
𝑒 ·M 𝑓 if 𝑒, 𝑓 ∈ M
0 otherwise.

Following [44], we denote this lattice by L ⊕⊥M.

Definition 2.6. Let M be a lattice endowed with a weight 2 Hodge structure. An embedding of lattices
M ↩→ L is called Hodge embedding if it is primitive and L is endowed with a weight 2 Hodge structure
defined as follows:

L2,0
C

= M2,0
C

, L1,1
C

= (M1,1 ⊕ M⊥) ⊗ C, L0,2
C

= M0,2
C

.

Moreover, if L has already a Hodge structure on it, we say that the Hodge embedding M ↩→ L is
compatible if the Hodge structure induced by M is the one of L.

2.2. Lattice structure of irreducible holomorphic symplectic manidolds

Suppose X is an irreducible holomorphic symplectic manifold of complex dimension 2𝑛. The second
integral cohomology group has a well-defined lattice structure: in fact, it is a torsion-free Z-module
of finite rank endowed with a symmetric bilinear form (−,−)𝑋 , called the Beauville-Bogomolov-Fujiki
(BBF) form, which satisfies the following equality for any 𝛼 ∈ 𝐻2(𝑋,Z):∫

𝑋
𝛼2𝑛 = 𝑐𝑋 (𝛼, 𝛼)

𝑛
𝑋 ,

for some unique positive rational constant, called the Fujiki constant; see, for example, [4, 14].

Remark 2.7. Note that both the BBF form and the Fujiki constant are invariant up to deformation.
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3. Moduli spaces of sheaves of O’Grady 10 type

In his seminal paper [42], O’Grady discovers a 10-dimensional ihs manifold not deformation equivalent
to a Hilbert scheme of K3 or a generelized Kummer variety. The example arises as a symplectic
resolution of a moduli space of sheaves on a K3 surface with fixed numerical constraints. In subsection
3.1 and in subsection 3.2, we recall the original construction and its generalizations, focusing also on
the lattice-theoretic point of view. In subsection 3.3 we are finally ready to state and prove criteria to
determine if a manifold of OG10 type is birational to a moduli space of sheaves on a K3 surface.

3.1. The Mukai lattice

Let S be a K3 surface. We denote by 𝐻 (𝑆,Z) the even integral cohomology of S; that is,

𝐻 (𝑆,Z) = 𝐻2∗(𝑆,Z) = 𝐻0(𝑆,Z) ⊕ 𝐻2(𝑆,Z) ⊕ 𝐻4 (𝑆,Z).

We can put a symmetric bilinear pairing on it, called the Mukai pairing, in the following way:

𝐻 (𝑆,Z) × 𝐻 (𝑆,Z) → Z

(𝑟1, 𝑙1, 𝑠1), (𝑟2, 𝑙2, 𝑠2) ↦→ −𝑟1𝑠2 + 𝑙1𝑙2 − 𝑟2𝑠1

with 𝑟𝑖 ∈ 𝐻0(𝑆,Z), 𝑙𝑖 ∈ 𝐻2 (𝑆,Z) and 𝑠𝑖 ∈ 𝐻4(𝑆,Z).
The lattice 𝐻 (𝑆,Z) together with the Mukai pairing is referred to as the Mukai lattice, and any

element 𝑣 = (𝑣0, 𝑣1, 𝑣2) ∈ 𝐻 (𝑆,Z) with 𝑣𝑖 ∈ 𝐻2𝑖 (𝑆) is called Mukai vector.
The Mukai lattice is isometric to the unique unimodular lattice of rank 24 and signature (4, 20). We

denote this isometry class by 𝚲24, and we have

𝚲24 = U⊕4 ⊕ E8 (−1)⊕2.

The natural Hodge structure on 𝐻2(𝑆,Z) can be extended to a weight 2 Hodge structure on 𝐻 (𝑆,Z) by
setting 𝐻2,0

C
(𝑆) � 𝐻2,0

C
(𝑆) (resp. 𝐻0,2

C
(𝑆) � 𝐻0,2

C
(𝑆)) and

𝐻1,1
C

(𝑆) � 𝐻0 (𝑆,C) ⊕ 𝐻1,1
C

(𝑆) ⊕ 𝐻4(𝑆,C).

Note that for any Mukai vector 𝑣 ∈ 𝐻 (𝑆,Z), the orthogonal sublattice with respect to the Mukai pairing

𝑣⊥ = {𝑤 ∈ 𝐻 (𝑆,Z) | (𝑣, 𝑤) = 0} ⊆ 𝐻 (𝑆,Z)

inherits a weight 2 Hodge structure from 𝐻 (𝑆,Z) in an obvious fashion.
Moreover, given a coherent sheaf F on S, we can naturally associate a Mukai vector to it by setting

𝑣(F) � (rank(F), 𝑐1 (F), 𝑐1(F)2/2 − 𝑐2 (F) + rank(F)) ∈ 𝐻 (𝑆,Z).

By construction, 𝑣(F) = (𝑟, 𝑙, 𝑠) is of (1,1)-type, and it satisfies one of the following relations:

1. 𝑟 > 0;
2. 𝑟 = 0 and 𝑙 ≠ 0 with l effective;
3. 𝑟 = 𝑙 = 0 and 𝑠 > 0.

Definition 3.1. A nonzero vector 𝑣 ∈ 𝐻 (𝑆,Z) satisfying 𝑣2 ≥ 2 and one of the conditions above is
called positive Mukai vector.
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3.2. Moduli spaces of sheaves of OG10 type

Given an algebraic Mukai vector v and a v-generic polarization 𝜃, we can consider the moduli space
𝑀𝑣 (𝑆, 𝜃) of 𝜃-semistable sheaves on S with Mukai vector v.

More generally, we consider Mukai vectors 𝑣 = 𝑚𝑤, where 𝑚 ∈ N and 𝑤 ∈ 𝐻 (𝑆,Z) is some
primitive Mukai vector. Let 𝑀𝑠

𝑣 (𝑆, 𝜃) ⊆ 𝑀𝑣 (𝑆, 𝜃) be the locus of 𝜃-stable sheaves: it is well known that
if 𝑀𝑠

𝑣 (𝑆, 𝜃) ≠ ∅, then it is smooth of dimension 𝑣2 + 2 and carries a symplectic form [40, 49, 50].
Theorem 3.2 (Mukai, Yoshioka). Let S be a K3 surface, v be a primitive and positive Mukai vector and 𝜃
be a v-generic polarization. Then 𝑀𝑠

𝑣 (𝑆, 𝜃) = 𝑀𝑣 (𝑆, 𝜃), and it is a irreducible holomorphic symplectic
manifold of dimension 𝑣2 + 2 = 2𝑛, which is deformation equivalent to the n-th Hilbert scheme of a K3
surface. Moreover, there is a Hodge isometry between 𝑣⊥ � 𝐻2(𝑀𝑣 (𝑆, 𝜃),Z).

When v is not primitive, 𝑀𝑣 (𝑆, 𝜃) can be singular with a holomorphic symplectic form on its smooth
locus. It is then natural to investigate under which conditions 𝑀𝑣 (𝑆, 𝜃) admits a symplectic resolution
of singularities – namely, a resolution carrying a holomorphic symplectic form which extends the
holomorphic symplectic form on the smooth locus of 𝑀𝑣 (𝑆, 𝜃). O’Grady starts from this consideration
and proves that the moduli space M10 � 𝑀𝑣 (𝑆, 𝜃) with 𝑣 = (2, 0,−2) and 𝜃 a v-generic polarization
admits a symplectic resolution 𝜋 : M̃10 → M10 such thatM̃10 is an irreducible holomorphic symplectic
manifold of dimension 10 and second Betti number 24. This latter condition implies, in particular, that
M̃10 cannot be deformation equivalent to a Hilbert scheme, so we have a new deformation class of ihs
manifolds.
Definition 3.3 [28]. We say that an ihs manifold X is of OG10 type if it is deformation equivalent to the
O’Grady 10 dimensional example M̃10.

