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GROUPS A C T I N G ON A SET WHOSE ORBITS A R E ALL SINGLETON

M.R. POURNAKI

In this article using techniques which appeared in Witt's proof of Wedderburn's the-
orem, an arithmetical characterisation of groups acting on a set whose orbits are all
singleton is given. This can then be used to obtain a new proof of Wedderburn's
theorem.

1. INTRODUCTION

In 1905 Wedderburn [4] proved that every finite division ring is a field. He used a
somewhat complicated number theoretical result due to Birkhoff and Vandiver; and in
fact, two proofs are given for this theorem in his paper. After that, several proofs were
presented for this famous theorem, for example see [1, 2, 3]. But Witt [5] gave a now
famous short and elegant argument, using the cyclotomic polynomials over C, the field
of complex numbers, which shows the commutativity of finite division rings.

In this article, by a slight modification of Witt's proof, we obtain a characterisation,
in terms of the order of stabilizer subgroups, for groups acting on a set whose orbits are
all singleton. Since groups acting on themselves by conjugation with the above property,
are exactly Abelian groups, we obtain a characterisation for such groups in terms of the
order of centralisers. Finally we derive the Wedderburn theorem from this purely group
theoretical result.

2. SOME PRELIMINARIES

Throughout the article, we suppose that G is a finite group and Q is a finite G-set.
Also we let A be the set of representatives of distinct orbits of G such that Ax and A2 are
the sets of representatives for non-trivial and trivial orbits, respectively. The following
lemma has an important role in the proof of our main result.

LEMMA 2 . 1 . Let G be a finite group and fi a finite G-set. Suppose \G\ divides
\Q\ and for each u 6 A1( Fix(G) divides \GU\. Then IGl/lcmjIG,,,! : w e A,} is an
integer, and divides gcd{|Gu| : w € A t } .
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P R O O F : Note that for each UJ € Ai, \GU\ divides \G\, and we therefore have
l c m d G J : w G Ax} divides \G\. Hence |G|/lcm{|Gw| : u> e Ax} is an integer. Now the
class equation of the action on Q becomes

(i) |n|=

Each orbit has its size equal to the index in G of the stabilizer of a point in the orbit. On
the other hand, each fixed point is in an orbit by itself, so the sum over these singleton
orbits is precisely the number of fixed points. Therefore, by equation (1), we obtain

(2) |ft| = £ \G : Gu\ + Fix(G).

Obviously for each u € Ax, \GU\ divides lcm{|Gw| : w € Ax}. Therefore, there is a
positive integer lu such that lcmllG^I : w € Ai} = /W|GU|. So

\G\/\GU\ = L(|G|/lcm{|GJ : u e A j ) ,

and hence |G|/lcm{|Gw| : w € Ai} divides \G\/\GU\ = \G : Gu\. This implies that
|G|/lcm{|Gw| : u £ i i } divides J2 \G : Gu\. On the other hand, |G|/lcm{|Gu| :

u€Ai

u> e Ax} divides \G\, which by assumption, divides |fl|. Therefore, equation (2) im-
plies that |G|/lcm{|Gu| : u e Ai} divides Fix(G), which by assumption again, divides
g c d { | G J : « € A , } . D

We also need something about the polynomial i" — 1 e C[x] and its irreducible
factors in Z[x]. For any positive integer d, the dth cyclotomic polynomial, <f>d(x), is
defined by

where ^ runs through all dth primitive roots of unity. It is a classical result that <l>d(x) is
an irreducible polynomial of degree ip(d) in Z[i] for all positive d's, where <p is the Euler
function. It is easy to see that

holds for any positive integer n.

We need the following well known result for which we give a proof here for the
convenience of the reader.

LEMMA 2 . 2 . Let n and a be positive integers. Ifn> 1, then |<^n(a)| > a - 1.

