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Abstract

We study lens space surgeries along two different families of 2-component links, denoted by Am,n and
Bp,q, related with the rational homology 4-ball used in J. Park’s (generalized) rational blow down. We
determine which coefficient r of the knotted component of the link yields a lens space by Dehn surgery.
The link Am,n yields a lens space only by the known surgery with r = mn and unexpectedly with r = 7
for (m, n) = (2, 3). On the other hand, Bp,q yields a lens space by infinitely many r. Our main tool for
the proof are the Reidemeister-Turaev torsions, that is, Reidemeister torsions with combinatorial Euler
structures. Our results can be extended to the links whose Alexander polynomials are same as those of
Am,n and Bp,q.
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1. Introduction

For a coprime pair of nonzero positive integers (m, n), let Am,n be a 2-component link in
S 3 in Figure 1, where K1 is the (m, n)-torus knot Tm,n and K2 is an unknot. The linking
number of K1 and K2 is m + n. Next, for a coprime pair of nonzero integers (p, q), let
Bp,q be a 2-component link in S 3 in Figure 2, where K1 is the closure of the (p, q)-torus
braid (the standard p-braid of the (p, q)-torus knot Tp,q) and K2 is the braid axis. The
linking number of K1 and K2 is p. For a µ-component link L = K1 ∪ K2 ∪ · · · ∪ Kµ,
by (L; r1, r2, . . . , rµ), we denote the result of (r1, r2, . . . , rµ)-surgery along L, where
ri ∈ Q ∪ {∞, ∅} (i = 1, 2, . . . , µ). A Dehn surgery along a link is called a lens space
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F 2. Bp,q (ex. (p, q) = (8, 3)).

surgery if the result is a lens space. We study lens space surgeries along the links Am,n

and Bp,q, fixing the surgery coefficient of K2 as 0 except in Section 6.4 and Section 7.
Our convention on lens spaces is ‘L(a, b) is the result of −a/b-surgery along the trivial
knot’.

The result of (r, 0)-surgery along a 2-component link L = K1 ∪ K2 in S 3 (as ∂B4)
such that K2 is an unknot and r ∈ Z bounds a 4-manifold by attaching a 1-handle
along K2, and a 2-handle along K1 with a framing r, to a 0-handle B4 along S 3. We
denote the 4-manifold by W4(L; r, 0̇) following Akbulut [Ak] (see also [GS, Kir]).
Then π1(W4(L; r, 0̇)) � Z/|l|Z and H1(∂W4(L; r, 0̇); Z) � Z/l2Z, where l is the linking
number of K1 and K2, and W4(L; r, 0̇) is a rational homology 4-ball if and only if l , 0.
We also note that K1 can be regarded as a knot in S 1 × S 2.

We explain a background of our targets Am,n and Bp,q. Park [Pa] discussed
generalized rational blow down, which is an operation on a 4-manifold cutting a
certain submanifold Cp,q and pasting a 4-manifold Wp,q along ∂Cp,q � ∂Wp,q. The 4-
manifold Wp,q is a rational homology 4-ball that is characterized by π1(Wp,q) � Z/pZ
and ∂Wp,q � L(p2, pq − 1) (see [CH, FS]). To the best of the authors’ knowledge,
it is unknown whether the diffeomorphism type of Wp,q is determined by these
properties. A lens space surgery along Bp,q whose result is L(p2, pq − 1) is often
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used to describe Wp,q (see [Li]). On the other hand, the second author [Yam3] found a
lens space surgery along Am,n whose result is L(p2, pq − 1) and defined an algorithm
to determine (m, n) from (p, q) using the Euclidean algorithm. We also remark that
the link Am,n appears as a bi-product of Stipsicz–Szabó–Wahl’s construction [SSW,
Remark 7.1], see also Endo–Mark–Horn-Morris [EMM]. For a recent work on Wp,q

constructed from Bp,q, see Lekili–Maydanskiy [LM]. We compare the links Am,n

and Bp,q by studying lens space surgeries along them. Our problem is the following
question.

P 1.1. When is (Am,n; r, 0) ((Bp,q; r, 0), respectively) a lens space ?

There are some trivial and overlapping cases: B1,q is the Hopf link and A1,n = Bn+1,1.
The links have some symmetries: Am,n = An,m and Bp,−q is the mirror image of Bp,q.
Throughout the paper, we make the following assumption.

A. For Am,n, gcd(m, n) = 1 and 2 ≤ m < n. For Bp,q, gcd(p, q) = 1, p ≥ 2 and
q ≥ 1.

The following theorem asserts that the link Am,n has at least one lens space surgery.

T 1.2 [Yam3, Theorem 1.1]. For a pair (m, n) satisfying the assumption, there
exists a pair (p, q) satisfying the assumption such that (Am,n; mn, 0) � L(p2, pq − 1).

N 1.3. For integers x and N, we denote the multiple inverse of x modulo N by
x mod N, that is xx ≡ 1 mod N. Note that, for a divisor d (≥ 2) of N, both x mod d
and x mod d are uniquely determined by x mod N. We also use x as a representing
integer of x mod N.

Our first main theorem is the answer to Problem 1.1 for the link Am,n.

T 1.4. We assume r ∈ Q.

(1) The result of (r, 0)-surgery along Am,n is a lens space if and only if:

(i) r = mn; or
(ii) r = 7 for (m, n) = (2, 3).

(2) The resulting lens spaces are as follows:

(i) (Am,n; mn, 0) � L((m + n)2, mn), where nn ≡ 1 mod (m + n)2; and
(ii) (A2,3; 7, 0) � L(25, 7).

The ‘if part’ of Theorem 1.4(1)(i) follows from Theorem 1.2. Thus our aim is to
show the ‘only if part’ of (1), and (2).

Our second main theorem is the answer to Problem 1.1 for the link Bp,q, which is in
contrast to Am,n.

T 1.5. We set α/β ∈ Q, where α and β are coprime integers.

(1) The result of (α/β, 0)-surgery along Bp,q is a lens space if and only if
|α − pqβ| = 1.

(2) For α/β with |α − pqβ| = 1, the resulting lens space is (Bp,q; α/β, 0) � L(p2β, α).
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R 1.6. We remark on surgeries along the mirror images of the links. Naturally,
we have B−p,−q = Bp,q, B−p,q = Bp,−q as unoriented links, and Bp,−q is the mirror image
of Bp,q. Theorem 1.5 can be extended to the cases p < 0 or/and q < 0. Similarly,
Theorem 1.2 can be extended to the mirror image Am,n! of Am,n. We note that Am,n! is
not included in the family {Am,n}.

We list some corollaries without the proofs.

C 1.7. The lens space (A2,3; 7, 0) � L(25, 7) cannot be obtained by any (r, 0)-
surgery along Bp,q.

C 1.8 (Integral lens space surgery along Bp,q). Suppose β = 1 in Theorem 1.5.
Then (Bp,q; α, 0) is a lens space if and only if α = pq − 1 or pq + 1. The resulting lens
space is L(p2, pq − 1) or L(p2, pq + 1), respectively.

By Theorem 1.2 and Corollary 1.8, both W4(Am,n; mn, 0̇) and W4(Bp,q; pq − 1, 0̇)
represent Wp,q, under the correspondence between (m, n) and (p, q) in Theorem 1.2.
Our second problem is the following question.

P 1.9. Are W4(Am,n; mn, 0̇) and W4(Bp,q; pq − 1, 0̇) diffeomorphic, homeo-
morphic or homotopic relative to the boundaries?

The lens space (A2,3; 7, 0) in Corollary 1.7 satisfies L(25, 7) � −L(25, 7). On the
other hand, on the integral lens space surgeries along Bp,q in Corollary 1.8, it is easy to
see that L(p2, pq − 1) � −L(p2, pq + 1) and that L(p2, pq − 1) � L(p2, pq + 1). Thus
we have the following corollary.

C 1.10. Only in this corollary, we regard the link Am,n or Bp,q as a knot K1 in
S 1 × S 2, the result of 0-surgery along K2. We assume that 2 ≤ m < n, p ≥ 2 and q ≥ 1.
Then, any knot Am,n is not isotopic to any knot Bp,q.

Corollary 1.10 asserts that the attaching parts K1 of the 2-handles of W4(Am,n; mn, 0̇)
and W4(Bp,q; pq − 1, 0̇) are not isotopic in S 1 × S 2. Thus, the handle decompositions
of the rational homology 4-balls do not move to each other by only handle slides of the
2-handles over the 1-handles. Problem 1.9 may be still open. During the final revision
of the present paper, Baker informed the authors about recent results in [BBL] on
(longitudinal) lens space surgeries along knots in S 1 × S 2.

Our results can be regarded as lens space surgeries along 2-component links. For
usual lens space surgery along knots, see [Ba, Ber, CGLS, Go]. We point out that
Theorem 1.4 (on Am,n) can also be obtained by the results ‘(Am,n; ∅, 0) is a hyperbolic
manifold’ in [DMM1, DMM2], and the cyclic surgery theorem in [CGLS]. If we
use them, then the proof of the theorem can be shortened (see Section 8.1). The
reason why we do not use them is to clarify effectivity of Alexander polynomials and
Reidemeister–Turaev torsions from a technical point of view. As consequences, they
preserve information of lens space surgeries completely in the present case, and our
results are generalized to wider situations, see Theorems 8.1 and 8.2. The links Am,n

are related to subfamilies of knots, called TypeVII and Type VIII in Berge’s list [Ber],
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see [Kad4, Yam1, Yam2, Yam4]. On the other hand, (Bp,q; r, 0) with any r is a Seifert
manifold (or a graph manifold), thus Theorem 1.5 looks like Moser’s result [Mos] on
lens space surgeries along torus knots. For an application to another 2-component link
‘Berge’s link’, see [KY3] (an announcement of the present paper).

We also study a generalization of Theorem 1.4. To determine all Dehn surgeries
along Am,n is a hard problem. To the best of the authors’ knowledge, the complete
answer is not given. From our present results and some known results, we would like
to raise the following conjecture.

C 1.11. Let M = (Am,n; α1/β1, α2/β2) be the result of (α1/β1, α2/β2)-surgery
along Am,n, where αi and βi (i = 1, 2) are coprime integers with βi ≥ 1. Then M is a lens
space if and only if: (1) α1/β1 = mn and β2 = 1; or (2) α1/β1 = 7 for (m, n) = (2, 3).

Ichihara [IS] informed the authors that, if we fix α1/β1 = mn, then M is a lens space
for any integer (β2 = 1). He says that this can be shown by a method in [Yam3] (that
is, a geometric method). In Section 7, we compute the Reidemeister torsions of M in
the cases: (1) α1/β1 = mn; and (2) α1/β1 = 7 for (m, n) = (2, 3), respectively. A partial
affirmative answer for the ‘only if part’ of the case (1) is given.

In Section 2, we explain the Reidemeister torsion and its basic properties such as
surgery formulae, d-norm and combinatorial Euler structure (that is, Reidemeister-
Turaev torsion). In Section 3, we compute the Alexander polynomial of Am,n. In
Section 4, we compute the Reidemeister torsions of (Am,n; r, 0) by using the results
in Sections 2 and 3. In Section 5, we prove the ‘only if part’ of Theorem 1.4(1) by
using the Reidemeister-Turaev torsions, and Theorem 1.4(2) by using the values of
the Reidemeister torsions, Theorem 1.2, and Kirby moves. In Section 6, we prove
Theorem 1.5 by using Seifert structures of the link complement and the Reidemeister
torsions. In Section 7, we study some lens space surgeries along Am,n other than
(r, 0)-surgery, related to Conjecture 1.11. In Section 8, we give an alternative proof
of Theorem 1.4(1) under some assumption, and we generalize Theorems 1.4 and 1.5.

2. Reidemeister torsion

Our method to prove the main theorems is to deduce necessary conditions from the
Reidemeister torsions of both the surgered manifolds and lens spaces. In this section,
we state surgery formulae of the Reidemeister torsions (Section 2.1), and define
derived invariants: one is the d-norm (Section 2.2), and the other is the Reidemeister–
Turaev torsion which is a lift of the Reidemeister torsions by fixing a combinatorial
Euler structure (Section 2.3).

2.1. Surgery formulae. For a precise definition of the Reidemeister torsion, the
reader is referred to Turaev [Tur1, Tur2]. Throughout this paper, we use the following
notations.

N 2.1 (For manifolds and homologies). Let L = K1 ∪ · · · ∪ Kµ be an oriented
µ-component link in a homology 3-sphere.

82 T. Kadokami and Y. Yamada [5]
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EL the complement of L;
mi, li a meridian and a longitude of the ith component Ki;
[mi], [li] their homology classes;
∆L(t1, . . . , tµ) the Alexander polynomial of L, where ti is represented by mi;
(L; r1, . . . , rµ) the result of (r1, . . . , rµ)-surgery along L;

where ri ∈ Q ∪ {∞, ∅} is the surgery coefficient of Ki;
Vi the solid torus attached along Ki in the Dehn surgery;
m′i , [m′i] a meridian of Vi, and its homology class;
l′i , [l′i] an oriented core curve of Vi, and its homology class.

Let X be a finite CW complex and π : X̃→ X its maximal abelian covering. Then
X̃ has a CW structure induced by that of X and π, and the cell chain complex C∗ of X̃
has a Z[H]-module structure, where H = H1(X; Z) is the first homology of X. For an
integral domain R and a ring homomorphism ψ : Z[H]→ R, ‘the chain complex of X̃
related with ψ’, denoted by Cψ

∗ , is C∗ ⊗Z[H] Q(R), where Q(R) is the quotient field of
R. The Reidemeister torsion of X related with ψ, denoted by τψ(X), is calculated from
Cψ
∗ , and is an element of Q(R) determined up to multiplication of ±ψ(h) (h ∈ H). If

R = Z[H] and ψ is the identity map, then we denote τψ(X) by τ(X). We note that τψ(X)
is not zero if and only if Cψ

∗ is acyclic.

N 2.2 (For algebra). For a pair of elements A, B in Q(R), if there exists an
element h ∈ H such that A = ±ψ(h)B, then we denote the equality by A � B. We will
often take a field F and a ring homomorphism ψ : Z[H1(M)]→ F. We mainly use the
dth cyclotomic fields Q(ζd) as F, where ζd is a primitive dth root of unity.

For the first lemma, we need a little general setting: let E be a compact 3-manifold
whose boundary ∂E consists of tori. We study the 3-manifold M = E ∪ V1 ∪ · · · ∪ Vn

obtained by attaching solid tori Vi to E by attaching maps fi : ∂Vi→ ∂E (Im ( fi) ∩
Im ( f j) = ∅ for i , j). We let ι : E ↪→ M denote the natural inclusion.

L 2.3 (Surgery formula I). If ψ([l′i]) , 1 for every i = 1, . . . , n, then we have

τψ(M) � τψ
′

(E)
n∏

i=1

(ψ([l′i]) − 1)−1,

where ψ′ = ψ ◦ ι∗ (ι∗ is a ring homomorphism induced by ι).