In [46], Rapagnetta describes the lattice structure of M̃10. Let Σ be the singular locus of M10,
let 𝐵 ⊂ M10 be the locus parametrizing nonlocally free sheaves and let Σ̃ and 𝐵 be respectively the
exceptional divisor of 𝜋 and the strict transform of B. Finally, let

𝜇 : 𝐻2(𝑆,Z) → 𝐻2(M̃10,Z)

be the Donaldson morphism; see, for example, [13, 31, 39].
Theorem 3.4 [46, Theorems 2.0.8 and 3.0.11]. In the above notation, we have the following.
1. The morphism 𝜇 is injective and

𝐻2(M̃10,Z) = 𝜇(𝐻2 (𝑆,Z)) ⊕ 𝑐1 (Σ̃) ⊕ 𝑐1 (𝐵).

2. The map 𝜇 is an isometry with respect to the intersection pairing on S and the BBF form on 𝐻2(M̃10).
3. Setting Δ = 𝑐1 (Σ̃) ⊕ 𝑐1 (𝐵), we have that the decomposition

𝐻2(M̃10,Z) = 𝜇(𝐻2 (𝑆,Z)) ⊕⊥ Δ

is orthogonal with respect to the BBF form and that the restriction of the BBF form on Δ is

𝑐1 (Σ̃) 𝑐1 (𝐵̃)
𝑐1 (Σ̃) -6 3
𝑐1 (𝐵̃) 3 -2

The construction has been later generalized by Perego and Rapagnetta [45] allowing different types of
Mukai vectors and polarizations. More precisely, Perego and Rapagnetta introduce the concept of OLS-
triple (𝑆, 𝑣, 𝜃), where S is a K3 surface, v is an algebraic Mukai vector and 𝜃 is a v-generic polarization.
Definition 3.5 ([45], Definition 1.5). Let S be a projective K3 surface, 𝜃 a polarization on S and v an
algebraic Mukai vector. We say that (𝑆, 𝑣, 𝜃) is an OLS-triple if
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1. 𝜃 is primitive and v-generic;
2. 𝑣 = 2𝑤, where w is a primitive Mukai vector with 𝑤2 = 2;
3. if we write 𝑤 = (𝑟, 𝑙, 𝑠), then 𝑟 ≥ 0, 𝑙 ∈ NS(𝑆), and if 𝑟 = 0, then l is the first Chern class of an

effective divisor.

One of the main results of [45] asserts that whenever (𝑆, 𝑣, 𝜃) is an OLS-triple, the moduli space
𝑀𝑣 (𝑆, 𝜃) admits a symplectic resolution 𝑀𝑣 (𝑆, 𝜃) which is of OG10 type.

Theorem 3.6 ([45], Theorem 1.6). Let (𝑆, 𝑣, 𝜃) be an OLS-triple. The resolution 𝑀𝑣 (𝑆, 𝜃) of the moduli
space 𝑀𝑣 (𝑆, 𝜃) is an irreducible holomorphic symplectic manifold which is deformation equivalent to
M̃10.

As a consequence, for any OLS triple (𝑆, 𝑣, 𝜃), the second integral cohomology group of 𝑀𝑣 (𝑆, 𝜃)
is endowed with a lattice structure with the BBF form and with a weight 2 Hodge structure.

Since 𝑀𝑣 (𝑆, 𝜃) has rational singularities, the pullback 𝜋∗ : 𝐻2(𝑀𝑣 (𝑆, 𝜃),Z) → 𝐻2(𝑀𝑣 (𝑆, 𝜃),Z)
via is injective and by strict compatibility of weight filtrations 𝐻2 (𝑀𝑣 (𝑆, 𝜃),Z) admits a pure weight 2
Hodge structure. Also, it inherits a lattice structure by restricting the BBF form on 𝐻2 (𝑀𝑣 (𝑆, 𝜃),Z).

Theorem 3.7 ([45], Theorem 1.7). Let (𝑆, 𝑣, 𝜃) be an OLS-triple. There is an isometry of Hodge
structures

𝜆𝑣 : 𝑣⊥ �
−→ 𝐻2(𝑀𝑣 (𝑆, 𝜃),Z).

Clearly, if we denote by

𝜆𝑣 = 𝜋∗ ◦ 𝜆𝑣 : 𝑣⊥ ↩→ 𝐻2(𝑀𝑣 (𝑆, 𝜃),Z)

the composition of the above isometry with the pullback, we have that 𝜆𝑣 is an injective morphism of
Hodge structures and an isometry onto its image. It is possible to extend this morphism to a Hodge
isometry of lattices as follows; see also [44, §3] for proofs and further details. Consider the dual lattice

(𝑣⊥)∨ = {𝛼 ∈ 𝑣⊥ ⊗Z Q | (𝛼, 𝛽) ∈ Z ∀𝛽 ∈ 𝑣⊥}.

The non-degeneracy of the Mukai pairing implies that the morphism

𝑣⊥ → (𝑣⊥)∨, 𝛼 ↦→ (𝛼,−)

is injective and thus that 𝑣⊥ can be viewed as a sublattice of (𝑣⊥)∨ of index |det(𝑣⊥)| = 2. We denote
by (−,−)Q the Q-bilinear extension of the Mukai pairing to (𝑣⊥)∨. Next, one considers the Z-module

(𝑣⊥)∨ ⊕ Z𝜎/2

and endows it with a symmetric Q-bilinear form 𝑏𝑣 such that

◦ 𝑏𝑣 | (𝑣⊥)∨ = (−,−)Q,
◦ 𝜎 is orthogonal to (𝑣⊥)∨,
◦ 𝑏𝑣 (𝜎, 𝜎) = −6.

If we consider the submodule Γ𝑣 of (𝑣⊥)∨ ⊕ Z𝜎/2

Γ𝑣 := {(𝛼, 𝑘𝜎/2) | 𝑘 ∈ 2Z if and only if 𝛼 ∈ 𝑣⊥},

we can endow it with a weight 2 Hodge structure by setting

(Γ𝑣 )
2,0 = (𝑣⊥)2,0, (Γ𝑣 )

2,0 = (𝑣⊥)1,1 ⊕ C𝜎, (Γ𝑣 )
0,2 = (𝑣⊥)0,2.
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Theorem 3.8 ([44], Theorem 3.4). The restriction of 𝑏𝑣 to Γ𝑣 takes integral values (thus endowing Γ𝑣

with a lattice structure), and there is a Hodge isometry

𝑓𝑣 : Γ𝑣
�
−→ 𝐻2(𝑀𝑣 (𝑆, 𝜃),Z), 𝑓𝑣 (𝛼, 𝑘𝜎/2) = 𝜆𝑣 (𝛼) + 𝑘𝐸,

where E is the class of the exceptional divisor of 𝜋.

From the previous discussion, one can easily deduce the following corollary.

Corollary 3.9. In the above notation, there exists a finite index embedding

𝑣⊥ ⊕⊥ Z𝐸 ↩→ 𝐻2 (𝑀𝑣 (𝑆, 𝜃),Z).

The proof of Theorem 3.8 is first carried out for the original O’Grady example where 𝑣 = (2, 0,−2)
(see [44, Remark 3.2]) and then extended to all OLS triples via a deformation argument. Namely, Perego
and Rapagnetta show that the Hodge morphism 𝑓𝑣 takes values in 𝐻2(𝑀𝑣 (𝑆, 𝜃),Z) – that is, a morphism
of Z-modules and an isometry of lattices. A key point in the proof is showing that under the chosen
deformation, all these properties are preserved. In particular, the class E of the exceptional divisor in
𝐻2 (𝑀𝑣 (𝑆, 𝜃),Z) corresponds to 𝑐1 (Σ̃) ∈ 𝐻2(	M10); thus, it has square -6 and divisibility 3 (see [44,
Remark 3.5]).

3.2.1. Lattice of O’Grady 10 type manifolds
In fact, one can describe the lattice structure for any variety of OG10 type.

Definition 3.10. A marked pair of OG10 type is pair (𝑋, 𝜂), where X is an irreducible holomorphic
symplectic manifold of OG10 type and 𝜂 : 𝐻2(𝑋,Z) → L is a fixed isometry of lattices.

In what follows, we denote by L the isometry class of 𝐻2(𝑋,Z), which is well defined in view of
Theorem 2.7. In [46], Rapagnetta shows that L is isometric to

U⊕3 ⊕ E8(−1)⊕2 ⊕ A2(−1),

which is an even lattice of rank 24 and signature (3, 21).
Moreover, being the second cohomology group of a compact Kähler manifold, L is endowed with a

natural weight 2 Hodge structure, whose Hodge numbers are deformation invariant.
In particular, if (𝑋, 𝜂) is a marked pair of OG10 type, the integral lattice L1,1 is called the Néron–

Severi lattice of X, and it is denoted by NS(𝑋). Its orthogonal complement is called transcendental
lattice, and it is denoted by T(𝑋).