PROOF: We know that |<An(a)| = 111° ~ fl> where the product is taken over all
complex roots £ = e'8 of unity of order n. We have \a - £|2 = a2 — 2acos6 + 1 and
\a - 1|2 = a2 - 2a + 1. Since n > 1, { ^ 1 and so cos0 < 1. Therefore, we have
\a — f| > \a — 1| = a — 1 for each factor. This implies that |<£n(a)| > a— 1. D

Finally we need the following straightforward fact from number theory.
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R E M A R K 2 .3 . Let a > 1, s and t be positive integers. Then gcd{a5 - l,a* - 1}

= a8"1*'1'* - 1. In particular, if a' - 1 divides a1 - I , then s divides t.

3. M A I N R E S U L T S

In this section, by a slight modification of Wit t ' s proof of Wedderburn's theorem,

we obtain a characterisation, in terms of order of stabilizer subgroups, for groups acting

on a set whose orbits are all singleton. Our main result is:

THEOREM 3 . 1 . Let G be a finite group and fi a finite G-set. Suppose \G\ divides

|fi| and for each u € A i , Fix(G) divides |Gu,|. T i e n all orbits ofG are singleton if, and

only if, there is a positive integer a and for each u> e A, a positive integer n(w) such that

\GU\ = anM - 1.

PROOF: (=>) If all orbits of G are singleton, it is enough to consider a = |G| + 1

and put n(w) = 1, for each u € A.

(<=) Suppose A ! / 0. Since for w € A i , \GU\ ^ 1, so a > 1. Therefore, by Remark

2.3, we obtain that

gcd{an ( w ) - 1 : w € Ax} = agcd{n(u) : u 6 A l > - 1.

Without loss of generality we can assume gcd{n(w) : w 6 A i } = 1, because in other

cases we can replace a by a8"1"."*1"' : w e A l / . Therefore, we get

gcd{an ( w ) - 1 : w € A i } = a - 1.

Since for ui € Au Fix(G) divides |GU|, so Fix(G) ^ 0 and therefore A 2 ^ 0. Fix

w0 € A2, and consider n := n(w0)- For each w € Ai , \GU\ is a proper divisor of \G\.

Therefore the integer an^ — 1 is a proper divisor of a" — 1. The second part of Remark

2.3 now implies that n(u) is a proper divisor of n and so we have n > 1. On the other

hand, x* - 1 = f [ <Ad(z) holds for any positive integer k. Therefore, the integer <j>n{a)
d\k

divides

on - l/lcm{an(w) - 1 : w 6 Ai} = |G| / lcm{|GJ : u € Aj} ,

which in turn divides

gcd{|GJ : w 6 A , } = gcd{an(ul) - l : u 6 A , } = o - l

according to the Lemma 2.1. As a > 1, we conclude that |^n(a) | ^ a — 1. Therefore

Lemma 2.2 implies that n = 1. This is a contradiction and thus Ax = 0. Therefore,

A = A2 and so all orbits of G are singleton. D

Since groups acting on themselves by conjugation whose orbits are all singleton, are

exactly Abelian groups, Theorem 3.1 gives us an arithmetical characterisation for such
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groups in terms of order of centralisers. Below we make this fact explicit, where A now
denotes the set of distinct representatives of conjugacy classes of G. Note that the fixed
points form the centre of G, and so Fix(G) divides \GU\.

COROLLARY 3 . 2 . Let G be a finite group. Then G is Abelian if, and only

if, there is a positive integer a and for each g € A, a positive integer n(g) such that

\CG(9)\ = on{3) - I-

By applying Corollary 3.2 to the multiplicative group F* of a finite division ring F,
we obtain the following corollary due to Wedderburn.

COROLLARY 3 . 3 . Let F be a finite division ring. Then F is a fieid.

P R O O F : For each element x in F, the centraliser Cp(x) of x can be regarded as a
finite dimensional vector space over the centre Z{F) of F. Denote the dimension of this
vector space by n(x). Therefore, we obtain |Cjrx(x)| = |Z(F) | - 1 and so Corollary
3.2 implies that Fx is Abelian, that is, F is a field. D
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