For the case of the link complement of a homology 3-sphere, the Reidemeister
torsion is closely related with the Alexander polynomial.

L 2.4 (Milnor [Mil]). For a µ-component link L = K1 ∪ · · · ∪ Kµ in a homology
3-sphere,

τ(EL) �

∆L(t1)(t1 − 1)−1 if µ = 1,

∆L(t1, . . . , tµ) if µ ≥ 2.

By Lemmas 2.3 and 2.4, we have the following result.
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L 2.5 (Surgery formula II). (Sakai [Sa] and Turaev [Tur1])

(1) Let K be a knot in a homology 3-sphere. We set M = (K; p/q) (|p| ≥ 2), where
p and q are coprime integers. Let T be a generator of H1(M) represented by
a meridian of K, and ψd : Z[H1(M)]→ Q(ζd) a ring homomorphism defined by
ψd(T ) = ζd, where d (≥2) is a divisor of p. Then we have

τψd (M) � ∆K(ζd)(ζd − 1)−1(ζ q̄
d − 1)−1,

where qq ≡ 1 mod p.
(2) Let L be a µ-component link in a homology 3-sphere. We set M =

(L; p1/q1, . . . , pµ/qµ) (µ ≥ 2), where pi and qi are coprime integers for every
i = 1, . . . , µ. Let F be a field, ψ : Z[H1(M)]→ F a ring homomorphism with
ψ([mi]ri [li]si ) , 1 for every i = 1, . . . , µ, where ri and si are integers satisfying
pisi − qiri = −1. Then we have

τψ(M) � ∆L(ψ([m1]), . . . , ψ([mµ]))
µ∏

i=1

(ψ([mi]ri [li]si ) − 1)−1.

E 2.6. The lens space L(p, q) is obtained as −p/q-surgery along the unknot. By
Lemma 2.5(1), for a divisor d ≥ 2 of p,

τψd (L(p, q)) � (ζd − 1)−1(ζ q̄
d − 1)−1,

where qq ≡ 1 mod p.

We recall the Torres formula for the Alexander polynomials.

L 2.7 (Torres formula). [Tor] Let L = K1 ∪ · · · ∪ Kµ ∪ Kµ+1 (µ ≥ 1) be an
oriented (µ + 1)-component link, L′ = K1 ∪ · · · ∪ Kµ a µ-component sublink, and `i =

lk(Ki, Kµ+1) (i = 1, . . . , µ). Then we have

∆L(t1, . . . , tµ, 1) �


t`1 − 1

t1 − 1
∆L′(t1) if µ = 1,

(t`1
1 · · · t

`µ
µ − 1)∆L′(t1, . . . , tµ) if µ ≥ 2.

2.2. d-norm. Regarding algebraic fields, the reader is referred to Washington [Was],
for example.

For an element x in the dth cyclotomic field Q(ζd), the d-norm of x is defined as

Nd(x) =
∏

σ∈Gal(Q(ζd)/Q)

σ(x),

where Gal(Q(ζd)/Q) is the Galois group related with a Galois extension Q(ζd) over Q.
The following proposition is well known.
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P 2.8.

(1) If x ∈ Q(ζd), then Nd(x) ∈ Q. The map Nd : Q(ζd) \ {0} → Q \ {0} is a group
homomorphism.

(2) If x ∈ Z[ζd], then Nd(x) ∈ Z.

By easy calculations, we have the following lemma.

L 2.9.

(1) Nd(±ζd) =

±1 if d = 2,

1 if d ≥ 3.

(2) Nd(1 − ζd) =

` if d is a power of a prime ` ≥ 2,

1 otherwise.

Regarding applications of d-norms, for example, see [Kad1, Kad2, Kad3, KMS,
KY1, KY2].

Franz [Fz] showed the following lemma, and classified lens spaces by using it. We
state a modified version (see [KY1]).

L 2.10 (Franz [Fz]). Let p ≥ 2 be an integer, and (Z/pZ)× the multiplicative
group of a ring Z/pZ. For ai, bi ∈ (Z/pZ)× (i = 1, . . . , n), suppose

n∏
i=1

(ζai
p − 1) �

n∏
i=1

(ζbi
p − 1),

where ζp is a primitive pth root of unity. Then there exists a permutationσ of {1, . . . , n}
such that ai = ±bσ(i) for all i = 1, . . . , n. In other words, {±ai mod p} = {±bi mod p}
as multiple sets.

We will use this lemma in Lemma 4.9 and in Section 8.

2.3. Combinatorial Euler structure (Reidemeister–Turaev torsion). Let M be a
homology lens space with H = H1(M) � Z/pZ (p ≥ 2). Then the Reidemeister torsion
τψd (M) of M related with ψd is determined up to multiplication by ±ζm

d (m ∈ Z), where
d ≥ 2 is a divisor of p and ψd is the same ring homomorphism as in Lemma 2.5(1).
Once we fix a basis of a cell chain complex for the maximal abelian covering of
M as a Z[H] = Z[t, t−1]/(tp − 1)-module, the value τψd (M) is uniquely determined
as an element of Q(ζd) for every d. The choice of the basis up to ‘base change
equivalence’ is called a combinatorial Euler structure of M (see Turaev [Tur2]). The
Reidemeister torsion of a manifold with a fixed combinatorial Euler structure is called
the Reidemeister-Turaev torsion.

We consider the sequence of the values τψd (M) in Q(ζd) of the Reidemeister-Turaev
torsion for every divisor d ≥ 2 of p, and regard them as a value sequence {τψd (M)}d|p,d≥2

defined as below.

D 2.11. A sequence of values x = {xd}d|p,d≥2 is a value sequence (of degree p)
if xd ∈ Q(ζd) for every d. Two value sequences x = {xd}d|p,d≥2 and y = {yd}d|p,d≥2 are
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equal (x = y) if xd = yd for every d. We are mainly concerned with the value sequence
of type x = {F(ζd)}d|p,d≥2 for a rational function F(t) ∈ Q(t). In such a case, we say that
x is induced by F(t) and that F(t) is a lift of x. A control of x = {xd}d|p,d≥2 by a trivial
unit u = ηtm ∈ Q[t, t−1]/(tp − 1) is defined by

ux = {ηζm
d xd}d|p,d≥2,

where η = 1 or −1 (constant) and m ∈ Z. Two value sequences x = {xd}d|p,d≥2 and
y = {yd}d|p,d≥2 are control equivalent if there is a trivial unit u ∈ Q[t, t−1]/(tp − 1) such
that y = ux. A value sequence x = {xd}d|p,d≥2 is a real value sequence if xd is a real
number for every d.

Let M be a homology lens space with H1(M) � Z/pZ (p ≥ 2). Then a sequence
{τψd (M)}d|p,d≥2 of the Reidemeister torsions of M with a combinatorial Euler structure
is a value sequence of degree p. We call the value sequence a torsion sequence of M.

L 2.12.

(1) Let M and M′ be homeomorphic homology lens spaces with H1(M) � H1(M′) �
Z/pZ (p ≥ 2). Then torsion sequences {τψd (M)}d|p,d≥2 and {τψ

′
d (M′)}d|p,d≥2

related with the corresponding representations ψd and ψ′d (that is, ψd = ψ′d ◦ h∗,
where h∗ is the induced homomorphism of the homeomorphism) are control
equivalent.

(2) Let M be a homology lens space with H1(M) � Z/pZ (p ≥ 2). Then we can
control a torsion sequence of M into a real value sequence.

P. (1) This is easy to see.

(2) Here we let ζ denote any dth primitive root (ζd) of unity. Since M is obtained
by p/q-surgery along a knot K in a homology 3-sphere for some q (see [BL]), by
Lemma 2.5(1),

τψd (M) � ∆K(ζ)(ζ − 1)−1(ζ q̄ − 1)−1,

where qq̄ ≡ 1 mod p. By the duality of the Alexander polynomial (see [Mil, Tur1,
Tur2]), we may assume

∆K(t) = ∆K(t−1).

This is also a control of the combinatorial Euler structure of the exterior of K, which
induces a control of a torsion sequence of M. We take an odd integer lift of q̄. Then

ζ(1+q̄)/2∆K(ζ)(ζ − 1)−1(ζ q̄ − 1)−1

is a real number for every d. �

L 2.13. If two real value sequences x = {xd}d|p,d≥2 and y = {yd}d|p,d≥2 of degree p
are control equivalent, satisfying y = ux for a trivial unit u = ηtm ∈ Z[t, t−1]/(tp − 1),
where η = ±1 and m ∈ Z, then the possibilities for u are the following:

86 T. Kadokami and Y. Yamada [9]

https://doi.org/10.1017/S1446788713000372 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788713000372


(1) if p is odd, then u = 1 or −1;
(2) if p is even, then u = 1, −1, tp/2 or −tp/2.

P. Since the ratio ζm
p = ±yp/xp is a real number, we have: (1) m ≡ 0 mod p if p

is odd; and (2) m ≡ 0 or p/2 mod p if p is even. �

D 2.14 (Symmetric Laurent polynomial). A Laurent polynomial F(t) ∈
Q[t, t−1] is symmetric if it is of the form

F(t) = a0 +

∞∑
i=1

ai(ti + t−i),

where ai is a rational number for all i = 1, 2, . . . and ai = 0 for every sufficiently
large i. Note that, if F(t) is a symmetric Laurent polynomial, the induced value
sequence {F(ζd)}d|p,d≥2 is a real value sequence. We are concerned with symmetric
Laurent polynomials that are lifts (in Q[t, t−1]) of a polynomial in the quotient ring
Q[t, t−1]/(tp − 1). We say that F(t) (as above) is reduced if ai = 0 for all i > [p/2].
We often reduce the symmetric polynomials by using ti + t−i = tp+i + t−(p+i) modulo
(tp − 1). We let red(F(t)) denote the reduction of F(t) (that is, red(F(t)) is reduced and
red(F(t)) = F(t) in Q[t, t−1]/(tp − 1)).

For a Laurent polynomial F(t) ∈ Q[t, t−1], the span of F(t) is the difference of the
maximal degree and the minimal degree of F(t), and we denote it by span(F(t)). Note
that the span of a symmetric Laurent polynomial is always even, and that the span of a
reduced symmetric Laurent polynomial is less than or equal to 2[p/2].

L 2.15. Let N ≥ 2 be an integer. Let F(t) and G(t) be symmetric Laurent poly-
nomials and x = {F(ζd)}d|N,d≥2, y = {G(ζd)}d|N,d≥2 the induced real value sequences,
respectively. If x and y are control equivalent, that is, ux = y for a trivial unit u (here,
u = 1 or −1 if N is odd, u = 1, −1, tN/2 or −tN/2 if N is even, by Lemma 2.13), then we
have a congruence

uF(t) ≡G(t) mod tN−1 + tN−2 + · · · + t + 1.

Furthermore, assuming span(G(t)) ≤ 2([N/2] − 1):

(1) In the case that u = 1 or −1 and span(F(t)) ≤ N − 2, we have an identity uF(t) =

G(t) in Q[t, t−1].
(2) Otherwise (in the case that N is even and u = ηtN/2 with η = 1 or −1), if

span(red(tN/2F(t))) ≤ N − 2, then we have red(tN/2F(t)) = ηG(t) in Q[t, t−1].

P. By the Chinese remainder theorem, we have a ring isomorphism:

Q[t, t−1]/(tN−1 + tN−2 + · · · + t + 1) �
⊕

d|N,d≥2

Q(ζd),

where f (t) in the left-hand side maps to the value sequences { f (ζd)}d|N,d≥2 in the right-
hand side. The isomorphism implies the required congruence.

Since 2([N/2] − 1) < N − 1 = span(tN−1 + tN−2 + · · · + t + 1), we have the identi-
ties. �
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L 2.16. Let N ≥ 2 be an integer. Let F(t),G(t) be symmetric Laurent polynomials
and x = {F(ζd)}d|N,d≥2, y = {G(ζd)}d|N,d≥2 the induced real value sequences, respec-
tively. If x and y are control equivalent, that is, ux = y for a trivial unit u (here,
u = 1 or −1 if N is odd, u = 1, −1, tN/2 or −tN/2 if N is even, by Lemma 2.13), and
F(1) = G(1) = 0, then we have a congruence

uF(t) ≡G(t) mod tN − 1.

Furthermore, assuming span(G(t)) ≤ 2[N/2]:

(1) In the case that u = 1 or −1 and span(F(t)) ≤ N − 1, we have an identity uF(t) =

G(t) in Q[t, t−1].
(2) Otherwise (in the case that N is even and u = ηtN/2 with η = 1 or −1), we have

red(tN/2F(t)) = ηG(t) in Q[t, t−1].

P. We use the same argument as in the proof of Lemma 2.15, but here we use the
Chinese remainder theorem for the following ring isomorphism:

Q[t, t−1]/(tN − 1) �
⊕

d|N,d≥1

Q(ζd).

This concludes the proof. �

Note that F(t) and tN/2F(t) induce control equivalent real value sequences by
u = tN/2, but red(tN/2F(t)) , F(t) in general. Thus we have to take into account the case
(2) in Lemmas 2.15 and 2.16. Here, we study the relation between the coefficients of
F(t) and those of red(tN/2F(t)).

L 2.17. Let N be an even integer.

If F(t) = a0 +

N/2∑
i=1

ai(ti + t−i) then red(tN/2F(t)) = b0 +

N/2∑
i=1

bi(ti + t−i)

with

b0 = 2aN/2, bN/2 = a0/2 and b j = aN/2− j ( j = 1, 2, . . . , N/2 − 1).

P. This is because

tN/2(t j + t− j) = tN/2+ j + tN/2− j ≡ t(N/2− j) + t−(N/2− j) mod tN − 1.

This concludes the proof. �

This will be used in the proof of Lemma 4.9, see also Remark 4.7.

3. Alexander polynomial of Am,n

We compute the Alexander polynomial of the link Am,n.
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D 3.1. For a coprime positive pair (m, n), we define a set I(m, n) by

I(m, n) := (mZ ∪ nZ) ∩ {k ∈ Z | 0 ≤ k ≤ mn}

= {0, m, 2m, . . . , nm} ∪ {0, n, 2n, . . . , mn}.

Note that the cardinality of I(m, n) is m + n. We sort the all elements in I(m, n) as

0 = k0 < k1 < k2 < · · · < km+n−1 = mn (ki ∈ I(m, n)).

Here, k1 is the smaller one in m and n.

The goal of this section is the following theorem.

T 3.2. The Alexander polynomial of Am,n is

∆Am,n (t, x) �
m+n−1∑

i=0

tki xi,

where t (and x, respectively) is represented by a meridian of K1 (that of K2).

E 3.3. In the case (m, n) = (3, 5), we have I(3, 5) = {0, 3, 5, 6, 9, 10, 12, 15}
and

∆A3,5 (t, x) � t15x7 + t12x6 + t10x5 + t9x4 + t6x3 + t5x2 + t3x + 1.