Remark 3.11. Note that in the notation above, if 𝜎 ∈ L is a primitive class such that 𝜎2 = −6 and
(𝜎,L) = 3, then the lattice 𝜎⊥ � U⊕3 ⊕ E8 (−1)⊕3 ⊕ [−2] admits a primitive embedding in the even
unimodular lattice 𝚲24 sending the unimodular part in itself and the generator of square −2 in the
difference of two generators of one copy of U. Moreover, this primitive embedding is unique; see [41,
Proposition 1.15.1].

3.3. Birationality criteria for OG10 type manifolds

We provide an entirely lattice-theoretic criterion to determine when a manifold X of OG10 type is
birational to a moduli space 𝑀𝑣 (𝑆, 𝜃) of sheaves on a K3 surface S, where (𝑆, 𝑣, 𝜃) is an OLS-triple as
described in Section 2.

Definition 3.12. Let (𝑋, 𝜂) be a projective marked pair of OG10 type, where 𝜂 : 𝐻2 (𝑋,Z) → L is a
fixed marking. We say that X is a numerical moduli space of OG10 type if there exists a primitive class
𝜎 ∈ L1,1 such that

1. 𝜎2 = −6 and (𝜎,L) = 3,
2. the Hodge embedding 𝜎⊥L ↩→ 𝚲24 embeds a copy of U in 𝚲1,1

24 .

https://doi.org/10.1017/fms.2024.46 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.46


Forum of Mathematics, Sigma 9

We are now in a position to state our birationality criterion.

Theorem 3.13. Let (𝑋, 𝜂) be a marked pair of OG10 type. The following conditions are equivalent:

1. There exists a K3 surface S, a Mukai vector 𝑣 = 2𝑤 where w is a primitive Mukai vector of square 2
and a 𝑣−generic polarization 𝜃 on S such that X is birational to 𝑀𝑣 (𝑆, 𝜃);

2. The manifold X is a numerical moduli space.

Proof. Suppose Φ : 𝑋 � 𝑀𝑣 (𝑆, 𝜃) is a birational morphism. Then the induced isometry Φ∗ :
𝐻2 (𝑀𝑣 (𝑆, 𝜃),Z) → 𝐻2(𝑋,Z) is an isometry of Hodge structures. Recall that the manifold 𝑀𝑣 (𝑆, 𝜃) is
obtained as a symplectic resolution of singularities of the moduli space 𝑀𝑣 (𝑆, 𝜃).

Note that the class of the exceptional divisor 𝐸 ∈ 𝐻2 (𝑀𝑣 (𝑆, 𝜃),Z) is primitive of (1,1) type, of
square −6 and divisibility 3. Moreover, by Theorem 3.9, we have that

𝐸⊥L � 𝐻2(𝑀𝑣 (𝑆, 𝜃),Z),

and there exists a Hodge embedding 𝐻2(𝑀𝑣 (𝑆, 𝜃),Z) ↩→ 𝐻 (𝑆,Z) � 𝚲24. Let 𝜎 := Φ∗𝐸 . We now
prove that X is a numerical moduli space: since Φ∗ is an isometry of Hodge structures, condition (a) in
Theorem 3.12 is satisfied. For condition (b), observe that the composition

𝜎⊥ (Φ−1)∗

−−−−−→ 𝐸⊥ � 𝐻2(𝑀𝑣 (𝑆, 𝜃),Z) ↩→ 𝐻 (𝑆,Z) � 𝚲24 � U⊕4 ⊕ E8(−1)⊕2

is a compatible Hodge embedding. As a result, the weight 2 Hodge structure on 𝐻 (𝑆,Z) induced by the
embedding 𝜎⊥ ↩→ 𝚲24 is the one defined on the Mukai lattice in subsection 3.1. The vectors (1, 0, 0)
and (0, 0, 1) generate a copy of U in 𝐻 (𝑆,Z)1,1 � 𝚲1,1

24 ; hence, X is a numerical moduli space.
We now prove the implication in the other direction. Supppose that X is a numerical moduli space

(i.e., that there exists a class 𝜎 ∈ L1,1 such that 𝜎2 = −6 and (𝜎,L) = 3, and a Hodge isometry
𝜎⊥L ↩→ 𝚲24 such that 𝚲1,1

24 contains a copy of U as a direct summand).
Observe that the lattice 𝜎⊥L is isometric to the lattice U⊕3 ⊕ E8(−1)⊕2 ⊕ [−2], so that setting

𝑤 := (𝜎⊥L )⊥𝚲24 ,

we have that 𝑤2 = 2. Note that, by definition, [𝑤] is a sublattice of 𝚲24 and it is of (1, 1) type. By
construction, we have

𝑤⊥𝚲24 � U⊕3 ⊕ E8(−1)⊕2 ⊕ [−2] � 𝜎⊥L ,

so sgn(𝑤⊥𝚲24 ) = sgn(𝜎⊥L ) = (3, 20). Moreover, the projectivity of X implies the positive part of the
signature of NS(𝑋) � L1,1 is equal to 1. Since the class 𝜎 has negative square, the positive part of
sgn((𝜎⊥L )1,1) is equal to the positive part of the signature of L1,1, which is 1. The lattices 𝚲1,1

24 and
(𝜎⊥L )1,1 ⊕ [𝑤] have the same signature: in particular, the positive part of sgn(𝚲1,1

24 ) is equal to 2.
By hypothesis,

𝚲1,1
24 � U ⊕T

for some even lattice T of signature (1,−). By Torelli theorem for K3 surfaces, there exists a K3 surface S
such that NS(𝑆) � T. Setting 𝑣 : = 2𝑤, we can always choose a positive generator 𝜃 which is a v-generic
polarization on S. Now since 𝑤2 = 2, by [38, Lemma 1.28], either w or −𝑤 is a positive Mukai vector;
hence, we may assume that (𝑆, 𝑣, 𝜃) is an OLS-triple. By Theorem 3.7, there exists a Hodge isometry

𝐻2 (𝑀𝑣 (𝑆, 𝜃),Z) � 𝑣⊥ ⊂ 𝚲24,
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where the orthogonal complement of v is computed with respect to the Mukai pairing. The sin-
gular moduli space 𝑀𝑣 (𝑆, 𝜃) admits a symplectic resolution 𝑀𝑣 (𝑆, 𝜃) with exceptional divisor
𝐸 ∈ 𝐻2 (𝑀𝑣 (𝑆, 𝜃),Z) such that E has divisibility 3 and 𝐸2 = −6.

We prove that X is birational to 𝑀𝑣 (𝑆, 𝜃) by showing that there exists a Hodge isometry between
𝐻2 (𝑋,Z) and 𝐻2 (𝑀𝑣 (𝑆, 𝜃),Z). In fact, when such an isometry exists, birationality is implied by the
maximality of Mon2(OG10) for OG10 type manifolds; see [43] and [37, Theorem 5.2(2)]. Observe that
we have a Hodge isometry

𝛼 : 𝐻2 (𝑀𝑣 (𝑆, 𝜃),Z) ⊕ Z𝐸 � 𝜎⊥L ⊕ Z𝜎

and two finite index embeddings

𝐻2(𝑀𝑣 (𝑆, 𝜃),Z) ⊕ Z𝐸
𝑖
↩−→ 𝐻2(𝑀𝑣 (𝑆, 𝜃),Z) (3.1)

𝜎⊥L ⊕ Z𝜎
𝑗

↩−→ 𝐻2(𝑋,Z). (3.2)

We want to lift the Hodge isometry 𝛼 to a Hodge isometry 𝛽 : 𝐻2 (𝑀𝑣 (𝑆, 𝜃),Z) � 𝐻2(𝑋,Z) so that the
following diagram commutes:

𝐻2(𝑀𝑣 (𝑆, 𝜃),Z) ⊕ Z𝐸 𝐻2 (𝑀𝑣 (𝑆, 𝜃),Z)

𝜎⊥L ⊕ Z𝜎 𝐻2 (𝑋,Z).

𝑖

𝛼 𝛽

𝑗

Observe that, as abstract lattices, 𝐻2(𝑀𝑣 (𝑆, 𝜃),Z) and 𝐻2(𝑋,Z) are both isomorphic to 𝑀 :=
U⊕3 ⊕ E8(−1)⊕2 ⊕ A2 (−1). The existence of 𝛽 follows from a result by Nikulin [41, Corollary 1.5.2]
and a direct computation, by setting (in the loc. cit. notation)

◦ 𝑆1 = 𝐻2 (𝑀𝑣 (𝑆, 𝜃),Z) and 𝐾1 = 𝑆⊥1 = Z𝐸
◦ 𝑆2 = 𝜎⊥L and 𝐾2 = 𝑆⊥2 = Z𝜎.
◦ 𝜑 = 𝛼 |𝐻 2 (𝑀𝑣 (𝑆,𝜃) ,Z) and 𝜓(𝐸) := 𝜎.

Then 𝛽 is a Hodge isometry by construction, and the proof is concluded. �

4. Moduli spaces of twisted sheaves of O’Grady 10 type

In this section, we recall basic facts about twisted 𝐾3 surfaces and extend the results of Section 3. For
more details on twisted 𝐾3 surfaces, we refer to [26].

Definition 4.1. A twisted K3 surface is a pair (𝑆, 𝛼) given by a K3 surface S and a Brauer class
𝛼 ∈ Br(𝑆), where Br(𝑆) denotes the torsion part of 𝐻2(𝑆,O∗

𝑆).

Choosing a lift 𝐵 ∈ 𝐻2(𝑆,Q) of 𝛼 under the natural morphism 𝐻2(𝑆,Q) → Br(𝑆) induced by
the exponential sequence allows one to introduce a natural Hodge structure 𝐻 (𝑆, 𝛼,Z) of weight two
associated with (𝑆, 𝛼). As a lattice, this is just 𝐻 (𝑆,Z) � 𝐻0(𝑆,Z) ⊕ 𝐻2 (𝑆,Z) ⊕ 𝐻4(𝑆,Z), but the
(2, 0)-part is now given by

𝐻2,0 (𝑆, 𝛼,Z) � C(𝜔 + 𝜔 ∧ 𝐵),

where 0 ≠ 𝜔 ∈ 𝐻2,0(𝑆). This defines a Hodge structure by setting

𝐻0,2(𝑆, 𝛼) � 𝐻2,0, 𝐻1,1 (𝑆, 𝛼) � (𝐻2,0(𝑆, 𝛼) ⊕ 𝐻0,2(𝑆, 𝛼))⊥,
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where orthogonality is with respect to the Mukai pairing. Although the definition depends on the choice
of B, the Hodge structures induced by two different lifts B and 𝐵′ of the same Brauer class 𝛼 are Hodge
isometric [26].

When S is a K3 surface and 𝛼 ∈ Br(𝑆), we get a well-defined notion of coherent sheaf on the twisted
K3 surface (𝑆, 𝛼) by replacing the identity with 𝛼 in the cocycle condition; see [23, §16.5]. By the
twisted version of derived global Torelli theorem, the bounded derived categories of coherent sheaves
on two twisted K3 surfaces (𝑆, 𝛼) and (𝑆′, 𝛼′) are equivalent if and only if there exists a Hodge isometry
𝐻 (𝑆, 𝛼,Z) � 𝐻 (𝑆′, 𝛼′,Z) preserving the natural orientation of the four positive directions; see [9, 47].

We want to generalize our criterion to the case of moduli space of sheaves 𝑀𝑣 (𝑆, 𝛼, 𝜃) on a twisted
K3 surface (𝑆, 𝛼). To this end, we introduce the notion of twisted numerical moduli space.

Definition 4.2. Let (𝑋, 𝜂) be a projective marked pair of OG10 type, where 𝜂 : 𝐻2(𝑋,Z) → L is a fixed
marking. We say that X is a twisted numerical moduli space of OG10 type if there exists a primitive
class 𝜎 ∈ L1,1 such that

1. 𝜎2 = −6 and (𝜎,L) = 3,
2. the Hodge embedding 𝜎⊥L ↩→ 𝚲24 embeds a copy of U(𝑛) in 𝚲1,1

24 as a direct summand for some
positive 𝑛 ∈ N.

We can now prove an analogue version of Theorem 3.13 for the twisted case.

Theorem 4.3. Let (𝑋, 𝜂) be a marked pair of OG10 type. The following conditions are equivalent:

1. There exists a twisted K3 surface (𝑆, 𝛼), a non-primitive Mukai vector 𝑣 = 2𝑤 and a 𝑣−generic
polarization 𝜃 on S such that X is birational to 𝑀𝑣 (𝑆, 𝛼, 𝜃);

2. The manifold X is a twisted numerical moduli space.

Proof. As before, suppose X is birational to a symplectic resolution 𝑀𝑣 (𝑆, 𝛼, 𝜃) of a moduli space
𝑀𝑣 (𝑆, 𝛼, 𝜃) for some twisted K3 surface (𝑆, 𝛼), a non-primitive Mukai vector 𝑣 = 2𝑤 and a 𝑣−generic
polarization 𝜃 on S. Then we have a Hodge isometry

𝐻2(𝑋,Z) � 𝐻2 (𝑀𝑣 (𝑆, 𝛼, 𝜃),Z), (4.1)

such that 𝐻2 (𝑀𝑣 (𝑆, 𝛼, 𝜃),Z) embeds in 𝐻2(𝑀𝑣 (𝑆, 𝛼, 𝜃),Z) as the orthogonal complement of the
exceptional divisor E, which is of divisibility 3 and square −6. Moreover, there is a compatible Hodge
embedding by [34, Proof of Theorem 2.7]

𝐻2(𝑀𝑣 (𝑆, 𝛼, 𝜃),Z) ↩→ 𝐻 ((𝑆, 𝛼),Z) � 𝚲24,

where 𝐻 (𝑆, 𝛼,Z) � 𝚲24 is endowed with the Hodge structured described in Section 4. Let 𝜎 be the
image of E under the isometry (4.1): then 𝜎 is of (1, 1) type and has divisibility 3 in L, and 𝜎2 = −6.

We want to prove that the Hodge embedding 𝜎⊥L ↩→ 𝚲24 embeds in 𝚲1,1
24 a copy of U(𝑛) as a direct

summand. To this end, observe that the composition

𝜎⊥ → 𝐸⊥ � 𝐻2(𝑀𝑣 (𝑆, 𝜃),Z) ↩→ 𝐻 ((𝑆, 𝛼),Z) � 𝚲24 � U⊕4 ⊕ E8(−1)⊕2 (4.2)

defines a compatible Hodge embedding. Let 𝐵 ∈ 𝐻2 (𝑆,Q) be such that exp(𝐵) = 𝛼. Note that the
vectors 𝑛(1, 𝐵, 𝐵2/2) and (0, 0, 1) generate a copy of U(𝑛) in 𝐻 ((𝑆, 𝛼),Z)1,1 � 𝚲1,1

24 as (4.2) is a
compatible Hodge embedding.

For the other direction, we know that there exists 𝜎 ∈ L1,1 of square −6 and divisibility 3 such that
𝜎⊥L ↩→ 𝚲24 embeds a copy of U(𝑛) in 𝚲1,1

24 . Let 𝑒𝑛, 𝑓𝑛 be the standard isotropic generators of U(𝑛).
Choosing n minimal, we can assume that 𝑒𝑛 = : 𝑒 is primitive in 𝚲24. Hence, we can complete e to a
copy of U = 〈𝑒, 𝑓 〉 such that there is an orthogonal decomposition

𝚲24 � U ⊕R.
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With respect to such decomposition, the second basis vector 𝑓𝑛 of U(𝑛) can be written as

𝑓𝑛 = 𝛾 + 𝑛 𝑓 + 𝑘𝑒,

for some 𝛾 ∈ R and 𝑘 ∈ Z. Similarly, a generator of the (2, 0)-part of the Hodge structure on 𝚲24
induced by 𝜎⊥ is orthogonal to e and hence is of the form 𝜔 + 𝑙𝑒 with 𝜔 ∈ R ⊗ C and 𝑙 ∈ Z. Moreover,
since the same generator must be also orthogonal to 𝑓𝑛, we have that

𝛾 · 𝜔 + 𝑛𝑙 = 0.