3.1. Alexander matrix of Am,n. We start the proof of Theorem 3.2 with the
following lemma.

L 3.4. The Alexander matrix of Am,n is

Im+n−1 − xM(m, n)

and the Alexander polynomial of Am,n is obtained by

∆Am,n (t, x) � det(Im+n−1 − xM(m, n)),

where M(m, n) is the (m + n − 1) × (m + n − 1)-matrix of the form

M(m, n) :=


On−1,m−1 −

−−−→
Tn−1 In−1

om−1 −tn on−1

tnIm−1 −tn−−→im−1 Om−1,n−1

 ,
−−−→
Tn−1,

−−→
im−1 are the following column vectors of size (n − 1) × 1 and (m − 1) × 1

respectively

−−−→
Tn−1 :=


t
t2

...
tn−1

 ,
−−→
im−1 :=


1
1
...
1

 ,
Os,s′ (and os, respectively) is the zero matrix of size s × s′ (and of size 1 × s) and Is is
the identity matrix of size s × s.
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F 3. Generators ti, t j (ex. (m, n) = (3, 5)).

E 3.5.

M(3, 5) =



0 0 −t 1 0 0 0
0 0 −t2 0 1 0 0
0 0 −t3 0 0 1 0
0 0 −t4 0 0 0 1
0 0 −t5 0 0 0 0
t5 0 −t5 0 0 0 0
0 t5 −t5 0 0 0 0


,

I − xM(3, 5) =



1 0 tx −x 0 0 0
0 1 t2x 0 −x 0 0
0 0 1 + t3x 0 0 −x 0
0 0 t4x 1 0 0 −x
0 0 t5x 0 1 0 0
−t5x 0 t5x 0 0 1 0

0 −t5x t5x 0 0 0 1


.

P  L 3.4. We assumed that 2 ≤ m < n (Section 1). We take the generators
of the fundamental group π1(S 3\Am,n) as in Figure 3. Then we have a presentation of
the group:〈

t1, t2, . . . , tm+n

x

∣∣∣∣∣∣∣ Li := tixtmt−1
m+ix

−1 (i = 1, 2, . . . , n)

R j := t jxt−1
j−ntmt−1

m+nx−1 ( j = n + 1, n + 2, . . . , m + n)

〉

=

〈
t1, t2, . . . , tm+n−1

x

∣∣∣∣∣∣∣∣∣
Li := tixtmt−1

m+ix
−1 (i = 1, 2, . . . , n − 1)

C := tnxtmxt−1
m x−1t−1

n x−1

R j := t jxt−1
j−nx−1t−1

n ( j = n + 1, . . . , m + n − 1)

〉
,
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where we canceled tm+n = x−1tnxtm by the relation Ln. Then Rm+n is changed to the
relation C, and the other R j are also changed. The nonzero free differentials of the
relations Li and R j by t∗ are:

∂Li

∂ti
= 1,

∂Li

∂tm
= δim + tix,

∂Li

∂tm+i
= −tixtmt−1

m+i,

∂R j

∂t j
= 1,

∂R j

∂t j−n
= −t jxt−1

j−n,
∂R j

∂tn
= −t jxt−1

j−nx−1t−1
n ,

(3.1)

where δim is Kronecker’s delta. The nonzero free differentials of C by t∗ are

∂C
∂tm

= tnx − tnxtmxt−1
m ,

∂C
∂tn

= 1 − tnxtmxt−1
m x−1t−1

n . (3.2)

We let γ denote the Hurewicz epimorphism γ : π1(S 3\Am,n)→ H1(S 3\Am,n; Z) � 〈t, x |
−〉, defined as γ(ti) = ti, γ(x) = x. We redefine Ln := C and Li := Ri for n + 1 ≤ i ≤
m + n − 1. Then the well-known formula ([Kaw, Lemma 7.3.2 (page 93)]) on the
Alexander polynomial of links says

det
[
γ
(
∂Li
∂t j

)]
=̇ (1 − x)∆Am,n (t, x),

where j (columns) runs in 1 ≤ j ≤ m + n − 1.
A submatrix from the first row to the (n − 1)th row of [γ(∂Li/∂t j)] coincides with

I − xM(m, n) by the first half of (3.1). In the nth row of [γ(∂Li/∂t j)], nonzero entries
are only

γ
(
∂C
∂tm

)
= (1 − x)tnx at (n, m) and γ

(
∂C
∂tn

)
= (1 − x) at (n, n),

by (3.2). Thus the nth row of [γ(∂Li/∂t j)] coincides with (1 − x) times the nth row
of I − xM(m, n). We add 1/(1 − x) times the nth row of [γ(∂Li/∂t j)] to each jth row
of [γ(∂Li/∂t j)] with j ≥ n + 1. The resulting jth row coincides with the jth row of
I − xM(m, n) by the second half of (3.1). Therefore, we have

det
[
γ
(
∂Li

∂t j

)]
� (1 − x) · det(I − xM(m, n)).

This concludes the proof. �

R 3.6. The matrix M(m, n) can also be obtained by the Burau representation
(see Birman [Bir, page 121]) of the braid group.

3.2. Properties of I(m, n). We need some properties on elements ki of I(m, n), see
Definition 3.1. They will be also used in Sections 4.2, 5.4.

D 3.7. We define u j ( j = 0, 1, 2, . . . , n) and w j ( j = 0, 1, 2, . . . , m) by

ku j = jm and kw j = jn.
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It is easy to see the following proposition.

P 3.8.

(1) ki + km+n−1−i = mn, (i = 0, 1, . . . , m + n − 1).
(2) u0 = w0 = 0, un = wm = m + n − 1, and

u j =

[ jm
n

]
+ j ( j = 1, 2, . . . , n − 1),

w j =

[ jn
m

]
+ j ( j = 1, 2, . . . , m − 1),

where [ · ] is the Gaussian symbol.
(3) Both u j, w j are increasing sequences.
(4) u j + un− j = w j + wm− j = m + n − 1.
(5)

m+n−1∑
i=0

tki xi = 1 +

n−1∑
i=1

timxui +

m−1∑
j=1

t jnxw j + tmnxm+n−1.

N 3.9. For an integer N, we denote by [N]n the unique integer satisfying

[N]n ≡ N mod n and 0 ≤ [N]n ≤ n − 1.

We let σ (and its inverse σ′, respectively) denote the bijection

σ, σ′ : {0, 1, 2, . . . , n − 1} → {0, 1, 2, . . . , n − 1}

defined by σ(i) := [i m]n (and σ′(i) := [im]n), where m is regarded as an integral lift of
m mod n. We also define

ρ(i) :=
σ(i)m − i

n
(i = 1, 2, . . . , n − 1).

By the definition of σ(i), ρ(i) is an integer.

L 3.10.

(1) σ(0) = 0, σ(m) = 1 and σ(n − m) = n − 1.
(2) For i = 1, 2, . . . , n − 1 and i , n − m, we have uσ(i)+1 − uσ(i) = 1 or 2.

Furthermore, uσ(i)+1 − uσ(i) = 2 if and only if n − m + 1 ≤ i ≤ n − 1.
(3) σ(m + i) = σ(i) + 1, uσ(m+i) = uσ(i) + 1, (i = 1, 2, . . . , n − m − 1).
(4) σ(n − m + i) = σ(i) − 1, uσ(n−m+i) = uσ(i) − 2, (i = 1, 2, . . . , m − 1).
(5) ρ : {1, 2, . . . , m − 1} → {1, 2, . . . , m − 1} is a bijection.
(6) wρ(i) = uσ(i) − 1, (i = 1, 2, . . . , m − 1).

P. (1) This is easy to see.

(2) Suppose that i = 1, 2, . . . , n − 1 and i , n − m. Since σ is a bijection, by (1)
and Proposition 3.8(3), we have 1 ≤ σ(i) ≤ n − 2 and uσ(i)+1 − uσ(i) = 1 or 2. We
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set j = σ(i). It holds that u j+1 − u j = 2 if and only if there exists an integer j′ such
that jm < j′n < ( j + 1)m, which implies j′n − m < jm < j′n and

n − m < [ jm]n < n.

Since [ jm]n = σ′( j) = σ′ ◦ σ(i) = i, we have n − m + 1 ≤ i ≤ n − 1.

(3) Suppose that i = 1, 2, . . . , n − m − 1. We have 1 ≤ σ(i) ≤ n − 2 again. Since
σ(m + i) ≡ (m + i)m ≡ σ(i) + 1 mod n, we have σ(m + i) = σ(i) + 1. By (2), we have
uσ(m+i) = uσ(i)+1 = uσ(i) + 1.

(4) Suppose that i = 1, 2, . . . , m − 1. We have 2 ≤ σ(i) ≤ n − 1. Since σ(n − m +

i) ≡ (n − m + i)m ≡ σ(i) − 1 mod n, we have σ(n − m + i) = σ(i) − 1. By (2) and
n − m + 1 ≤ n − m + i ≤ n − 1, we have uσ(n−m+i) = uσ(i) − 2.

(5) Suppose that i = 1, 2, . . . , m − 1. Since σ(i)m = [i m]nm ≡ i mod n, and 0 ≤
σ(i) ≤ n − 1,

0 ≤ ρ(i) =
σ(i)m − i

n
≤

(n − 1)m
n

< m,

and hence the image of the map ρ is included in {0, 1, 2, . . . , m − 1}. By the definition,
we have ρ(i)n ≡ −i mod m, thus ρ is bijective. In fact, ρ(i) = [(m − i)n]m.

(6) Suppose that i = 1, 2, . . . , m − 1. By (4), we have uσ(n−m+i) = uσ(i)−1 = uσ(i) − 2.
Then, as in the proof of (2), there exists an integer j such that w j = uσ(i) − 1 such that

(σ(i) − 1)m = kuσ(i)−1 < kw j = jn < kuσ(i) = σ(i)m.

Since σ(i)m − i ≡ 0 mod n, we have jn = σ(i)m − i and j = ρ(i). �

D 3.11. We define the monomial ei of t, x by

ei = tσ(i)m−ixuσ(i) , (i = 1, 2, . . . , n − 1).

L 3.12.

(1) em = x and en−m = tmn−nxm+n−2.
(2) em+i = xei (i = 1, 2, . . . , n − m − 1).
(3) en−m+i = t−nx−2ei (i = 1, 2, . . . , m − 1).
(4) tσ(i)m−ixuσ(i)−1 = tρ(i)nxwρ(i) (i = 1, 2, . . . , m − 1).

P. They are proved by Lemma 3.10(1), (3), (4) and (6) respectively. �

3.3. Proof of Theorem 3.2 (Alexander polynomial of Am,n). We regard

m+n−1∑
i=0

tki xi = 0 (3.3)

as an algebraic equation over Z[t, t−1], and x as a root of the equation.
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L 3.13. The algebraic Equation (3.3) over Z[t, t−1] has no multiple root.

P. If we substitute t = 1 into the Equation (3.3), then we have

m+n−1∑
i=0

xi = 0.

Since this equation has no multiple root, and its degree is equal to that of (3.3)
(=m + n − 1), the Equation (3.3) has no multiple root. �

Let v be a row vector of size 1 × (m + n − 1), decomposed as

v = [e f g],

where f is a scalar and

e = [e1 e2 · · · en−1], g = [g1 g2 · · · gm−1]

are row vectors of size 1 × (n − 1) and 1 × (m − 1), respectively. Then the matrix
M(m, n) in Lemma 3.4 satisfies

v · M(m, n) = [tn g (−e ·
−−−→
Tn−1 − tn f − tn g ·

−−→
im−1) e]. (3.4)

L 3.14. If we take ei = tσ(i)m−ixuσ(i) (i = 1, 2, . . . , n − 1) as in Definition 3.11,
f = xen−m and gi = t−nx−1ei (i = 1, 2, . . . , m − 1), then we have

v · M(m, n) = x−1v.

P. By Lemma 3.12 and the definition of ei and gi, we can see immediately that the
ith entry of v · M(m, n) is equal to that of M(m, n) multiplied by x−1 except the case
i = m. The mth entry of (3.4) is computed as

−e ·
−−−→
Tn−1 − tn f − tn g ·

−−→
im−1 = −

n−1∑
i=1

tiei − tn f − tn
m−1∑
j=1

g j

= −

n−1∑
i=1

tσ(i)mxuσ(i) − tmnxm+n−1

−

m−1∑
j=1

tρ( j)nxwρ( j)

= 1

by Definition 3.11, Lemma 3.12, bijectivity of σ and ρ, Equation (3.3) and
Proposition 3.8(5). We have the lemma. �
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P  T 3.2. By Lemma 3.14, x−1 is an eigenvalue of the matrix M(m, n),
where x is a root of (3.3). Since the degree of Equation (3.3) and the size of M(m, n)
are identical (=m + n − 1), and Equation (3.3) has no multiple root by Lemma 3.13,

m+n−1∑
i=0

tki xi = xm+n−1 · det(x−1Im+n−1 − M(m, n)).

By Lemma 3.4, we have the result. �

4. Reidemeister torsions of (Am,n; r, 0) and key lemmas

We compute the Reidemeister torsions of (Am,n; r, 0). The goal is Lemma 4.3.

4.1. The first homology of (Am,n; r, 0). We calculate the first homology of M =

(Am,n; α/β, 0). Let E denote the complement of Am,n. We consider M = E ∪ V1 ∪ V2,
see notation in Section 2.1. We set M1 := E ∪ V1 ⊂ M.

From now on, we always assume that gcd(α, β) = 1, β > 0, and

gcd(m + n, α) = 1,

which is equivalent to the condition for the first homology H1(M; Z) to be finite
cyclic by the elementary divisor theory. Then the order is (m + n)2β: H1(M; Z) �
Z/(m + n)2βZ.

We determine the first homologies of E, M1 and M, define generators and study
relations. First, H1(E) is a free abelian group of rank two generated by [m1] and [m2]:

H1(E) � 〈[m1], [m2] | −〉 � Z2.

We have
[l1] = [m2]m+n and [l2] = [m1]m+n. (4.1)

Next, we attach V1 to E to make M1. We take integers γ, δ such that αδ − βγ = −1,
and fix the meridian-longitude system m′1, l′1 of the solid torus V1. In H1(M1), we have
the relations (4.1) and

[m′1] = [m1]α[l1]β = 1 and [l′1] = [m1]γ[l1]δ.

Thus,

H1(M1) � 〈[m1], [m2] | [m1]α[m2](m+n)β = 1〉

� 〈T | −〉 � Z,

where T = [m1]γ
′

[m2]δ
′

by taking integers γ′, δ′ satisfying αδ′ − pβγ′ = −1. By the
relations above,

[m1] = [m1]−αδ
′+(m+n)βγ′

= ([m1]α[m2](m+n)β)−δ
′

([m1]γ
′

[m2]δ
′

)(m+n)β = T (m+n)β,
[m2] = [m2]−αδ

′+(m+n)βγ′

= ([m1]α[m2](m+n)β)γ
′

([m1]γ
′

[m2]δ
′

)−α = T−α,
[l′1] = [m1]γ[l1]δ

= [m1]γ[m2](m+n)δ = T (m+n)βγ−(m+n)αδ = T m+n.

(4.2)
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Finally, we attach V2 to M1 to make M. By (4.1) and (4.2) in H1(M),

[m′2] = [l2] = [m1]m+n = T (m+n)2β = 1, [l′2] = [m2] = T−α,

and
H1(M) � 〈T | T (m+n)2β = 1〉 � Z/(m + n)2βZ.

4.2. Reidemeister torsion of (Am,n; r, 0). In this subsection, we compute the
Reidemeister torsion of (Am,n; r, 0). The goal is Lemma 4.3.

First, by the surgery formula II (Lemma 2.5) and the results on the first homology
in the last subsection,

τ(M1) � ∆Am,n (T (m+n)β, T−α)(T m+n − 1)−1. (4.3)

By the Alexander polynomial in Theorem 3.2 and (4.3),

τ(M1) �
(m+n−1∑

i=0

T ki(m+n)β−iα
)
(T m+n − 1)−1

=

∑m+n−1
i=0 (T ki(m+n)β−iα − T−iα)

T m+n − 1
+

∑m+n−1
i=0 T−iα

T m+n − 1

=

m+n−1∑
i=0

(
T−iα ·

T ki(m+n)β − 1
T m+n − 1

)
+

T−(m+n)α − 1
T m+n − 1

· (T−α − 1)−1.

(4.4)

Note that (T ab − 1)/(T b − 1) is the polynomial 1 + T b + T 2b + · · · + T (a−1)b.
Next, let d ≥ 2 be a divisor of (m + n)2β. It holds that gcd(d, α) = 1. By the surgery

formula I (Lemma 2.3) and the results on the first homology, the Reidemeister-Turaev
torsion of M is

τψd (M) � τρd (M1)(ζαd − 1)−1, (4.5)

where ρd := ψd ◦ ι is the composition of a ring homomorphism ι : Z[H1(M1)]→
Z[H1(M)] induced from the natural inclusion, and a ring homomorphism ψd :
Z[H1(M)]→ Q(ζd) such that ψd(T ) = ζd.

We take d as a divisor of (m + n) and a ring homomorphism ψ′d : Z[H1(M)]→
Q(ζd) such that ψ′d(T ) = ζ−αd , where αα ≡ 1 mod m + n. Then d is still a divisor of
(m + n)2β, and ζ−αd is still a primitive dth root of unity, since gcd(d, α) = 1. By (4.4)
and (4.5),

τψ
′
d (M) �

{
β(ζd − 1)

m+n−1∑
i=0

kiζ
i
d − α

}
(ζd − 1)−2. (4.6)

D 4.1. For a divisor d ≥ 2 of (m + n), and the primitive dth root (ζ = ζd) of
unity, we define

R(m, n) := (ζ − 1)
m+n−1∑

i=0

kiζ
i.

96 T. Kadokami and Y. Yamada [19]

https://doi.org/10.1017/S1446788713000372 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788713000372


By (4.6), the Reidemeister-Turaev torsion of M is expressed as

τψ
′
d (M) � {βR(m, n) − α}(ζ − 1)−2.

L 4.2.

(1) R(m, n) is a real number.
(2) R(m, n) = mn + 1

2

∑m+n−1
i=1 (ki−1 − ki)(ζ i + ζ−i).

(3) R(m, n) = m(n + 1) +
∑m−1

j=1 (m − s j)(ζw j + ζ−w j ),
where s j is defined by s j := [ jn]m for an integer j, see notation in Section 3.2.

(4) R(m, n) = m(n + 1) +
∑m−1

j=1 (m − j)(ξ j + ξ− j).
(5) R(m, n) = ξ−(m−1) · ((ξm − 1)/(ξ − 1))2 + mn = |(ξm − 1)/(ξ − 1)|2 + mn,

where ξ = ζm with mm ≡ 1 mod (m + n).

P. (1) The complex conjugate R(m, n) of R(m, n) is

R(m, n) = (ζ−1 − 1)
m+n−1∑

i=0

kiζ
−i = (ζ − 1)

m+n−1∑
i=0

−kiζ
−i−1

= (ζ − 1)
m+n−1∑

i=0

(mn − ki)ζm+n−i−1

= (ζ − 1)
m+n−1∑

i=0

km+n−i−1ζ
m+n−i−1

= (ζ − 1)
m+n−1∑

i=0

kiζ
i = R(m, n)

by Proposition 3.8(1) and the equality 1 + ζ + · · · + ζm+n−1 = 0.
(2) First,

R(m, n) =

m+n−1∑
i=0

ki(ζ i+1 − ζ i) =

m+n∑
i=1

ki−1ζ
i −

m+n−1∑
i=0

kiζ
i

= mn +

m+n−1∑
i=1

(ki−1 − ki)ζ i.

By the proof of (1),

R(m, n) =
1
2
{R(m, n) + R(m, n)}

= mn +
1
2

m+n−1∑
i=1

(ki−1 − ki)(ζ i + ζ−i).

Before the proof of (3)–(5), we prove the following claim.

C (Properties of s j).

(1) The map from j to s j(=[ jn]m) is a bijection on {1, 2, . . . , m − 1} to itself.
(2) It holds that s j + sm− j = m.
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(3) There exists a unique element h in {1, 2, . . . , m − 1} such that gcd(h, m) = 1 and
sh = 1. It holds that wh ≡ −m mod m + n.

(4) For the same h in (3) and each element a in {1, 2, . . . , m − 1},

sah = a and wah ≡ awh mod m + n,

where we regard wah as w j with j = [ah]m, precisely.

P  C. (1) The map is induced by the multiplication of n (that is, j 7→ jn)
over (Z/mZ)\{0}. It is a bijection, since gcd(m, n) = 1.

(2) This is easy to see.

(3) By (1), there exists a unique element h in {1, 2, . . . , m − 1} such that sh = 1. In fact,
it holds that h ≡ n mod m. We have gcd(h, m) = 1. The second half is shown by

−mwh = −m
(
h +

[hn
m

])
≡ hn − m

[hn
m

]
= [hn]m = sh = 1 mod m + n,

see Proposition 3.8(2).

(4) Since sah ≡ ahn ≡ a mod m, we have sah = a, for a in {1, 2, . . . , m − 1}. Since

mwah = mah + m
[ahn

m

]
≡ −

(
ahn − m

[ahn
m

])
= −[ahn]m = −sah = −a mod m + n.

This concludes the proof. �

(3) We go back to the expression (2). We divide the set {1, 2, . . . , m + n − 1} of indices
of ki, into M, R and L according to whether ki−1 and/or ki belongs to mZ ∩ I(m, n).

{1, 2, . . . , m + n − 1} = M ∪ R ∪ L (a disjoint union)

Definition of the subset Parameter j ki−1 − ki

M := {i | ki−1 ∈ mZ and ki ∈ mZ} — −m

R := {i | ki−1 ∈ mZ and ki < mZ} ki = jn m
[ jn

m

]
− jn

L := {i | ki−1 < mZ and ki ∈ mZ} ki−1 = jn jn − m
([ jn

m

]
+ 1

)
Note that the case both ki−1 < mZ and ki < mZ (in other words, the case that both ki−1

and ki belong to nZ) never occurs, since m < n (Section 1).
For each i ∈ R, there exists j with 1 ≤ j < m such that ki = jn, equivalently i = w j.

Then, by Proposition 3.8(4), i′ := wm− j + 1 belongs to L and it holds that i′ = (m + n −
1 − w j) + 1 = m + n − i. The correspondence between i ∈ R and i′ ∈ L above is one-to-
one. It also holds that ζ i′ = ζwm− j+1 = ζm+n−i = ζ−i and

ki−1 − ki = m
[ jn

m

]
− jn = −[ jn]m = −s j,

ki′−1 − ki′ = (m − j)n − m
([ (m − j)n

m

]
+ 1

)
= [(m − j)n]m − m = sm− j − m = −s j,
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by Claim (2). Thus

(ki−1 − ki)(ζ i + ζ−i) + (ki′−1 − ki′)(ζ i′ + ζ−i′)
= −2s j(ζ i + ζ−i)
= −2s j(ζw j + ζ−w j ),

and ∑
i∈R

(ki−1 − ki + m)(ζ i + ζ−i) +
∑
i∈L

(ki−1 − ki + m)(ζ i + ζ−i)

=
∑
i∈R

{(ki−1 − ki + m)(ζ i + ζ−i) + (ki′−1 − ki′ + m)(ζ i′ + ζ−i′)}

= 2
m−1∑
j=1

(m − s j)(ζw j + ζ−w j ).

Thus, using 1 + ζ + ζ2 + · · · + ζm+n−1 = 0,

R(m, n) = mn +
1
2

m+n−1∑
i=1

(ki−1 − ki)(ζ i + ζ−i)

= mn +
1
2

m+n−1∑
i=1

(ki−1 − ki)(ζ i + ζ−i) +
1
2

m+n−1∑
i=0

m(ζ i + ζ−i)

= mn + m +
1
2

m+n−1∑
i=1

(ki−1 − ki + m)(ζ i + ζ−i)

= m(n + 1) +
1
2

∑
i∈M∪R∪L

(ki−1 − ki + m)(ζ i + ζ−i)

= m(n + 1) +

m−1∑
j=1

(m − s j)(ζw j + ζ−w j ).

(4) We take h(=n mod m) in Claim (3). By Claim (4),

R(m, n) = m(n + 1) +

m−1∑
j=1

(m − s j)(ζw j + ζ−w j )

= m(n + 1) +

m−1∑
a=1

(m − sah)(ζwah + ζ−wah )

= m(n + 1) +

m−1∑
a=1

(m − a)(ζ−am + ζam)

= m(n + 1) +

m−1∑
a=1

(m − a)(ξa + ξ−a),

where we set ξ = ζm, which is also a dth primitive root of unity.
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(5) Using elementary calculus

m−1∑
a=1

(m − a)xa =
xm − mx − 1

x − 1
+

xm − 1
(x − 1)2

= x
xm − 1

(x − 1)2
− m

x
x − 1

,

we have

R(m, n) = ξ−(m−1) ·

(
ξm − 1
ξ − 1

)2

+ mn.

The proof of Lemma 4.2 is completed. �

The result of this subsection is summarized as the following result.

L 4.3. Let M = (Am,n; α/β, 0) and d ≥ 2 a divisor of m + n. Then the
Reidemeister–Turaev torsion of M related with ψ′d(T ) = ζ−ᾱd is

τψ
′
d (M) � ξ−m{βR(m, n) − α}(ξm − 1)−2

= ξ−m
{
β

∣∣∣∣∣ξm − 1
ξ − 1

∣∣∣∣∣2 − (α − mnβ)
}
(ξm − 1)−2,

where ξ = ζm (thus ξm = ζ) is a primitive dth root of unity.

4.3. Necessary conditions. We study some necessary conditions for (Am,n; α/β, 0)
to be a lens space by the Reidemeister–Turaev torsions.

L 4.4. Suppose that (Am,n; α/β, 0) is a lens space. Then there exist integers i and
j such that gcd(i, m + n) = gcd( j, m + n) = 1 and

{βR(m, n) − α}(ξm − 1)−2 � (ξi − 1)−1(ξ j − 1)−1, (4.7)

equivalently, {
β

∣∣∣∣∣ξm − 1
ξ − 1

∣∣∣∣∣2 − α′}(ξm − 1)−2 �
1

(ξi − 1)(ξ j − 1)
, (4.8)

where α′ = α − mnβ, and ξ is a primitive dth root of unity.

The equalities (4.7), (4.8) correspond to two expressions of τψ
′
d (M) in Lemma 4.3.

L 4.5. Let d ≥ 2 be a divisor of m + n. Suppose that (Am,n; α/β, 0) is a lens space.
Then we have:

(1) |Nd(βR(m, n) − α)| = 1, where Nd is the d-norm, see Section 2.2;
(2) α′ = α − mnβ ≥ 0.

P. (1) We take the d-norm of the equality (4.7). Since Nd(ξm − 1) = Nd(ξi − 1) =

Nd(ξ j − 1) , 0 by Proposition 2.8(1) and Lemma 2.9, we have the result.

(2) Suppose that the integer α′ = α − mnβ < 0. Then we have

βR(m, n) − α = β

∣∣∣∣∣ξm − 1
ξ − 1

∣∣∣∣∣2 − α′ > 1,

hence |Nd(βR(m, n) − α)| > 1. By (1), we have the result. �
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Fixing the combinatorial Euler structure, we will regard (4.8) as a control
equivalence of the value sequences of degree m + n, in the sense of Lemma 2.12(1).
Note that the first factor in the left-hand side is a real value. On the right-hand side,
we have to control (i, j) to use Lemmas 2.15 or 2.16.

Conditions on (i, j) and (e, f). We can take i and j satisfying 1 ≤ i ≤ j ≤ (m +

n − 1)/2. If i + j is odd (then m + n is odd), then we replace j with m + n − j and
denote it by j again. Then, as a condition on (i, j), we may assume

1 ≤ i ≤ j ≤ m + n − 1, 2 ≤ i + j ≤ m + n − 1 and i + j is even. (4.9)

From now on, we regard equality (4.8) as a control equivalence between the real value
sequences

uξ−(i+ j)/2
{
β

∣∣∣∣∣ξm − 1
ξ − 1

∣∣∣∣∣2 − α′}(ξi − 1)(ξ j − 1) = ξ−m(ξm − 1)2, (4.10)

where u = ±1, or ±ξ(m+n)/2 only if m + n is even, by Lemma 2.13. We define the
integers

e :=
j − i
2

and f :=
i + j

2
. They satisfy 0 ≤ e < f ≤ (m + n − 1)/2. (4.11)

Using (e, f ), we can rewrite (4.10) as

u{β(ξm + ξ−m) − α′(ξ + ξ−1) + 2(α′ − β)}{(ξ f + ξ− f ) − (ξe + ξ−e)}

= (ξm+1 + ξ−(m+1)) − 2(ξm + ξ−m)(ξm−1 + ξ−(m−1)) − 2(ξ + ξ−1) + 4.
(4.12)

We define two symmetric Laurent polynomials

F(t) = {β(tm + t−m) − α′(t + t−1) + 2(α′ − β)}{(t f + t− f ) − (te + t−e)},

G(t) = (tm+1 + t−(m+1)) − 2(tm + t−m) + (tm−1 + t−(m−1)) − 2(t + t−1) + 4,
(4.13)

then (4.10) means that the two real value sequences (of degree m + n) induced by
F(t) and G(t) are control equivalent, see Section 2.3. Note that F(1) = G(1) = 0. By
Lemma 2.16, (4.12) lifts to a congruence of the symmetric Laurent polynomials.