Setting 𝐵 = −
𝛾

𝑛
, we may write

𝜔 + 𝑙𝑒 = 𝜔 + 𝐵 ∧ 𝜔,

where 𝐵∧𝜔 stands for (𝐵 ·𝜔)𝑒. By the surjectivity of the period map, there exists a twisted K3 surface
(𝑆, 𝛼) with 𝛼 = exp(𝐵) such that 𝐻2(𝑆,Z) � R, identifying 𝐻2,0 (𝑆) = 〈𝜔〉. Observe that the above
construction defines an Hodge isometry between 𝐻 (𝑆, 𝛼,Z) and 𝚲24 with the Hodge structure induced
by the Hodge embedding 𝜎⊥ ↩→ 𝚲24.

We consider 𝑤 ∈ 𝐻 (𝑆, 𝛼, 𝜃) such that under the above isometry,

[𝑤] � (𝜎⊥L )⊥𝚲24 .

By construction 𝑤2 = 2 and either w or −𝑤 is a positive Mukai vector. If we take 𝑣 := 2𝑤 we can embed

𝐻2(𝑀𝑣 (𝑆, 𝛼, 𝜃),Z) � 𝑣⊥ ↩→ 𝚲24 .

Again, note that 𝑀𝑣 (𝑆, 𝛼, 𝜃) admits a symplectic resolution 𝑀𝑣 (𝑆, 𝛼, 𝜃) whose exceptional divisor E
has square −6 and divisibility 3 and

[𝐸]⊥ � 𝐻2 (𝑀𝑣 (𝑆, 𝛼, 𝜃),Z).

To construct the isometry between 𝐻2 (𝑋,Z) and 𝐻2 (𝑀𝑣 (𝑆, 𝛼, 𝜃),Z), we proceed as in Theorem
3.13. �

5. Birationality criteria for the Li-Pertusi-Zhao variety

We now give an application of Theorem 3.13 and Theorem 4.3 in the case of the OG10-type variety
defined by Li, Pertusi and Zhao associated with a smooth cubic fourfold [29]. We first recall briefly the
construction and the main properties of this variety.

Given a smooth cubic fourfold Y, one defines the Kuznetsov component as

A𝑌 := 〈O𝑌 ,O𝑌 (1),O𝑌 (2)〉⊥ ⊂ 𝐷𝑏 (𝑌 ),

which is a triangulated subcategory that shares several properties with the derived category of a K3
surface. Its topological K-theory

Ktop (A𝑌 ) := 〈[O𝑌 ], [O𝑌 (1)], [O𝑌 (2)]〉⊥ ⊂ Ktop(𝑌 )

is a lattice endowed with the restriction of the Euler form on Ktop(𝑌 ). It has a natural pure Hodge
structure of weight 2 obtained by pulling back the one from the cohomology of Y; see [3]. For any
smooth cubic fourfold, the lattice Ktop (A𝑌 ) contains two distinguished Hodge classes defined as 𝜆𝑖 :=
pr[O𝐿 (𝑖)] for𝑖 = 1, 2, where L is a line on Y and pr : Ktop(𝑌 ) → Ktop(A𝑌 ) is the projection. In
particular, by [3, Proposition 2.3], we have
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〈𝜆1, 𝜆2〉 � A2,

and the Mukai vector 𝑣 : Ktop(A𝑌 ) → 𝐻∗(𝑌,Q) restricts to a Hodge isometry

〈𝜆1, 𝜆2〉
⊥ � 𝐻4

prim(𝑌,Z).

In [29] Li, Pertusi and Zhao showed that there exists a Bridgeland stability condition 𝜎 for which the
moduli space

𝑋𝑌 := 𝑀𝜎 (2(𝜆1 + 𝜆2),A𝑌 )

of semistable objects inA𝑌 with fixed numerical invariant 2(𝜆1+𝜆2) ∈ Ktop (A𝑌 ) is a singular projective
variety. Its singular locus consists of objects in Sym2(𝑀𝜎 (𝜆1 + 𝜆2,A𝑌 )) which lie naturally inside the
bigger moduli space. The Li-Pertusi-Zhao (LPZ) variety 𝑋̃𝑌 is constructed as a symplectic resolution
of singularities of 𝑋𝑌 , obtained by blowing up 𝑋𝑌 along its singular locus. In particular, 𝑋𝑌 is an ihs
manifold of OG10 type. The crucial property for us is that we have a Hodge isometry

Ktop(A𝑌 ) ⊇ 〈𝜆1 + 𝜆2〉
⊥ � 𝐻2(𝑋𝑌 ,Z)

by [15, Proposition 2.8]. Let L := 𝐻2(𝑋𝑌 ,Z), and let 𝜎 ∈ L1,1 be the class of the exceptional divisor of
the blowup 𝑋𝑌 → 𝑋𝑌 . By [29, §3], we know that 𝜎2 = −6 and (𝜎, 𝐿) = 3.

In the following, we denote by C the moduli space of smooth cubic fourfolds and by C𝑑 the irreducible
Hassett divisor consisting of special cubic fourfolds of discriminant d. These are cubic fourfolds which
have a primitively embedded rank 2 lattice 𝐾 ⊂ 𝐻2,2 (𝑌,Z) containing the square of the hyperplane
section, such that the Gram matrix of K has discriminant d. Recall that C𝑑 is nonempty if and only if
𝑑 > 6 and 𝑑 ≡ 0, 2(mod 6); see [20, Theorem 4.3.1]. We consider the following two properties for d:

(∗∗) : 𝑑 divides 2𝑛2 + 2𝑛 + 2 for some 𝑛 ∈ Z;

(∗∗′) : in the prime factorization of
𝑑

2
, primes 𝑝 ≡ 2 (3) appear with even exponents.

By [20, Theorem 1.0.2] and [1, page 1], condition (∗∗) is equivalent to the existence of an associated
K3 surface; that is, a cubic fourfold Y belongs to C𝑑 with d satisfying (∗∗) if and only if there exists a
polarised K3 surface S with a Hodge isometry

𝐻2
prim(𝑆,Z) � 𝐾⊥ ⊂ 𝐻4(𝑌,Z).

Similarly, the condition (∗∗′) is equivalent to the existence of an associated twisted K3 surface; see [24,
Theorem 1.4].

Both conditions can be rephrased in purely lattice-theoretic terms. We follow [25, Proposition 1.2]
and recall this description.

For any primitive vector 𝑣 ∈ 〈𝜆1, 𝜆2〉
⊥Ktop (which is Hodge isometric to A⊥𝚲24

2 ), we define

𝐿𝑣 � (A2 ⊕Z𝑣)
𝑠𝑎𝑡

to be the saturation of A2 ⊕Z𝑣 inside Ktop(A𝑌 ). By [25, §1.2], one has

𝑑 satisfies (∗∗) ⇔ ∃ 𝑣𝑑 ∈ A⊥
2 such that 𝐿𝑑 := 𝐿𝑣𝑑 has discriminant 𝑑 (5.1)

and U ↩→ 𝐿𝑑 primitively,

𝑑 satisfies (∗∗′) ⇔ ∃ 𝑣𝑑 ∈ A⊥
2 such that 𝐿𝑑 := 𝐿𝑣𝑑 has discriminant 𝑑 (5.2)

and U(𝑛) ↩→ 𝐿𝑑 for some 𝑛 ∈ N.
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Theorem 5.1. Let 𝑋𝑌 be an LPZ-variety associated to a smooth cubic fourfold Y. The following
conditions are equivalent.

1. The cubic fourfold Y lies in the Hassett divisor C𝑑 with d satisfying (∗∗).
2. The LPZ-variety 𝑋𝑌 is a numerical moduli space.

Proof. We first show that (𝑖) ⇒ (𝑖𝑖). Given the resolution 𝜋 : 𝑋𝑌 → 𝑋𝑌 , we denote by 𝜎 the class of
the exceptional divisor. The pullback 𝜋∗ embeds 𝐻2(𝑋𝑌 ,Z) in 𝐻2(𝑋𝑌 ,Z). In particular,

𝜋∗𝐻2(𝑋𝑌 ,Z) = 𝜎⊥.

The above identification and the Hodge isometry in [15, Proposition 2.8] yield a Hodge embedding

𝜎⊥
𝑗

↩−→ Ktop(A𝑌 ) � 𝚲24

such that

𝑗 (𝜎⊥) = 𝑗 (𝜋∗𝐻2 (𝑋𝑌 ,Z)) = 〈𝜆1 + 𝜆2〉
⊥Ktop .