L 4.6 (Necessary condition). Suppose that (Am,n; α/β, 0) is a lens space. We set
α′ = α − mnβ. Then there exist integers e and f such that 0 ≤ e < f ≤ (m + n − 1)/2,
and the following congruence holds.

(1) If m + n is odd, we have F(t) ≡ ±G(t) mod tm+n − 1.
(2) If m + n is even, we have F(t) ≡ ±G(t) or F(t) ≡ ±t(m+n)/2G(t) mod tm+n − 1.

If m + n is even, then span(G(t)) = 2(m + 1) ≤ m + n, since the pair m, n is coprime,
thus both are odd and m + 2 ≤ n. Furthermore, the congruence also induces an identity

(i) red(F(t)) = ±G(t) or (ii) red(t(m+n)/2F(t)) = ±G(t), (4.14)
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as in the second half of Lemma 2.16. We will regard it as an equation of (e, f ) on
the surgery coefficient α/β for M = (Am,n; α/β, 0) to be a lens space. Suppose that M
is a lens space, then there exists a solution (e, f ) of the equation. We mainly use its
contraposition. If the equation has no solution (e, f ), then M is not a lens space. The
case (2) looks troublesome. To prove that M is not a lens space, we have to show that
neither (i) nor (ii) has a solution. Fortunately, we only have to show one of them.

R 4.7. In either case m + n being odd or even, to prove that (Am,n; α/β, 0) is not a
lens space, it is sufficient to show that red(F(t)) = ±G(t) has no solution (e, f ), because
we can prove the following.

L 4.8. In the case (2) m + n is even in Lemma 4.6, if the equation (i) red(F(t)) =

±G(t) in (4.14) has a solution, the other equation (ii) red(t(m+n)/2F(t)) = ∓G(t) has a
solution, and vice versa.

P. We concentrate on the factor {(t f + t− f ) − (te + t−e)} of F(t). We transform
(e, f ) to (e′, f ′) by

e′ =
m + n

2
− f and f ′ =

m + n
2
− e,

which satisfies the same condition 0 ≤ e′ < f ′ ≤ (m + n − 1)/2 as (4.11). For a solution
(e, f ) of the equation red(F(t)) = ±G(t), its transformation (e′, f ′) is a solution of
red(t(m+n)/2F(t)) = ∓G(t), and vice versa. �

In Section 5.3, we will prove that (e, f ) = (0, 1) with α′ = 0 is the only solution for
the equation red(F(t)) = ±G(t) in general cases (see Lemma 4.9(1) below). Note that
α′ = 0 implies α/β = mn, which is related to the lens space surgery in Theorem 1.2.

Using the expression of R(m, n) in Lemma 4.2(4), we can prove the following
lemma.

L 4.9.

(1) The condition α/β = mn (that is, α′ = 0) is equivalent to (e, f ) = (0, 1) (that is,
i = j = 1).

(2) In (4.8), if (e, f ) = (0, m) (that is, i = j = m), then there is no root for α/β.

P. (1) Suppose that α/β = mn. Then we have τψ
′
d (M) � (ξ − 1)−2 by Lemma 4.3,

and equality (4.8) becomes

1
(ξ − 1)2

=̇
1

(ξi − 1)(ξ j − 1)
.

We have i = j = 1 by the Franz lemma (Lemma 2.10).
Conversely, suppose that i = j = 1. Then equality (4.7) can be written as

βR(m, n) − α = uξ−(m−1)
(
ξm − 1
ξ − 1

)2

,
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where u = ±1 or ±ξ(m+n)/2. Using the expression of R(m, n) in Lemma 4.2(4) and the
calculus in the proof of Lemma 4.2(5),

βm(n + 1) − α +

m−1∑
j=1

β(m − j)(ξ j + ξ− j) = u
{
m +

m−1∑
j=1

(m − j)(ξ j + ξ− j)
}
.

By taking the symmetric polynomial lift and Lemma 2.15 (note that the span is
2(m − 1) ≤ 2([(m + n)/2] − 1)), the case u = ±ξ(m+n)/2 does not occur, by Lemma 2.17.
We have β = 1 and α = mn.
(2) Suppose that i = j = m. Then equality (4.7) becomes

βR(m, n) − α = u,

where u = ±1 or ±ξ(m+n)/2. By the same method as above,

βm(n + 1) − α +

m−1∑
j=1

β(m − j)(ξ j + ξ− j) = u.

By Lemmas 2.15 and 2.17, we have β = 0. Hence there is no root for α/β. �

L 4.10. Suppose that α′ > 0.

(1) gcd(α′, β) = 1.
(2) If α′ = β, then the congruence F(t) ≡ ±G(t) mod (tm+n − 1) has a unique

solution (m, n) = (2, 3).

P. (1) By the Euclidean algorithm,

gcd(α′, β) = gcd(α − mnβ, β) = gcd(α, β) = 1.

(2) Suppose α′ = β. Then, by (1), we have α′ = β = 1 and the polynomials (4.13) are

F(t) = t−m− f (tm+1 − 1)(tm−1 − 1)(ti − 1)(t j − 1),

G(t) = t−m−1(tm − 1)2(t − 1)2.

The congruence F(t) ≡ ±G(t) mod (tm+n − 1) implies

F(ζ) �G(ζ),

where ζ is a primitive (m + n)th root of unity. Suppose gcd(m − 1, m + n) ≥ 2 or
gcd(m + 1, m + n) ≥ 2. Then the left-hand side of the equation above is 0 for some
d. Hence we have gcd(m − 1, m + n) = 1 and gcd(m + 1, m + n) = 1. By the Franz
lemma [Fz] (Lemma 2.10),

{±(m − 1), ±(m + 1), ±i, ± j mod m + n} = {±1, ±1, ±m, ±m mod m + n}

as multiple sets. It has a unique solution (m, n) = (2, 3) with (i, j) = (1, 3). �
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5. Proof of Theorem 1.4 (Lens space surgeries along Am,n)

The ‘if part’ of Theorem 1.4(1) follows from Theorem 1.2, thus our main purpose
is to prove the ‘only if part’. We study the condition on α/β for the Equations (4.10)
or (4.14)(i) to have a solution (i, j) or (e, f ), respectively. Our proof is divided into
three cases: m = 2 (Section 5.1), n = m + 1 (Section 5.2), and the general case where
m ≥ 3 and n ≥ m + 2 (Section 5.3). Note that the first two cases contain the exceptional
case (A2,3; 7, 0). In Section 5.4 and 5.5, we prove Theorem 1.4(2) by using the values
of the Reidemeister torsions. We also use Kirby moves.

To make expressions of symmetric Laurent polynomials short, we use the notation
〈tx〉 = tx + t−x for any integer x. We regard 〈tx〉 as 〈t−x〉 if x < 0, and 〈t0〉 = 2. For
the terminologies ‘reduce, reduction (denoted by red(P(t)))’ of symmetric Laurent
polynomials, see Definition 2.14.

5.1. The case m = 2. In this case, n and m + n = n + 2 are odd. Let ξ denote
any dth root of unity, where d is a divisor of n + 2 with d ≥ 2. We have R(2, n) =

|ξ + 1|2 + mn = ξ + ξ−1 + mn + 2 by Lemma 4.2(5), thus the Equation (4.10), divided
by ξ−1(ξ − 1)2 as a value sequence, becomes

ξ−(i+ j−2)/2 · {β(ξ + ξ−1) − α′′}
(ξi − 1)(ξ j − 1)

(ξ − 1)2
= ηξ−1 ·

(ξ2 − 1)2

(ξ − 1)2
, (5.1)

where α′′ = α′ − 2β = α − 2(n + 1)β, η = ±1 and (i, j) satisfies the condition (4.9) in
the last section. We regard (5.1) as an equality between real value sequences, defined
in Section 2.3.

(1) The case 2 ≤ i + j < n + 1. Note that i + j is even, see (4.9).
By Lemma 2.15, the equalities (5.1) lift to a congruence and

t−(i+ j−2)/2 · {β(t + t−1) − α′′}
(ti − 1)(t j − 1)

(t − 1)2
= ηt−1 ·

(t2 − 1)2

(t − 1)2
.

Note that (tx − 1)/(t − 1) is a polynomial for an integer x and that both hand sides
are symmetric Laurent polynomials. The span of the left-hand side is i + j ≤ 2([(m +

n)/2] − 1) = 2n. From β > 0, we have i = j = 1, β(t + t−1) − α′′ = t−1(t + 1)2, β = 1,
α′′ = −2, and α = 2n.

(2) The case i + j = n + 1 (=2 f , see (4.11) in Section 4.3).
Then e = ( j − i)/2 is an integer satisfying 1 ≤ e < (n + 1)/2. The Equation (4.10) is

ξ−(n+1)/2 · {β(ξ + ξ−1) − α′′}(ξi − 1)(ξ j − 1) = ηξ−2 · (ξ2 − 1)2.

By Lemma 2.16, it lifts to

(β − α′′)(t(n+1)/2 + t−(n+1)/2) + β(t(n−1)/2 + t−(n−1)/2)

− β(te+1 + t−(e+1)) + α′′(te + t−e) − β(te−1 + t−(e−1)) (5.2)

= η{(t2 + t−2) − 2},
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which is, using the notation 〈tx〉 = tx + t−x,

(β − α′′)〈t(n+1)/2〉 + β〈t(n−1)/2〉 − β〈te+1〉 + α′′〈te〉 − β〈te−1〉 = η(〈t2〉 − 2).

Here we used 〈t(n+3)/2〉 ≡ 〈t(n+1)/2〉 mod (tn+2 − 1). Note that the span of the left-hand
side is at most n + 1 = 2[(m + n)/2]. We have e = 1, η = β = 1 and n = 3. Then (5.2)
becomes

−α′′(t2 + t−2) + (1 + α′′)(t + t−1) − 2 = (t2 + t−2) − 2.

Hence we have α′′ = −1 and α = 7. In this case, (i, j) = (1, 3). This corresponds to the
case (A2,3; 7, 0), and it is a lens space, see Section 5.5.

5.2. The case n = m + 1. In this case, m + n = 2m + 1 is odd. Let ξ denote any dth
root of unity, where d is a divisor of 2m + 1 with d ≥ 2. We use ζ = ξm as in Lemma 4.3,
then ξ = ζ−2. The Reidemeister torsion in Lemma 4.3 becomes

τψ
′
d (M) = ξ−m

{
β

∣∣∣∣∣ξm − 1
ξ − 1

∣∣∣∣∣2 − α′}(ξm − 1)2

= ζ
{
βζ

(
ζ − 1
ζ2 − 1

)2

− α′
}
(ζ − 1)−2

= −ζ2
{
α′ζ−1

(
ζ2 − 1
ζ − 1

)2

− β
}
(ζ2 − 1)−2

= −ζ2{α′(ζ + ζ−1) − β}(ζ2 − 1)−2.

We apply the same argument to this equality as in Section 4.3 and take (i, j) satisfying
the condition (4.9). The equality of the real value sequence (4.10) is

ζ−(i+ j)/2
{
α′ζ−1

(
ζ2 − 1
ζ − 1

)2

− β
}
(ζ i − 1)(ζ j − 1) = ηζ−2(ζ2 − 1)2.

Divided by ζ−1(ζ − 1)2, it induces a similar equation to (5.1). We can apply the same
argument as in Section 5.1. Instead of (5.1), we study

ζ−(i+ j−2)/2 ·

{
α′(ζ + ζ−1) − β′

} (ζ i − 1)(ζ j − 1)
(ζ − 1)2

= ηζ−1 ·
(ζ2 − 1)2

(ζ − 1)2
, (5.3)

where β′ = β − 2α′(=β − 2(α − mnβ)). Equation (5.3) is obtained from (5.1) by
changing ξ to ζ, β to α′ and α′′ to β, respectively. Thus, using the correspondence,
we can study their roots by the same argument. In the last subsection, β = 0 was not
allowed, but here α′ = 0 is allowed (Lemma 4.5).

(1) The case α′ = 0 (α/β = m(m + 1) = mn).
In this case, α/β = m(m + 1) is a root by Lemma 4.9(1).

(2) The case α′ ≥ 1. The argument is similar to the case m = 2 in Section 5.1.
(i) The case 2 ≤ i + j ≤ 2m − 2.

There is no root for α′, β, by the argument with (1) in Section 5.1,
since the corresponding root (α′, β′) = (1, −2) implies β = 0, which is not
allowed.
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(ii) The case i + j = 2m.
Then e = ( j − i)/2 is an integer satisfying 1 ≤ e < m. The argument is

similar to that of (2) in Section 5.1. We have

(α′ − β′)〈tm〉 + α′〈tm−1〉 − α′〈te+1〉 + β′〈te〉 − α′〈te−1〉 = η(〈t2〉 − 2).

Here we used 〈tm+1〉 ≡ 〈tm〉 mod (t2m+1 − 1). The span of the left-hand
side is at most 2m = 2[(m + n)/2]. Corresponding to that the Equation
(5.1) has a root (β, α) = (−1, 1), this equation has a root (α′, β′) = (1, −1)
only if m = 2, which implies (α, β) = (7, 1). This corresponds to the case
(A2,3; 7, 0), and it is a lens space, see Section 5.5.

5.3. The case m ≥ 3 and n ≥ m + 2. Let P(t) be a symmetric Laurent polynomial in
Definition 2.14 of the form:

P(t) = a0 +

∞∑
i=1

ai(ti + t−i) = a0 +

∞∑
i=1

ai〈t
i〉.

We call a0 the constant term, ai〈ti〉 the ith term, and ai the ith coefficient. When P(t)
is considered in Q[t, t−1]/(tN − 1), P(t) (as above) is reduced if ai = 0 for all i > [N/2].
We denote the reduction of P(t) by red(P(t)).

A (of this subsection). Let (m, n) be a fixed pair of positive coprime integers
with m ≥ 3 and n ≥ m + 2. We assume that β ≥ 1, α′ = α − mnβ ≥ 0, see Lemma 4.5.
We set F(t) and G(t) as:

F(t) = {β〈tm〉 − α′〈t1〉 + 2(α′ − β)}{〈t f 〉 − 〈te〉},

G(t) = 〈tm+1〉 − 2〈tm〉 + 〈tm−1〉 − 2〈t1〉 + 4

in (4.13) in the last section. From now on, we fix N = m + n. Note that G(t) is already
reduced. Let

red(F(t)) = ±G(t) (5.4)

be an equation for (e, f ). Existence of an integral solution is a necessary condition for
(Am,n; α/β, 0) to be a lens space. We show that there exist no integral solution of (5.4)
with 0 ≤ e < f ≤ (m + n − 1)/2 for α′ > 0, see Lemma 4.9(1) for the case α′ = 0. By
Lemma 4.10, we assume that α′ , β.