Moreover, we have a Hodge embedding 𝑗 ′ : 𝐻4 (𝑌,Z)prim(−1) → Ktop (A𝑌 ), where the Hodge structure
of 𝐻4 (𝑌,Z)prim has a Tate twist decreasing weight by (-1,-1) and

𝑗 ′(𝐻4 (𝑌,Z)prim) = 〈𝜆1, 𝜆2〉
⊥.

By hypothesis and (5.1), there exists 𝑣𝑑 ∈ 𝐻4(𝑌,Z)𝑝𝑟𝑖𝑚 of type (2,2) such that the saturation 𝐿𝑑 of

〈𝜆1, 𝜆2, 𝑗
′(𝑣𝑑)〉 ⊂ Ktop(A𝑌 ) � 𝚲24

contains a copy of U primitively. Moreover, note that by construction, 𝐿𝑑 is contained in the (1,1)-
part. The claim now follows by observing that since j and 𝑗 ′ are compatible Hodge embeddings, the
Hodge structure on 𝚲24 induced by 𝜎⊥

𝑗
↩−→ 𝚲24 is the same as the one induced by the isomorphism

𝚲24 � Ktop (A𝑌 ).
We now show (𝑖𝑖) ⇒ (𝑖). Let 𝑋𝑌 be the LPZ variety associated with the cubic fourfold Y. We have

the diagram

〈𝜆1, 𝜆2〉
⊥Ktop � 𝐻4 (𝑌,Z)prim(−1) Ktop(A𝑌 )

〈𝜆1 + 𝜆2〉
⊥Ktop � 𝐻2(𝑋𝑌 ,Z) � 𝜎

⊥𝐻2 (𝑋𝑌 ) 𝐻2(𝑋𝑌 ,Z),

𝑗

𝑗′

which, in terms of abstract lattices, reads as

〈𝜆1, 𝜆2〉
⊥𝚲24 � U⊕2 ⊕ E8(−1)⊕2 ⊕ A2(−1) 𝚲24

〈𝜆1 + 𝜆2〉
⊥𝚲24 � U⊕3 ⊕ E8(−1)⊕2 ⊕ [−2] U⊕3 ⊕ E8 (−1)⊕2 ⊕ A2 (−1).

By assumption, the lattice 𝚲1,1
24 contains a copy of U as a direct summand. Since the orthogonal

complement of 𝜎⊥𝐻2 (𝑋𝑌 ) ⊂ 𝚲24 is generated by a positive class of (1, 1) type, we have that

rk((𝜎⊥)1,1) ≥ 1,
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as 𝜎⊥ must contain a negative class of U inside 𝚲1,1
24 . Moreover, 𝜎⊥ = 〈𝜆1 + 𝜆2〉

⊥ contains the (1,1)
class 𝜆1 − 𝜆2 which is of positive square; hence,

rk((𝜎⊥)1,1) ≥ 2.

We deduce that 𝜌(𝑋𝑌 ) ≥ 2, and by the diagrams above,

𝜌(𝑌 )prim := rk(𝐻2,2 (𝑌,Z)prim) ≥ 1,

which means that the cubic fourfold Y belongs to a Hassett divisor C𝑑 for some 𝑑 ∈ N.
We now show that d satisfies the (∗∗) condition (i.e., that there exists a primitive vector 𝑣𝑑 ∈

𝐻2,2 (𝑌,Z)prim associated to d such that 𝐿𝑑 := 〈𝜆1, 𝜆2, 𝑣𝑑〉
𝑠𝑎𝑡 contains primitively a copy of U).

Note that since
(
〈𝜆1, 𝜆2〉

⊥𝚲24
)1,1 is equal to 𝐻2,2 (𝑌,Z)prim(−1), which is negative definite, then the

lattice
(
〈𝜆1, 𝜆2〉

⊥𝚲24
)1,1

∩ U is generated by a negative class that we call 𝑣𝑑 .
We now need to show that 𝐿𝑑 contains a copy of U primitively. To do so, observe that the copy of

U in 𝚲1,1
24 intersects the lattice A2 generated by 𝜆1 and 𝜆2. In fact, 𝚲1,1

24 ⊇ 〈𝜆1, 𝜆2〉 ⊕ 𝐻2,2 (𝑌,Z)prim �
A2 ⊕𝐻

2,2 (𝑌,Z)prim. Since 𝐻2,2 (𝑌,Z)prim is negative definite, it follows that U∩A2 has rank 1 and it is
generated by a positive element. Since U is unimodular, the embedding U ↩→ 𝐿𝑑 is primitive. �

Now the result [15, Theorem 3.2] by F. Giovenzana, L. Giovenzana and Onorati is a straightforward
consequence of Theorem 5.1 and Theorem 3.13.

Corollary 5.2. Keep the notation as above. The following conditions are equivalent.

1. The cubic fourfold Y lies in the Hassett divisor C𝑑 with d satisfying (∗∗).
2. There exists a K3 surface S, a non-primitive Mukai vector 𝑣 = 2𝑤 and a 𝑣−generic polarization 𝜃

on S such that 𝑋𝑌 is birational to 𝑀𝑣 (𝑆, 𝜃).

Theorem 5.3. Let 𝑋𝑌 be an LPZ-variety associated to a smooth cubic fourfold Y. The following
conditions are equivalent.

1. The cubic fourfold Y lies in the Hassett divisor C𝑑 with d satisfying (∗∗′).
2. The LPZ-variety 𝑋𝑌 is a twisted numerical moduli space.

Proof. The proof is identical to that of Theorem 5.1 provided that one replaces U with U(𝑛). �

We are now able to state a result analogous to Theorem 5.2 in the twisted case, which was proved in
[15, Proposition 3.1.(2)] only under the additional assumption that the map between 𝑋𝑌 and 𝑀𝑣 (𝑆, 𝛼, 𝜃)
preserves the stratification of the singular locus. Our criterion allows to circumvent this issue by looking
just at the lattice theoretic setting.

Corollary 5.4. Keep the notation as above. The following conditions are equivalent.

1. The cubic fourfold Y lies in the Hassett divisor C𝑑 with d satisfying (∗∗′).
2. There exists a twisted K3 surface (𝑆, 𝛼), a non-primitive Mukai vector 𝑣 = 2𝑤 and a 𝑣−generic

polarization 𝜃 on S such that 𝑋𝑌 is birational to 𝑀𝑣 (𝑆, 𝛼, 𝜃).

6. Numerically induced birational transformations

As a consequence of Theorem 3.13, when X is a numerical moduli space, there exist a K3 surface S, a
Mukai vector v and a polarization 𝜃 such that X is birational to 𝑀𝑣 (𝑆, 𝜃). We now want to investigate
which birational transformations of X come from automorphisms of the K3 surface S. To this end,
we shall give two preliminary definitions. Then in subsection 6.1, we consider symplectic birational
involutions and determine the induced ones.
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Definition 6.1. Let (𝑋, 𝜂) be a marked pair of OG10 type, and let be 𝐺 ⊂ Bir(𝑋) be a finite subgroup
of birational transformations of X. The group G is called an induced group of birational transformations
if there exists a 𝐾3 surface S with an injective group homomorphism 𝑖 : 𝐺 ↩→ Aut(𝑆), a G-invariant
Mukai vector 𝑣 ∈ 𝐻 (𝑆,Z)𝐺 and a v-generic polarization 𝜃 on S such that the action induced by G on
𝑀𝑣 (𝑆, 𝜃) via i coincides with given action of G on X.

Definition 6.2. Let X be a smooth irreducible holomorphic symplectic manifold of OG10 type, and let
𝜂 : 𝐻2(𝑋,Z) → L be a fixed marking. A finite group 𝐺 ⊂ Bir(𝑋) of birational transformations is called
a numerically induced group of birational transformations if there exists a class 𝜎 ∈ NS(𝑋) such that
𝜎2 = −6 and (𝜎,L) = 3 such that

1. 𝜎 is G-invariant;
2. Given the Hodge embedding 𝜎⊥ ↩→ 𝚲24, the induced action of G on 𝚲24 is such that the (1, 1) part

of the invariant lattice (𝚲24)
𝐺 contains U as a direct summand.

Remark 6.3. Observe that if X admits a finite subgroup 𝐺 ⊆ Bir(𝑋) which is numerically induced,
then X is automatically a numerical moduli space.

In what follows, we give all statements assuming 𝐺 ⊆ Bir(𝑋). If the statements hold true for
𝐺 ⊆ Aut(𝑋), then G will be called an (numerically) induced group of automorphisms.