Using 〈ta〉 · 〈tb〉 = 〈ta+b〉 + 〈ta−b〉,

F(t) = β〈tm+ f 〉 + β〈tm− f 〉 − α′〈t f +1〉 − α′〈t f−1〉 + 2(α′ − β)〈t f 〉

− β〈tm+e〉 − β〈tm−e〉 + α′〈te+1〉 + α′〈te−1〉 − 2(α′ − β)〈te〉.

This consists of ten nonzero terms, but may not be reduced. On the other hand, G(t)
has five terms and is already reduced. Thus our problem is ‘Which term in F(t) is
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F 4. Graph of the degrees I.

reduced to a term in G(t)?’ and ‘Which terms in F(t) are canceled with other terms?’
On the terms 〈tm+ f 〉, 〈tm− f 〉, 〈tm+e〉 and 〈tm−e〉,

red(〈tm+x〉) =

〈tm+x〉 if x ≤ (n − m)/2,

〈tn−x〉 if x > (n − m)/2,
red(〈tm−x〉) = 〈t|m−x|〉,

for x = e or f (thus 0 ≤ x ≤ (m + n − 1)/2). The term 〈t f +1〉 is already reduced except
only one case.

Case F. If (m + n) is odd and f = (m + n − 1)/2, it holds that red(〈t f +1〉) = 〈t f 〉.

In Case F, it holds that f − m = (n − m − 1)/2 ≥ 1/2, thus we have the following
lemma.

L 5.1. In Case F, it holds that f ≥ m + 1. Furthermore, for an integer a ≥ 1,
f = m + a is equivalent to n = m + 2a + 1.

We will often take care of this exceptional case. The other five terms are already
reduced. It is easy to see the following result.

L 5.2.

(1) Neither 〈tm+x〉 nor 〈tx+1〉 can be reduced to the constant term.
(2) The term 〈t2m〉 (〈tm+x〉 with x = m) can be reduced to neither the constant term

nor the first term.

The graph of the degrees of red(〈tm+x〉), red(〈tm−x〉), red(〈tx+1〉) and red(〈tx−1〉) are
useful, see Figure 4. We are interested in only the points whose coordinates are
integers. We set the rectangle formed by y = deg(red(〈tm+x〉)) and y = deg(red(〈tm−x〉))
as R. The intersection points of R and the line y = k correspond to solving the equation
red(〈tm±x〉) = 〈tk〉. The point Q is one of the intersections for k = m other than (0, m).
The (x, y)-coordinate of Q is as follows.
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F 5. Graph of the degrees II.

If n < 3m, then Q(n − m, m), which corresponds to red(〈tm+x〉) = 〈tm〉.
If n > 3m, then Q(2m, m), which corresponds to red(〈tm−x〉) = 〈tm〉.

Here, note that n = 3m contradicts coprimeness of m and n.

L 5.3 (The case red(〈tm±x〉) = 〈tm〉). By xQ we denote the x-coordinate (=n − m
or 2m) of Q. Then we have:

(1) xQ , m;
(2) xQ = m + a only if n = 2m + a, for a = −2, −1, 1 or 2;
(3) xQ = a only if n = m + a, for a = 2 or 3.

Since G(t) has the nonzero constant term, by Lemma 5.2(1),

{e, f } ∩ {0, 1, m} , ∅.

The proof is divided into the five cases: (1) e = 0; (2) e = 1 with m ≥ 4; (3) e = m; (4)
‘e , 0, 1 and f = m’; and (5) e = 1 with m = 3. Note that f = 0 is impossible and that
the case f = 1 is included by the case e = 0, because of the assumption e < f .

Case 1: e = 0.

F(t) = β〈tm+ f 〉 + β〈tm− f 〉 − α′〈t f +1〉 − α′〈t f−1〉 + 2(α′ − β)〈t f 〉

− 2β〈tm〉 + 2α′〈t1〉 − 4(α′ − β).

Since G(t) has a nontrivial (m + 1)- and (m − 1)-term, by Lemma 5.3, we have (taking
into account Case F)

f ∈ {1, xQ + ε, m, m + 1, m + 2} ∩ {1, xQ − ε, m − 2, m − 1, m},

where ε = −1 if n < 3m (and ε = +1 if n > 3m, respectively). Figure 5 helps to
understand this. Thus we have four cases: (i) f = 1; (ii) f = m; (iii) f = m + 2 (if n =

2m + 1 (xQ = m + 1)); or (iv) f = m − 2 (if n = 2m − 1 (xQ = m − 1)) by Lemma 5.3(2).
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In each case, Case F (that is, red(〈t f +1〉) = 〈t f 〉) does not occur because f ≤ m in (i),
(ii) and (iv), and because f , (m + n − 1)/2 in (iii), by Lemma 5.1.

Subcase(1-i): (e, f ) = (0, 1).

F(t) = β〈tm+1〉 − 2β〈tm〉 + β〈tm−1〉 − α′〈t2〉 + 2(2α′ − β)〈t1〉 − 2(3α′ − 2β).

Since α′ , 0, to cancel −α′〈t2〉, we need m = 3 and α′ = β, which contradicts the
assumption. (If we admit α′ = 0, then (e, f ) = (0, 1) is a solution, see Lemma 4.9(1).)

Subcase(1-ii): (e, f ) = (0, m).

F(t) = β〈t2m〉 − α′〈tm+1〉 + 2(α′ − 2β)〈tm〉 − α′〈tm−1〉 + 2α′〈t1〉 − 2(2α′ − 3β).

Since 2m > m + 1, the 2mth term is not reduced. By Lemma 5.2(2) and the ratio of the
(m + 1)th and (m − 1)th coefficients (=1), we have red(〈t2m〉) = 〈tm〉 and n − m = m.
This contradicts coprimeness of m and n.

Subcase(1-iii): (e, f ) = (0, m + 2) with n = 2m + 1. It holds that red(〈t2m+2〉) = 〈tm−1〉.

F(t) = −α′〈tm+3〉 + 2(α′ − β)〈tm+2〉 − α′〈tm+1〉 − 2β〈tm〉 + β〈tm−1〉

+ β〈t2〉 + 2α′〈t1〉 − 4(α′ − β).

Since m ≥ 3 (thus m + 2 ≤ (m + n)/2) and α′ , β, the (m + 2)th term cannot be
canceled. We have a contradiction.

Subcase(1-iv): (e, f ) = (0, m − 2) with n = 2m − 1. If m = 3, we go back to (1-i), thus
we assume m ≥ 4. It holds that red(〈t2m−2〉) = 〈tm+1〉.

F(t) = β〈tm+1〉 − 2β〈tm〉 − α′〈tm−1〉 + 2(α′ − β)〈tm−2〉 − α′〈tm−3〉

+ β〈t2〉 + 2α′〈t1〉 − 4(α′ − β).

All terms are already reduced. By the signs of the (m + 1)th and (m − 1)th coefficients,
we have a contradiction.

Case 2: e = 1 with m ≥ 4.

F(t) = β〈tm+ f 〉 + β〈tm− f 〉 − α′〈t f +1〉 − α′〈t f−1〉 + 2(α′ − β)〈t f 〉

− β〈tm+1〉 − β〈tm−1〉 + α′〈t2〉 − 2(α′ − β)〈t1〉 + 2α′.

Recall the assumption f > e = 1. Comparing F(t) and G(t), we have that at least
one term in F(t) is equal to or reduced to the mth term, and that the term α′〈t2〉 is
canceled with another term whose coefficient is negative. Here we used m ≥ 4 (that is,
〈tm−1〉 , 〈t2〉). We have (taking into account Case F)

f ∈ {m − 1, m, m + 1, xQ} ∩ {2, 3},
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F 6. Graph of the degrees III.

where xQ is the value defined in Lemma 5.3. Figure 6 helps to understand this. Since
f ≤ 3, Case F does not occur by Lemma 5.1. Thus we have three cases: (i) m = 4
and f = 3, (ii) f = 2 (if n = m + 2 (xQ = 2)), (iii) f = 3 (if n = m + 3 (xQ = 3)), see
Lemma 5.3(3).

Subcase(2-i): m = 4 and (e, f ) = (1, 3).

F(t) = β〈t7〉 − β〈t5〉 − α′〈t4〉 + (2α′ − 3β)〈t3〉 − (2α′ − 3β)〈t1〉 + 2α′.

The term β〈t7〉 has to be reduced: red(〈t7〉) = 〈tn−3〉 and 3 ≤ n − 3 ≤ 5. By coprimeness
of m and n, we have n = 7. By the fifth and fourth coefficients, we have a contradiction.

Subcase(2-ii): m ≥ 4, f = 2 (if n = m + 2 (xQ = 2)). It holds that red(〈tm+2〉) = 〈tm〉.

F(t) = −β〈tm+1〉 + β〈tm〉 − β〈tm−1〉 + β〈tm−2〉

− α′〈t3〉 + (3α′ − 2β)〈t2〉 − (3α′ − 2β)〈t1〉 + 2α′.

All terms are already reduced. Considering the ratio of the (m + 1)-st and mth
coefficients, we have a contradiction.

Subcase(2-iii): m ≥ 4, f = 3 (if n = m + 3 (xQ = 3)). It holds that red(〈tm+3〉) = 〈tm〉.

F(t) = −β〈tm+1〉 + β〈tm〉 − β〈tm−1〉 + β〈tm−3〉

− α′〈t4〉 + 2(α′ − β)〈t3〉 − 2(α′ − β)〈t1〉 + 2α′.

All terms are already reduced. If m ≥ 5, then we have a contradiction by the same
method as in the last case. If m = 4,

red(F(t)) = −β〈t5〉 − (α′ − β)〈t4〉 + (2α′ − 3β)〈t3〉 − (2α′ − 3β)〈t1〉 + 2α′.

Considering the ratio of the first two coefficients, −β : −(α′ − β) = 1 : −2, that is,
β = −α′ < 0. We have a contradiction.

In the rest of the proof, we will often use the following lemma.
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L 5.4. Even if red(〈ta〉) = 〈tb〉, the sum ±β〈ta〉 ± α′〈tb〉 of any signs never cancels
by the reduction.

This lemma is easily shown by the assumption α′ > 0, β > 0 and α′ , β.

Case 3: e = m.

F(t) = β〈tm+ f 〉 + β〈tm− f 〉 − α′〈t f +1〉 − α′〈t f−1〉 + 2(α′ − β)〈t f 〉

− β〈t2m〉 − 2β + α′〈tm+1〉 + α′〈tm−1〉 − 2(α′ − β)〈tm〉.

Recall the assumption f > e = m. Comparing F(t) and G(t), at least one term in F(t)
is equal to or reduced to the first term. By Lemma 5.2(2), we have two cases: (i)
f = m + 1 (it can be in Case F) and (ii) red(〈tm+ f 〉) = 〈t1〉. But in the latter case,
f = n − 1 ≤ (m + n)/2 (see the graph in Figure 4), thus n = m + 2 and f = m + 1. We
only have to study the case (i).

Subcase(3-i): (e, f ) = (m, m + 1).

F(t) = β〈t2m+1〉 − β〈t2m〉 − α′〈tm+2〉 + (3α′ − 2β)〈tm+1〉 − (3α′ − 2β)〈tm〉

+ α′〈tm−1〉 + β〈t1〉 − 2β.

We focus on −α′〈tm+2〉. Neither β〈t2m+1〉 − α′〈tm+2〉 nor −β〈t2m〉 − α′〈tm+2〉 cancel by
the reduction by Lemma 5.4. Thus, if m + 2 ≤ (m + n)/2 (that is, n ≥ m + 4), the term
−α′〈tm+2〉 is left after the reduction, which is a contradiction. We have n = m + 2 or
n = m + 3.

First we assume n = m + 2, then red(β〈t2m+1〉 − β〈t2m〉 − α′〈tm+2〉) = β〈t1〉 − β〈t2〉 −

α′〈tm〉. Considering the ratio of the (m + 1)th and (m − 1)th coefficient, we need
α′ = β. We have a contradiction. Next we assume n = m + 3, which implies m ≥ 4.
Then red(β〈t2m+1〉 − β〈t2m〉 − α′〈tm+2〉) = β〈t2〉 − β〈t3〉 − α′〈tm+1〉. (It is in Case F.) The
second coefficient is β , 0, so we have a contradiction.

Case 4: f = m. It is not in Case F by Lemma 5.1.

F(t) = −β〈tm+e〉 − β〈tm−e〉 + α′〈te+1〉 + α′〈te−1〉 − 2(α′ − β)〈te〉

+ β〈t2m〉 + 2β − α′〈tm+1〉 − α′〈tm−1〉 + 2(α′ − β)〈tm〉.

Recall the assumption e < f = m. Comparing F(t) and G(t), we have that at least one
term in F(t) is equal to or reduced to the first term. By Lemma 5.2(2), 〈t2m〉 is not
reduced to the first term. It does not hold that red(〈tm+e〉) = 〈t1〉, because it implies
e = n − 1, which contradicts to e < f = m. Thus we need red(〈tm−e〉) = 〈t1〉, that is,
e = m − 1.

F(t) = β〈t2m〉 − β〈t2m−1〉 − α′〈tm+1〉 + (3α′ − 2β)〈tm〉 − (3α′ − 2β)〈tm−1〉

+ α′〈tm−2〉 − β〈t1〉 + 2β.
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One of the first two terms has to cancel α′〈tm−2〉, but this is impossible, because neither
β〈t2m〉 + α′〈tm−2〉 nor −β〈t2m−1〉 + α′〈tm−2〉 cancel by Lemma 5.4.

Case 5: e = 1 with m = 3. Note that G(t) = 〈t4〉 − 2〈t3〉 + 〈t2〉 − 2〈t1〉 + 4.

F(t) = β〈t3+ f 〉 + β〈t3− f 〉 − α′〈t f +1〉 − α′〈t f−1〉 + 2(α′ − β)〈t f 〉

− β〈t4〉 + (α′ − β)〈t2〉 − 2(α′ − β)〈t1〉 + 2α′.

The proof is divided into four cases: (i) f = 2; (ii) f = 3; (iii) f = 4 or (iv) f ≥ 5.

Subcase(5-i): (e, f ) = (1, 2).

F(t) = β〈t5〉 − β〈t4〉 − α′〈t3〉 + 3(α′ − β)〈t2〉 − 3(α′ − β)〈t1〉 + 2α′.

The term β〈t5〉 has to be reduced: red(〈t5〉) = 〈tn−2〉 and n − 2 ≥ m ≥ 3. Considering the
ratio of the first coefficient and the constant term, we have −3(α′ − β) : 2α′ = −2 : 4,
that is, 2α′ = 3β. Considering the ratio of the second and the first coefficients, we have
a contradiction.

Subcase(5-ii): (e, f ) = (1, 3).

F(t) = β〈t6〉 − (α′ + β)〈t4〉 + 2(α′ − β)〈t3〉 − β〈t2〉 − 2(α′ − β)〈t1〉 + 2(α′ + β).

The term β〈t6〉 has to be reduced: red(〈t6〉) = 〈tn−3〉 and n − 3 ≥ 2. Considering the ratio
of the first coefficient and the constant term, we have −2(α′ − β) : 2(α′ + β) = −2 : 4,
that is, α′ = 3β.

F(t) = β · (〈t6〉 − 4〈t4〉 + 4〈t3〉 − 〈t2〉 − 4〈t1〉 + 8).

In any of the cases red(〈t6〉) = 〈t4〉, 〈t3〉 or 〈t2〉, it does not hold that red(F(t)) = ±G(t).
We have a contradiction.

Subcase(5-iii): (e, f ) = (1, 4).

F(t) = β〈t7〉 − α′〈t5〉 + (2α′ − 3β)〈t4〉 − α′〈t3〉 + (α′ − β)〈t2〉 − (2α′ − 3β)〈t1〉 + 2α′.

By Lemma 5.4, both terms β〈t7〉 and −α′〈t5〉 have to be reduced. This is possible only
if (m + n)/2 < 5, that is, n < 7. Since n ≥ m + 2 = 5 and n is coprime to m = 3, we have
n = 5. Then red(〈t7〉) = 〈t1〉 and red(〈t5〉) = 〈t3〉. Considering the ratio of the fourth and
the second coefficients, we have (2α′ − 3β) = (α′ − β), that is, α′ = 2β. In this case, we
lose the first term: red(β〈t7〉 − (2α′ − 3β)〈t1〉) = 0. We have a contradiction.

Subcase(5-iv): e = 1 and f ≥ 5.

F(t) = β〈t f +3〉 − α′〈t f +1〉 + 2(α′ − β)〈t f 〉 − α′〈t f−1〉 + β〈t f−3〉

− β〈t4〉 + (α′ − β)〈t2〉 − 2(α′ − β)〈t1〉 + 2α′.
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The f th term has to be canceled. If it is canceled by the ( f + 3)th term, then the
( f + 1)th term is left after the reduction. If it is canceled by the ( f + 1)th term, which
is in Case F, we have α′ = 2β, n = 2 f − 2, and red(〈t f +3〉) = 〈t f−2〉 with f − 2 ≥ 3, thus

red(F(t)) = β · (−2〈t f−1〉 + 〈t f−2〉 + 〈t f−3〉 − 〈t4〉 + 〈t2〉 − 2〈t1〉 + 4).

If f > 5, then the top degree is f − 1 > 4, so we have a contradiction. Otherwise f = 5,

red(F(t)) = β · (−3〈t4〉 + 〈t3〉 + 2〈t2〉 − 2〈t1〉 + 4).

The ratio of the coefficients is different from that of G(t). We have a contradiction.
In any of the cases, we have a contradiction. The proof of Theorem 1.4(1) is

completed.

5.4. Type of the lens space (Am,n; mn, 0). We verify the second term (=mn) of the
lens space (Am,n; mn, 0) � L((m + n)2, mn) by the Reidemeister torsion. Here we are
also interested in the possibility of the transformation between the parameters (m, n)
and (p, q).

We use the notations I(m, n) = {ki | i = 0, 1, . . . , m + n − 1}, u j ( j = 0, 1, . . . , n) and
w j ( j = 0, 1, . . . , m) defined in Section 3.

L 5.5.

(1) We set k′i = ki(m + n) − imn (i = 0, 1, . . . , m + n − 1). Then we have k′i +

k′m+n−1−i = mn and k′0 = 0 ≤ k′i ≤ k′m+n−1 = mn.
(2) I(m, n) = {k′i | i = 0, 1, . . . , m + n − 1}.

P. (1) By the definition of k′i and Proposition 3.8(1),

k′i + k′m+n−1 = ki(m + n) − imn + km+n−1−i(m + n) − (m + n − 1 − i)mn

= (ki + km+n−1−i)(m + n) − (m + n − 1)mn

= mn(m + n) − (m + n − 1)mn = mn.

By Proposition 3.8(2), every element ki ∈ I(m, n) is uniquely expressed in the form ku j

or kw j . It is easy to see that k′0 = 0 and k′m+n−1 = mn.

(i) The case i = u j ( j = 1, 2, . . . , n − 1). Since ki = ku j = jm by Proposition 3.8(2) and
gcd(m, n) = 1,

k′i = jm(m + n) −
([ jm

n

]
+ j

)
mn = mn

( jm
n
−

[ jm
n

])
> 0.

Since k′i + k′m+n−1 = mn, we have 0 < k′i < mn.

(ii) The case i = w j ( j = 1, 2, . . . , m − 1). Since ki = kw j = jn by Proposition 3.8(2)
and gcd(m, n) = 1,

k′i = jn(m + n) −
([ jn

m

]
+ j

)
mn = mn

( jn
m
−

[ jn
m

])
> 0.

Since k′i + k′m+n−1 = mn, we have 0 < k′i < mn. Therefore, we have the result.
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(2)(i) The case i = u j ( j = 1, 2, . . . , n − 1). By the proof of (1)(i), k′i is of the form
k′i = j′m for some j′ ∈ Z and j′ ≡ jm mod n is uniquely determined.

(ii) The case i = w j ( j = 1, 2, . . . , m − 1). By the proof of (1)(ii), k′i is of the form
k′i = j′n for some j′ ∈ Z and j′ ≡ jn mod m is uniquely determined.

From (i), (ii) and (1), the set {k′i | i = 0, 1, . . . , m + n − 1} consists of m + n distinct
elements, and we have the result. �

L 5.6. For a coprime positive pair (m, n), the Alexander polynomial ∆Am,n (t, x) of
Am,n satisfies that

∆Am,n (T m+n, T−mn) �
(T mn − 1)(T m+n − 1)

(T m − 1)(T n − 1)
.

P. As we remarked in Section 1, the first component K1 of Am,n is the (m, n)-torus
knot Tm,n. By Theorem 3.2 and the Torres formula (Lemma 2.7),

∆Am,n (t, 1) �
tm+n − 1

t − 1
· ∆Tm,n (t) �

(tmn − 1)(tm+n − 1)
(tm − 1)(tn − 1)

=

m+n−1∑
i=0

tki .

By Theorem 3.2, it holds that

∆Am,n (T m+n, T−mn) �
m+n−1∑

i=0

T ki(m+n)−imn =

m+n−1∑
i=0

T k′i ,

and hence we have ∆Am,n (T m+n, T−mn) � ∆Am,n (T, 1) by Lemma 5.5(2). �

P  (Am,n; mn, 0) � L((m + n)2, mn). Assuming that M = (Am,n; mn, 0) is a lens
space L(P, Q), it is clear that P = (m + n)2 by the first homology. By Lemma 5.6 and
the formulae (4.3) and (4.4),

τ(M1) � ∆Am,n (T m+n, T−mn)(T m+n − 1)−1 =
T mn − 1

(T m − 1)(T n − 1)
,

τψ(m+n)2 (M) � (ζm
(m+n)2 − 1)−1(ζn

(m+n)2 − 1)−1.

Because of the ambiguity of the Reidemeister torsion, the parameters of the lens space
are almost decided but the orientation (the choice ±) is left undecided:

M � L((m + n)2, ±mn),

where n is taken modulo (m + n)2.
Using the knowledge of existence of a lens space surgery (Am,n; mn, 0) � L(p2,

pq − 1) in Theorem 1.2, we can determine the sign of ±mn as follows. Suppose that it
is −mn. Then we have pq − 1 ≡ −mn mod p2, and

pq ≡ 1 − mn ≡ n(n − m) mod p2.

Since gcd(pq, p2) = p = m + n is changed to gcd(n(n − m), (m + n)2) = m + n (we
regard n as an integral lift), this contradicts that gcd(n, m + n) = 1 and gcd(n − m,
m + n) = gcd(n − m, 2m) ≤ 2m < m + n. �
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F 7. (A2,3; 7, 0) is L(25, 7) I.

5.5. Type of the lens space (A2,3; 7, 0). Suppose that (m, n) = (2, 3) and α/β = 7.
Then we have

∆A2,3 (t, x) = 1 + t2x + t3x2 + t4x3 + t6x4

by Theorem 3.2, and (4.3) is computed as

τ(M1) � ∆A2,3 (T 5, T−7)(T 5 − 1)−1 =
1 + T 3 + T + T−1 + T 2

T 5 − 1
�

1
T − 1

.

Hence we have
τψ25 (M) � (ζ25 − 1)−1(ζ7

25 − 1)−1

by (4.4). Assuming that (A2,3; 7, 0) is a lens space, only by our method of
Reidemeister-Turaev torsion, we can say that the lens space is homeomorphic to
L(25, 7) � L(25, −7).

By Kirby calculus in Figures 7 and 8, we have (A2,3; 7, 0) � L(25, 7). For the moves
in Figure 7, see [Yam3]. By setting ε = 0, we have (A2,3; 6, 0) � L(25, 9). In the moves
‘f’ in Figure 8, we used the formula in Figure 9 on a −2-framed unknot. In the second
f move, the union of two (3- and −4-framed) components are regarded as x, and get
unlinked by the positive full twist.

6. Proof of Theorem 1.5 (Lens space surgeries along Bp,q)

In this section, we prove Theorem 1.5 on lens space surgeries along Bp,q.

6.1. Alexander polynomial of Bp,q. The goal of this subsection is the following
lemma.

L 6.1. The Alexander polynomial of the link Bp,q is

∆Bp,q (t, x) �
tpqxp − 1
tqx − 1

,
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F 8. (A2,3; 7, 0) is L(25, 7) II.

x –2 y x –1 1 y 1 x 1 2 y 1

F 9. Kirby move f.

K2

q
p -twist

K1

K3

K3

K2

K1

F 10. Link L (ex. (p, q) = (8, 3)) and L̃.

where t (and x, respectively) is represented by the meridian of the torus knot component
K1 (that of the unknotted component K2).

P. We add the third component K3 to Bp,q = K1 ∪ K2 such that H := K2 ∪ K3 is
a Hopf link and K1 is isotopic to a simple closed loop in the level torus under the
identification of the complement of H and T 2 × (−1, 1). We set L := Bp,q ∪ K3 and use
the notations defined in Section 2.1. The complement EL of L is homeomorphic to
that EL̃ of the connected sum L̃ = K̃1 ∪ K̃2 ∪ K̃3 of two Hopf links (L̃ is ‘B0,1 ∪ K3’ in
a sense), see Figure 10.
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Our strategy of the proof is as follows: first we prove the Alexander polynomial of
L by studying the transformation of the homologies from the easier L̃ to L, and use the
Torres formula (Lemma 2.7) on the sublink Bp,q of L.

We take a homeomorphism f : EL̃→ EL that carries each regular neighborhood of
K̃i to that of Ki (i = 1, 2, 3). We will use a tilde for the notation of each component of L̃.
We denote the meridian-longitude system of K̃i by m̃i, l̃i, and its Alexander polynomial
of L̃ by ∆L̃(t̃1, t̃2, t̃3). In H1(EL) and H1(EL̃), the longitudes are presented by meridians:

[l1] = [m2]p[m3]q, [l2] = [m1]p[m3], [l3] = [m1]q[m2],
[l̃1] = [m̃3], [l̃2] = [m̃3], [l̃3] = [m̃1][m̃2].

(6.1)

We note that
[m2]p[l2]q = [m2]p([m1]p[m3])q = [m1]pq[l1]. (6.2)

We take integers a, b satisfying aq − bp = 1. The isomorphism f∗ : H1(EL̃)→ H1(EL)
induced by f satisfies:

f∗([m̃1]) = [m1], f∗([l̃1]) = [m2]p[l2]q = [m1]pq[l1],

f∗([m̃2]) = [m2]a[l2]b, f∗([l̃2]) = [m2]p[l2]q, (6.3)

f∗([m̃3]) = [m3]q[l3]p, f∗([l̃3]) = [m3]b[l3]a.

Thus, setting ti := [mi] and t̃i := [m̃i] (i = 1, 2, 3), by (6.1)–(6.3),

f∗(t̃1) = t1, f∗(t̃2) = tpb
1 ta

2tb
3, f∗(t̃3) = tpq

1 tp
2 tq

3. (6.4)

The Alexander polynomial of L̃ is known:

∆L̃(t̃1, t̃2, t̃3) � t̃3 − 1.

Substituting (6.4) into this, we have the Alexander polynomial of L:

∆L(t1, t2, t3) � tpq
1 tp

2 tq
3 − 1.

Hence, by the Torres formula (Lemma 2.7), we have the Alexander polynomial of Bp,q:

∆Bp,q (t, x) �
∆L(t, x, 1)

tqx − 1
�

tpqxp − 1
tqx − 1

.

This concludes the proof. �

6.2. Conditions from the first homology of (Bp,q; r, 0). We set M = (Bp,q; α/β, 0).
The arguments are parallel to Section 4.1. We let E denote the complement of Bp,q,
and regard M = E ∪ V1 ∪ V2, see the notations in Section 2.1. We set M1 = E ∪ V1.

We assume that gcd(p, α) = 1, which is equivalent to the condition for H1(M; Z) to
be finite cyclic. Then we have H1(M; Z) � Z/p2βZ.

We determine the first homologies of E, M1 and M, and represent some elements
by the generators. First, H1(E) is a free abelian group of rank two generated by [m1]
and [m2]:

H1(E) � 〈[m1], [m2] | −〉 � Z2.

[40] Lens space surgeries along certain 2-component links 117

https://doi.org/10.1017/S1446788713000372 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788713000372


We have
[l1] = [m2]p and [l2] = [m1]p. (6.5)

We attach V1 to E to make M1. We take integers γ, δ such that αδ − βγ = −1, and fix
the meridian-longitude system m′1, l′1 of the solid torus V1. In H1(M1),

[m′1] = [m1]α[l1]β = 1, [l′1] = [m1]γ[l1]δ

and (6.5) also hold. Thus,

H1(M1) � 〈[m1], [m2] | [m1]α[m2]pβ = 1〉

� 〈T | −〉 � Z,

where T = [m1]γ
′

[m2]δ
′

by taking integers γ′, δ′ satisfying αδ′ − pβγ′ = −1. By the
relations above,

[m1] = [m1]−αδ
′+pβγ′

= ([m1]α[m2]pβ)−δ
′

([m1]γ
′

[m2]δ
′

)pβ = T pβ,
[m2] = [m2]−αδ

′+pβγ′

= ([m1]α[m2]pβ)γ
′

([m1]γ
′

[m2]δ
′

)−α = T−α,
[l′1] = [m1]γ[l1]δ

= [m1]γ[m2]pδ = T pβγ−pαδ = T p.

(6.6)

Next, we attach V2 to M1 to make M. By (6.5) and (6.6) in H1(M),

[m′2] = [l2] = [m1]p = T p2β = 1, [l′2] = [m2] = T−α,

and
H1(M) � 〈T | T p2β = 1〉 � Z/p2βZ.