Proposition 6.4. If 𝜑 ∈ Aut(𝑆) is an automorphism of the K3 surface S, the vector 𝑣 = 2𝑤 ∈ 𝐻 (𝑆,Z)
with 𝑤2 = 2 is a 𝜑-invariant Mukai vector on S, and 𝜃 is a v-generic and 𝜑-invariant polarization on S.
Then 𝜑 induces an automorphism 𝜑 on 𝑀𝑣 (𝑆, 𝜃). Moreover, this automorphism is numerically induced.

Proof. The definition of stability implies that if a coherent sheaf ℱ is 𝜃-stable, then 𝜑∗ℱ is 𝜃-stable;
see [38, Proposition 1.32]. As any 𝜃-semistable sheaf is an iterated extension of 𝜃-stable sheaves, we get
that 𝜑∗ preserves 𝜃-semistability. Hence, we have a regular automorphism 𝜑̂ of 𝑀𝑣 (𝑆, 𝜃). The singular
locus of 𝑀𝑣 (𝑆, 𝜃) is preserved by 𝜑̂, and so we get a lift 𝜑 of 𝜑̂ on the blowup 𝑀𝑣 (𝑆, 𝜃). We call
𝜎 the class of the exceptional divisor which is fixed by the induced action. The primitive embedding
𝜎⊥ = 𝐻2 (𝑀𝑣 (𝑆, 𝜃),Z) ↩→ 𝐻 (𝑆,Z) � 𝚲24 induces an action of 𝜑 on 𝜎⊥, which in turn yields an action
on 𝐻 (𝑆,Z) � 𝚲24. This action coincides with that induced by 𝜑 on 𝐻 (𝑆,Z). Observe that the sublattice
𝐻0 (𝑆,Z) ⊕ 𝐻4(𝑆,Z) � U is preserved by the action of 𝜑, and it is contained in the (1, 1) part of the
lattice 𝚲24, so 𝜑 is numerically induced. �

Remark 6.5. In the assumption of Theorem 6.4, we ask that the polarization 𝜃 ∈ NS(𝑆) is 𝜑-invariant, so
that the automorphism of the K3 surface induces an automorphism of 𝑀𝑣 (𝑆, 𝜃). Note that this condition
is never verified for a nontrivial symplectic automorphism of S according to [16, Theorem 1.1]. However,
the case of induced nonsymplectic involutions is being investigated in a companion paper [6].

In the above setting, if the polarization 𝜃 is not 𝜑-invariant, we may still prove that we get at least
a birational self map of 𝑀𝑣 (𝑆, 𝜃). To this end, we need a generalized notion of stability; in fact, so far
we have dealt with moduli spaces of sheaves on K3 surfaces with respect to Gieseker stability. We now
consider moduli spaces of Bridgeland semistable objects and recall some results about their birational
geometry.

Given a projective K3 surface S, Bridgeland constructed stability conditions on 𝐷𝑏 (𝑆) and showed
that they form a complex manifold denoted by Stab(𝑆). Moreover, for any Mukai vector 𝑣 ∈ 𝐻 (𝑆,Z),
there exists a Bridgeland stability condition 𝜏 for which Gieseker and 𝜏-semistable objects with Mukai
vector v coincide. This singles out a distinguished connected component Stab†(𝑆) of Stab(𝑆) that has
a wall and chamber structure; see [8, Sec.14]. Any stability condition in the same chamber determines
the same stable objects; thus, we will call Gieseker chamber the one that recovers Gieseker stability.

Let 𝑣 = 2𝑣0 be a Mukai vector of O’Grady type, and let 𝜏 ∈ Stab†(𝑆) be a v-generic stability
condition. The moduli space 𝑀𝑣 (𝑆, 𝜏) of 𝜏-semistable objects with Mukai vector v is a singular
projective symplectic variety admitting a symplectic resolution of singularities 𝑀𝑣 (𝑆, 𝜏) of OG10 type.
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For any such moduli space, the natural stratification of the singular locus is given by

𝑀𝑣0 (𝑆, 𝜏) ⊂ Sym2(𝑀𝑣0 (𝑆, 𝜏)) ⊂ 𝑀𝑣 (𝑆, 𝜏).

We recall the following result.
Proposition 6.6 [34, Theorem 5.4]. In the above setting, if 𝑣 ∈ 𝐻 (𝑆,Z) is a Mukai vector of O’Grady type
and 𝜏, 𝜏′ ∈ Stab†(𝑆) are v-generic stability conditions, then there exists a birational map𝜓 : 𝑀𝑣 (𝑆, 𝜏) �
𝑀𝑣 (𝑆, 𝜏

′), which is stratum-preserving in the sense that 𝜓 is defined on the generic point of each stratum
of the singular locus of 𝑀𝑣 (𝑆, 𝜏) and maps it to the generic point of the 𝑀𝑣 (𝑆, 𝜏

′).
We are now in a position to prove our assertion.

Proposition 6.7. If 𝜑 ∈ Aut(𝑆) is an automorphism of the K3 surface S, 𝑣 ∈ 𝐻 (𝑆,Z) is a 𝜑-invariant
Mukai vector on S, and 𝜃 is a polarization on S, then 𝜑 induces a birational transformation 𝜑 on
𝑀𝑣 (𝑆, 𝜃). Moreover, this birational transformation is numerically induced.
Proof. Let 𝜏 be a Bridgeland stability condition in the Gieseker chamber: then any 𝜃-stable sheaf
ℱ is 𝜏-stable. As chambers are open, for a generic 𝜏, the stability condition 𝜑∗(𝜏) does not lie
on any wall for the Mukai vector of 𝜑∗ℱ and 𝜑∗ℱ is 𝜑∗(𝜏)-stable. For this reason, we have an
isomorphism 𝜑 : 𝑀𝑣 (𝑆, 𝜏)

∼
−→ 𝑀𝑣 (𝑆, 𝜑

∗(𝜏)) which restricts to an isomorphism between the singular
loci. Composing 𝜑 with the birational stratum-preserving transformation 𝑀𝑣 (𝑆, 𝜑

∗(𝜏))
∼
−→ 𝑀𝑣 (𝑆, 𝜏) of

Theorem 6.6, we get a birational self-transformation 𝜑 of 𝑀𝑣 (𝑆, 𝜏). As 𝜑 preserves the singular locus,
it lifts to a birational self-transformation of the smooth irreducible holomorphic symplectic manifold
𝑀𝑣 (𝑆, 𝜏) = 𝑀𝑣 (𝑆, 𝜃). With a slight abuse of notation, we still denote it by 𝜑̃. By construction, this map
preserves the exceptional divisor and its class 𝜎 ∈ 𝐻2(𝑀𝑣 (𝑆, 𝜃),Z. As in Theorem 6.4, the primitive
embedding 𝜎⊥ � 𝐻2 (𝑀𝑣 (𝑆, 𝜃),Z) ↩→ 𝐻 (𝑆,Z) � 𝚲24 and the induced action of 𝜑 on 𝜎⊥ give an
action on 𝐻 (𝑆,Z) � 𝚲24 which coincides with that induced by 𝜑 on 𝐻 (𝑆,Z). Since the sublattice
𝐻0 (𝑆,Z) ⊕ 𝐻4 (𝑆,Z) � U is preserved by the action of 𝜑 and it is contained in the (1, 1) part of the
lattice 𝚲24, we conclude that 𝜑 is numerically induced. �

Theorem 6.8. Let (𝑋, 𝜂) be a smooth marked pair of OG10 type, and let 𝐺 ⊂ Bir(𝑋) be a finite
subgroup. If G is a numerically induced group of birational transformations, then there exists a K3
surface S with an injective group homomorphism 𝐺 ↩→ Aut(𝑆), a G-invariant Mukai vector v and a
v-generic polarization 𝜃 on S such that X is birational to 𝑀𝑣 (𝑆, 𝜃) and 𝐺 ⊂ Bir(𝑋) is an induced group
of birational transformations.
Proof. We first consider the case when G is symplectic. Then the transcendental lattice T(𝑋) is contained
inside L𝐺 . Since G is numerically induced, there exists a class 𝜎 ∈ NS(𝑋) with 𝜎2 = −6 and (𝜎,L) = 3
which is G invariant. We consider the Hodge embedding 𝜎⊥L ↩→ 𝚲24, and we call w the generator of the
orthogonal complement of the image of 𝜎⊥L inside 𝚲24. We can extend the action of G on 𝚲24 in such a
way that the action on the orthogonal complement of 𝜎⊥L in 𝚲24 is trivial. Note that, by construction, w
is of (1, 1) type, and it is fixed by the induced action of G on 𝚲24. Moreover, by assumption, we have that