6.3. Proof of Theorem 1.5. By the surgery formula II (Lemma 2.5)(2), Lemma 6.1
and (6.6),

τ(M1) � ∆Bp,q (T pβ, T−α)(T p − 1)−1 �
T p(−α+pqβ) − 1

(T−α+pqβ − 1)(T p − 1)
. (6.7)

Let ι : Z[H1(M1)]→ Z[H1(M)] be a ring homomorphism induced from the natural
inclusion, ψd : Z[H1(M)]→ Q(ζd) a ring homomorphism such that ψd(T ) = ζd, and set
ρd := ψd ◦ ι, where d is a divisor of p. Note that gcd(d, α) = 1. Then by the surgery
formula I (Lemma 2.3), (6.6) and (6.7),

τψd (M) � τρd (M1)(ζαd − 1)−1 � (α − pqβ)(ζαd − 1)−2.

Suppose that M is a lens space. Then its Reidemeister torsion is equal to that of
a lens space (Example 2.6), that is, there exist integers i and j such that gcd(p, i) =

gcd(p, j) = 1 and

(α − pqβ)(ζαd − 1)−2 � (ζ i
d − 1)−1(ζ j

d − 1)−1.
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By taking the d-norm (see Section 2.2) of both sides, we have a necessary condition

|α − pqβ| = 1

by Lemma 2.9.
Conversely, suppose |α − pqβ| = 1 and set ε = α − pqβ(= ± 1). We can prove that

(Bp,q; α/β, 0) is homeomorphic to the lens space by Kirby–Rolfsen moves [Ro] as
follows (see [Mos], see also [IS, Proposition 4.1]): M is the result of (α/β, 0,∞)-
surgery along L = Bp,q ∪ K3. It is homeomorphic to that of (ε/β, −p/a, −a/p)-surgery
(aq − bp = 1) along L̃ because of the identification between EL and EL̃ in (6.3), and that
of (−p/a, −(a + εpβ)/p)-surgery along the Hopf link by (−εβ)-twist on K̃1. Therefore,
we have M � L(p2β, α). �

6.4. Other surgeries along Bp,q. The link Bp,q is included in a family of Burde–
Murasugi’s links [BM], whose complements admit structures of Seifert fiber spaces.
The complement of Bp,q ∪ K3 in Section 6.1 is homeomorphic to that of the (3, 3)-
torus link (and to that of the link in Figure 10 also). Thus we can determine all
Dehn surgeries along Bp,q by a result of the first author and Shimozawa [KS] on Dehn
surgeries along torus links.

Let (Bp,q; α1/β1, α2/β2) be the result of (α1/β1, α2/β2)-surgery along Bp,q, where αi

and βi (i = 1, 2) are coprime integers with βi ≥ 1.

T 6.2. We set ε1 = α1 − β1 pq, ε2 = α2q − β2 p, P = α1α2 − β1β2 p2, and a and
b as coprime integers such that aq − bp = 1. Then the result of surgery M =

(Bp,q; α1/β1, α2/β2) with p ≥ 2 is as follows.

(1) If ε1ε2 , 0, then M is a Seifert fiber space over S 2 with at most three singular
fibers whose multiplicities are |ε1|, |ε2| and p.

(2) Suppose ε1ε2 , 0. Then M is a lens space if and only if |ε1| = 1 or |ε2| = 1. The
resulting lens spaces are

L(P, −β2ε1 − β1ε2q) � L(P, −α1β2 − α2β1q2 + 2β1β2 pq)

in both cases.
(3) (i) If ε1 = 0 (that is, α1/β1 = pq), then M is a connected sum of lens spaces

L(ε2, α2b − β2a)]L(p, −q).

(ii) If ε2 = 0 (that is, α2/β2 = p/q), then M is a connected sum of lens spaces

L(ε1, −β1)]L(p, −q).

Here we regard L(±1, Q) (�S 3) and L(0, Q)(�S 1 × S 2) for any Q as lens spaces.

P. Let Lp,q be the link L in the proof of Lemma 6.1. Then L1,1 is the (3, 3)-torus
link. We set L1,1 = L̂ = K̂1 ∪ K̂2 ∪ K̂3. Let m̂i and l̂i be a meridian and a longitude of
K̂i (i = 1, 2, 3), respectively.
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0
p
a

F 11. Seifert fiber space (Bp,q; α1/β1, α2/β2).

Let h : EL→ EL̂ be a homeomorphism inducing an isomorphism h∗ : H1(EL)→
H1(EL̂) such that

h∗([m1]) = [m̂1], h∗([l1]) = [m̂1]−pq+1[l̂1],

h∗([m2]) = [m̂2]q−b[l̂2]−b, h∗([l2]) = [m̂2]−p+a[l̂2]a,

h∗([m3]) = [m̂3]a[l̂3]−p+a, h∗([l3]) = [m̂3]−b[l̂3]q−b.

By the relations,

h∗([m1]α1 [l1]β1 ) = [m̂1]α1−β1(pq−1)[l̂1]β1 ,

h∗([m2]α2 [l2]β2 ) = [m̂2]α2(q−b)−β2(p−a)[l̂2]−α2b+β2a,

h∗([m3]) = [m̂3]a[l̂3]−p+a,

and hence M is the result of ({α1 − β1(pq − 1)}/β1, {α2(q − b) − β2(p − a)}/(−α2b +

β2a), a/(−p + a))-surgery along the (3, 3)-torus link. By [KS, Theorem 3.3(3)], if
ε1ε2 , 0, then M is a Seifert fiber space over S 2 with at most three singular fibers
whose indices are(

−1;
β1

ε1
,
−α2b + β2a

ε2
,
−p + a

p

)
=

(
0;
β1

ε1
,
−α2b + β2a

ε2
,

a
p

)
,

see Figure 11. Other cases are obtained from it. �

R 6.3. The convention on lens spaces in [KS] is different from that in the present
paper. Theorem 1.5 corresponds to the case α2 = 0 and β2 = 1 in Theorem 6.2(2), and
we can deduce Theorem 1.5(2) from Theorem 6.2(2) after some deformations.

7. Lens space surgeries along Am,n other than (r, 0)-surgery

In contrast to the case of Bp,q in Section 6.4, to determine all Dehn surgeries
along Am,n is a hard problem. Related to Conjecture 1.11, in Sections 7.1 and 7.2,
we compute the Reidemeister torsions of M in the cases: (1) α1/β1 = mn; and (2)
α1/β1 = 7 for (m, n) = (2, 3), respectively.

7.1. The case (Am,n; mn, r). For Am,n = K1 ∪ K2, we compute the Reidemeister
torsions of M = (Am,n; mn, r). We set r = α/β, where α and β are coprime integers
with β ≥ 1, and P = (m + n)2β − mnα. Let d(≥2) be a divisor of P.
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We use the notations E, M1 and M defined in Section 2.1. By the similar way to
Section 4.1, we have two lemmas.

L 7.1. We take integers u and v as (m + n)u − mnv = 1, and set T = [m1]u[m2]v in
H1(M1). Then:

(1) T is a generator of H1(M1);
(2) [m1] = T m+n and [m2] = T−mn.

L 7.2. Let T be the generator of H1(M) which is induced by that of H1(M1) in
Lemma 7.1. Let ψd : Z[H1(M)]→ Q(ζd) be a ring homomorphism such that ψd(T ) =

ζd. Then the core of V2 (that is, [l2]) is mapped to ζ(m+n)2δ−mnγ
d by ψd, where γ and δ

are integers such that αδ − βγ = −1.

L 7.3. The integer (m + n)2δ − mnγ is coprime to P.

P. We have (
α β
γ δ

) (
−mn

(m + n)2

)
=

(
(m + n)2β − mnα
(m + n)2δ − mnγ

)
. (7.1)

Since αδ − βγ = −1, the matrix is invertible over Z, thus we have

gcd((m + n)2β − mnα, (m + n)2δ − mnγ) = gcd((m + n)2, mn) = 1.

This concludes the proof. �

T 7.4. The Reidemeister torsion of M related with ζd is as follows:

τψd (M) �
ζmn

d − 1

(ζm
d − 1)(ζn

d − 1)(ζ(m+n)2δ−mnγ
d − 1)

.

P. We use the surgery formula II (Lemma 2.5). By Lemmas 7.2 and 7.3,
ζ

(m+n)2δ−mnγ
d is a primitive dth root of unity. By the Alexander polynomial of Am,n

in Theorem 3.2, Lemmas 7.1, 7.2 and 5.6, we have the result. �

By the Franz lemma (Lemma 2.10), τψd (M) is equal to the Reidemeister torsion of
a lens space if and only if

m ≡ ±1, n ≡ ±1 or (m + n)2δ − mnγ ≡ ±mn mod P.

L 7.5.

(1) If β = 1, then M has the same Reidemeister torsions as a lens space L(P, ±mn),
where nn ≡ 1 mod P.

(2) (m + n)2δ − mnγ ≡ ±mn mod P is equivalent to β ≡ ±1 mod P.
(3) Suppose that α < 0, and M has the same Reidemeister torsions as a lens space.

Then we have β = 1.

[44] Lens space surgeries along certain 2-component links 121

https://doi.org/10.1017/S1446788713000372 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788713000372


–2
m
n

n
m

F 12. Seifert manifold (Am,n; mn, α/β).

P. (1) If β = 1, then we can take γ = 1, δ = 0, thus (m + n)2δ − mnγ ≡ ±mn
mod P.

(2) Suppose that (m + n)2δ − mnγ ≡ ±mn mod P. Then by (7.1), it holds that(
−mn

(m + n)2

)
≡

(
−δ β
γ −α

) (
0
±mn

)
=

(
±βmn
∓αmn

)
mod P,

hence β ≡ ±1 mod P. Conversely, suppose that β ≡ ±1 mod P. Then we can take
γ ≡ ±1, δ ≡ 0 mod P, thus (m + n)2δ − mnγ ≡ ±mn mod P.

(3) P = (m + n)2β − mnα = (m + n)2β + mn|α|. By the assumption 2 ≤ m < n, it
holds that m . ±1 and n . ±1 mod P. Since 0 < β < P − mn|α|, we have β = 1. �

Extending the Kirby calculus in [Yam3], one can prove the following lemma.

L 7.6 (An extension of [Yam3]). The surgered manifold (Am,n; mn, α/β) is a
Seifert fiber space over S 2 with at most three singular fibers whose indices are(

−2;
n
m
,

m
n
, −
α

β

)
,

see Figure 12.

As a corollary, we can prove some lens space surgeries.

C 7.7. The surgered manifold (Am,n; mn, α/β) is a lens space if and only if
β = 1 (thus P = (m + n)2 − αmn) and the lens space is L(P, mn), where nn ≡ 1 mod P.

P (Using Lemma 7.6). We apply [KS, Lemma 2.2] to the description in Figure 12
in the case β = 1. Then the manifold is L(P, Q) with

P = (m + n)2 − αmn, Q = mx + {m(α − 2) − n}y,

where x, y are coprime integers satisfying nx + my = 1, and it holds that

nQ = mnx + {mn(α − 2) − n2}y

≡ mnx + {(m + n)2 − 2mn − n2}y mod P

= mnx + m2y

= m(nx + my)

= m. �
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0

7 7

4 2 –3

F 13. Lens space (A2,3; 7, α/β).

7.2. The case (A2,3; 7, r). We set (m, n) = (2, 3), r = α/β, where α and β are coprime
integers with β ≥ 1 and P = 25β − 7α. Let d(≥2) be a divisor of P. We compute the
Reidemeister torsions of M = (A2,3; 7, r).

T 7.8. Let ψd : Z[H1(M)]→ Q(ζd) be a ring homomorphism which maps a
generator of H1(M) to ζd. Then we have

τψd (M) � (ζd − 1)−1(ζ7γ−25δ
d − 1)−1,

where integers γ and δ satisfy αδ − βγ = −1.
In particular, M has the same Reidemeister torsions as a lens space L(P, ±(7γ −

25δ)).

We can verify the lens space surgeries.

L 7.9. The surgered manifold (A2,3; 7, α/β) is a lens space L(25β − 7α, 2α − 7β).

P. We modify the Kirby calculus in Figures 7 and 8 as in Figure 13. �

8. Final remarks

In this section, we give some remarks concerning our results.

8.1. Alternative proof for Theorem 1.4(1). At the beginning of our study, the
authors did not know whether (Am,n; ∅, 0) is proved to be non-Seifert, and our method
by Reidemeister-Turaev torsion works without the knowledge. In fact, we are
interested in the condition on the Alexander polynomial for a link to admit a lens
space surgery.

In the preparation of this paper, K. Motegi informed us that (Am,n; ∅, 0) is proved
to be non-Seifert. We give an alternative rough proof of Theorem 1.4(1) by assuming
(Am,n; ∅, 0) is non-Seifert and by using the cyclic surgery theorem [CGLS].

P  T 1.4(1) (Using the results in [DMM1, DMM2, CGLS]). We set
M = (Am,n; r, 0) (r ∈ Q). By the cyclic surgery theorem [CGLS], only r = mn − 1 or
mn + 1 can be a solution of Problem 1.1 other than r = mn.

Case 1: r = mn − 1.
This case does not occur by Lemma 4.5(2).
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Case 2: r = mn + 1.
By Lemma 4.3,

τψ
′
d (M) � (ξm−1 − 1)(ξm+1 − 1)(ξ − 1)−2(ξm − 1)−2,

where ξ is a primitive dth root of unity (d | m + n and d ≥ 2). If M = (Am,n; mn + 1, 0)
is a lens space, there exist integers i and j such that gcd(i, m + n) = gcd( j, m + n) = 1,
as in (4.7):

(ξm−1 − 1)(ξm+1 − 1)(ξi − 1)(ξ j − 1) � (ξ − 1)2(ξm − 1)2.

Similarly to the proof of Lemma 4.10, using the Franz lemma [Fz] (Lemma 2.10),

{±(m − 1), ±(m + 1), ±i, ± j mod m + n} = {±1, ±1, ±m, ±m mod m + n}

as multiple sets. It has a unique solution (m, n) = (2, 3) with (i, j) = (1, 3). Thus we
have r = 7. �

8.2. Algebraic generalization. Our main theorems can be extended to the cases of
2-component links in homology 3-spheres with the same Alexander polynomials as
Am,n and Bp,q.

T 8.1. Let Lm,n be a 2-component link in a homology 3-sphere with the same
Alexander polynomial as Am,n (Theorem 3.2). If (Lm,n; r, 0) is a lens space, then
we have r = mn, or r = 7 for (m, n) = (2, 3). Moreover, we have (Lm,n; mn, 0) �
L((m + n)2, ±mn) or (L2,3; 7, 0) � L(25, 7) respectively, where nn ≡ 1 mod (m + n)2.

T 8.2. Let L′p,q be a 2-component link in a homology 3-sphere with the same
Alexander polynomial as Bp,q (Lemma 6.1). If (L′p,q; α/β, 0) is a lens space, then we
have |α − pqβ| = 1. Furthermore, in this case, we have (L′p,q; α/β, 0) � L(p2β, ±α).

We remark that the converses of the theorems above do not always hold in general.
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