(𝚲24)
𝐺 = U ⊕T

with U contained in the (1, 1) part of the Hodge structure of (𝚲24)
𝐺 . Since 𝜎 is G-invariant, then there

is a Hodge embedding L𝐺 = (𝜎⊥L ) = (𝚲24)𝐺 . Then L𝐺 ↩→ 𝚲24 and L⊥𝚲24
𝐺 = 𝚲𝐺

24 = U ⊕T.
Hence, the embedding L𝐺 ↩→ 𝚲24 can be decomposed in L𝐺

𝜑
↩−→ U⊕3 ⊕ E8 (−1)⊕2 ↩→ 𝚲24, where

𝜑 is a compatible Hodge embedding and by construction, L
⊥U⊕3 ⊕ E8 (−1)⊕2

𝐺 = T. Since L𝐺 is of (1, 1)-
type, then 𝜑(L𝐺) ⊆ (U⊕3 ⊕ E8 (−1)⊕2)1,1. The lattice U⊕3 ⊕ E8 (−1)⊕2 has an Hodge structure; hence,
by Torelli theorem for K3 surfaces, there exists a K3 surface S such that 𝐻2(𝑆,Z) is Hodge isometric
to U⊕3 ⊕ E8 (−1)⊕2. Moreover, the action induced by G on 𝐻2 (𝑆,Z) is a Hodge isometry since by
construction, 𝐻2 (𝑆,Z)𝐺 = L𝐺 and 𝐻2 (𝑆,Z)𝐺 = T. Furthermore, the induced action of G on 𝐻2(𝑆,Z)
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is a monodromy operator due to the maximality of the monodromy group of a K3 surface in the group of
isometries, and the coinvariant lattice 𝐻2(𝑆,Z)𝐺 does not contain wall divisors for the K3 surface (i.e.,
vectors of square −2). In fact, the coinvariant lattice 𝐻2(𝑆,Z)𝐺 is isometric to the coinvariant lattice
L𝐺 with respect to the induced action of 𝐺 ⊂ Bir(𝑋) on the second integral cohomology lattice of the
manifold of OG10 type; hence, it does not contain prime exceptional divisors by [16, Theorem 2.2]. The
characterization of prime exceptional divisors for manifolds of OG10 type (see [36, Proposition 3.1])
thus implies that 𝐻2 (𝑆,Z)𝐺 does not contain any vectors of square −2. We apply [32, Theorem 1.3],
and we conclude that 𝐺 ⊆ Aut(𝑆). Since w is invariant by construction, Theorem 3.13 implies that X is
birational to 𝑀𝑣 (𝑆, 𝜃), where 𝑣 = 2𝑤 is an algebraic Mukai vector on S and 𝑣2 = (2𝑤)2 = 8. Moreover,
the induced action of 𝐺 ⊆ Aut(𝑆) on 𝐻2(𝑀𝑣 (𝑆, 𝜃),Z) coincides by construction with the given action
of G on 𝐻2(𝑋,Z) = L. We deduce that 𝐺 ⊂ Bir(𝑋) is an induced group of birational transformations.

Assume now that every nontrivial element of G has a non-symplectic action. Without loss of
generality, choosing X generic, we can assume that L𝐺 = NS(𝑋). As before, we have that (𝚲24)

𝐺 =
U ⊕T, and we can consider the K3 surface S associated to the Hodge structure induced on U⊥ ⊂ 𝚲24:
indeed, by the genericity of X, we can assume that (𝚲24)

1,1 = (𝚲24)
𝐺 so that (U⊥)1,1 coincides with T,

which has thus signature (1,-) and is of type (1,1). Again, by Theorem 3.13, X is birational to a moduli
space of sheaves on S. The group G is a group of Hodge isometries of S preserving T = NS(𝑆); in
particular, it preserves all Kähler classes, and we can conclude as in the symplectic case.

Suppose now that G is any numerically induced group of birational transformations, and let 𝐺𝑠 be
its symplectic part. Considering the action of 𝐺𝑠 , we obtain a K3 surface S as in the first step with
𝐺𝑠 ⊂ Aut(𝑆). We can extend this action to an action of G by applying the second step to the quotient
group 𝐺 � 𝐺/𝐺𝑠 . �

6.1. Induced involutions

In this section, we give an application of the criterion about induced automorphisms given in Theorem
6.8. The lattice-theoretic criterion that we prove allows us to determine if a birational transformation of
a manifold of OG10 type, which is at least birational to 𝑀𝑣 (𝑆, 𝜃), is induced by an automorphism of the
K3 surface S. Let us be more definite. By [19], we know that there are no regular symplectic involutions
on a manifold of OG10 type. However, [33, Theorem 1.1] provides a lattice-theoretic classification
of birational symplectic involutions. In the paper, the authors consider a manifold of OG10 type, a
fixed marking 𝜂 : 𝐻2(𝑋,Z) → L of X, and classify invariant and coinvariant sublattices, denoted by
𝐻2 (𝑋,Z)+ � L𝐺 and 𝐻2 (𝑋,Z)− � L𝐺 , respectively. In particular, they classify the images of symplectic
birational involutions with respect to the representation map

𝜂∗ : Bir(𝑋) → 𝑂 (L)
𝑓 ↦→ 𝜂 ◦ 𝑓 ∗ ◦ 𝜂−1.

We prove that there exists a unique induced birational symplectic involution on a manifold of OG10
type, and we give the following characterization in terms of its lattice-theoretic behavior.

Remark 6.9. If the action is induced, then the action on the discriminant group is trivial. Indeed, it is
enough to note that a generator of the discriminant group 𝐴L is the class [ 𝜎3 ] where 𝜎 is the class of
the exceptional divisor.

Theorem 6.10. Let (𝑋, 𝜂) be a marked pair of OG10 type. Assume that X is a numerical moduli space,
and let 𝜑 ∈ Bir(𝑋) be a birational symplectic involution. Then 𝜑 is induced if and only if

𝐻2(𝑋,Z)𝜑 � U⊕3 ⊕ E8 (−2) ⊕ A2(−1) and 𝐻2(𝑋,Z)𝜑 � E8 (−2).

Proof. If 𝜑 is an induced symplectic birational transformation, then by Theorem 6.7, we have that 𝜑 is
numerically induced. In [33, Theorem 1.1] we have a classification of symplectic birational involutions
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on manifolds of OG10 type. As the action of an induced automorphism on the discriminant is trivial,
we deduce that the 𝐻2(𝑋,Z)𝜑 is either U⊕3 ⊕ E8 (−2) ⊕ A2(−1) or E6(−2) ⊕ U(2)⊕2 ⊕ [2] ⊕ [−2].
Theorem 6.8 excludes the latter: in fact, if the action is induced, then it is numerically induced. In
particular, there exists a primitive invariant class 𝜎 of square −6 and divisibility 3, in contradiction with
the fact that any element in E6(−2) ⊕ U(2)⊕2 ⊕ [2] ⊕ [−2] has even divisibility.

To prove the converse, let 𝜑 be a birational symplectic involution with

𝐻2 (𝑋,Z)𝜑 = U⊕3 ⊕ E8(−2) ⊕ A2 (−1) and 𝐻2 (𝑋,Z)𝜑 � E8(−2).

We first prove that 𝜑 is numerically induced. Since X is a numerical moduli space, then there exists a
class 𝜎 ∈ NS(𝑋) with 𝜎2 = −6 and (𝜎,L) = 3 such that, given the Hodge embedding 𝜎⊥ ↩→ 𝚲24, then
𝚲1,1

24 contains U as a direct summand. Observe that such copy of U must be contained in 𝐻2(𝑋,Z)𝜑 ,
as it is not possible to realize U as a sublattice of E8(−2). Moreover, since 𝐻2 (𝑋,Z)𝜑 � E8 (−2) does
not contain any divisibility 3 class, then 𝜎 must lie in 𝐻2 (𝑋,Z)𝜑 (i.e., it is invariant and 𝜑 is thus
numerically induced). The result now follows from Theorem 6.8. �
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