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A CRITERION FOR THE PARITY OF THE CLASS

NUMBER OF AN ABELIAN FIELD WITH PRIME

POWER CONDUCTOR

KEN-ICHI YOSHINO

Introduction

Let/ be a positive integer such that / ^ 2 (mod 4). Let h0 be the class num-

ber of the maximal real subfield of the/th cyclotomic field Q(ζ/). It is interesting

to determine when h0 is even. Kummer [11] investigated this problem when/ is a

prime and showed that if h0 is even, then the relative class number h of the cyc-

lotomic field is even (Satz III). Moreover he gave another necessary condition for

h0 to be even (Satz IV). In [7] Hasse gave a necessary and sufficient condition for

h to be even (Satz 45). On the other hand G. Gras and M.-N. Gras [6] gave a

criterion for the parity of the class number of a cyclic extension of Q of odd

prime degree (Theoreme III2, Corollaires III2 and III3). Moreover G. Gras [5]

generalized the criterion for an abelian extension of Q of odd degree (Theoreme

III. 2 and Corollaire IV. 2). In this paper, by using Rummer's method in [11] and

elementary argument, when / is an odd prime power pr, we shall simplify

Theoreme III. 2 in [5] and give a simple criterion for the parity of the class num-

ber of a real subfield of Q(ζ/). Our result is also related to Cornell and Rosen [3].

They showed that if / is divisible by at least five primes, then h0 is even and that

if / is divisible by exactly two, three or four primes, so is hQ under certain condi-

tion respectively (Theorem A, Propositions 5 and 6). Their method in [3], however,

does not yield anything when / is a prime power. In section 1 we shall state our

main results, i.e., Theorems 1 and 2 and their Corollaries. Among them, Theorem

1 is a simplification of Theoreme III. 2 in [5] under the condition t h a t / is a prime

power and takes a fundamental role to prove our criterion for the parity of the

class number of a real subfield of Q(ζ^) . In section 2 we shall prove Theorem 1

and Corollary by using four Lemmas. In section 3 we shall prove Theorem 2 and

Corollary. In section 4 we shall give a few properties of invariants pL and βL
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defined in section 1. In section 5 we shall give all the values of odd prime

p < 3000 such that the class number of the maximal real subfield of the p th cyc-

lotomic field is even (cf. [1], [13] p. 230).

The author would like to thank the referee for giving many helpful comments.

1. Notations and result

Let p be an odd prime and r a positive integer. Let g be a primitive root mod-

ulo p and g{ the least positive residue of g modulo p for every i ^ Z. Then

Si+φ(pr) = 8i f° r every i ^ Z, where φ is the Euler totient function. Let ζ = ζpr =

cos(2π/pr) + \/— 1 sin(2π/pr). This is a primitive prth root of unity. For every

i ^ Z, we put

which is called a cyclotomic unit of Q(ζ + ζ ). Putting n — φ(pr) /2, we have
εn+ί = ει f° r e a c n ί e Z and εoεj sw_: = — 1. Let Eo be the group of units of

Q(ζ + ζ ) and Ec the subgroup of Eo generated by cyclotomic units, i.e. Ec ~

(ε0, εv . . . , εn_1}. Let h0 be the class number of Q(ζ + ζ ). Then it is well

known that h0 = [Eo: Ec] (cf. [7]). For every i e Z, we let ct — 0 or 1 according

as ε, is positive or negative. We note that 2g{ — 2gi+1 = gi+s — gi+ι+s ± prc{ and

therefore that c{ = gi+s — gi+1+s (mod 2), where s is the integer such that gs = 2,

1 < s< φ(pr).(cl[ll]l

Let L be a real subfield of Q(ζ) and m the degree of L. We denote by EL the

group of units of L and by ECL the subgroup of EL generated by the cyclotomic

units of L, i.e., ECL = <7?0, ηl9..., rjm- ) , where i\i = NQ(ζ+ζ-i)/L(εt) for every i e

Z. Then the class number /zL of L is represented by /zL = [EL: Ec ]. We let dt =

0 or 1 by

rf, = Σ c i + w i (mod 2)
0; = 0

for every i ^ Z. We note that d{ = 0 or 1 according as η{ is positive or negative

and that di+m = i/; for every i ^ Z. We then define the m by m matrices

ML = (di+j)0<u<m and M* = W f_ ;)0^^<«.

These matrices ΛίL and ML are concerned with the Demjanenko matrix (cf. [8],
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[12]). Using these matrices ML and ML , we give a criterion for the parity of the

class number of L. Let F 2 = Z/2Z. For any matrix M with coefficients in Z, let

rank F M denote the F2-rank of M, namely, the rank of the reduction of M modulo
(ML\

2. Let pL and μL be the F2-defects of ML and I * I, respectively. That is, we let
\ML I

I ML
pL = m- rankjJlί j, μL = m - rank F 2 ( *

\ IVl £

Then 0 < μL < pL < m.

Now we denote by ECL the group of totally positive units in ECj. Let EUL be

the group of primary units in ECv i.e., EUL — iη ^ ECL a = η (mod 4) for some

integer a ^ L) (cf. [9] §59, §61). Let σ be the generator of the Galois group of

Q(ζ) over Q such that ζσ = ζg. The aim of this paper is to prove the following

theorems and corollaries.

THEOREM 1. Let p be an odd prime. Let L be a real abelian field of degree m

with conductor p (r i> 1). Let x0, xv . . ., xm^1 be rational integers. Then TIQΪ}^

y}x™:\ e EUL if and only if η^yf^η^2 rf^ e E^ Therefore EUL is characte-

rized by EUL = {η^η*1 ' * ηlf'l ^ ECL M*x = o (mod 2)}, where x = ι(x0, xl9.. .,

xm-ι) is the transpose of (x0, xlf. . ., xm^ and o is the zero vector of size m.

Remark 1. Theorem 1 is a simplification of Theoreme III. 2 in [5]. In fact,

since ϊji = ΐ]l for every i e Z, we have ECL = η0 ° . We consider the automorph-

ism of Z[σ] induced by σ—• σ~ . By the automorphism, each element ^o0^^1 * * *

Vm-l = Vo of EUL IS corresponding to )]0

0 m =

^ 0 ^ 1 Vm-1 O f &CL

Our criterion for the parity of the class number is as follows.

COROLLARY. Let p be an odd prime. Let L be a real abelian field with conductor

p (r ^ 1) and hL the class number of L. Then hL is even if and only if μL > 0.

THEOREM 2. Let p be an odd prime and r a positive integer. Let K be an imagin-

ary abelian field with conductor p . Let KQ be the maximal real subfield of K and hκ

the relative class number of K. Then hκ = det MKQ (mod 2).

COROLLARY. For an imaginary abelian field K with conductor pr, hκ is even if

and only if pκ > 0.
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Remark 2. For an imaginary subfield K of Q(ζy), it follows from the above

two Corollaries that if hκ is even, then hκ is even, since pκ > μKo > 0.

2. Proof of Theorem 1 and Corollary

Let p be an odd prime. Let L be a real subfield of Q(ζ) not contained in

Q(ζ ), where ζ = ζpr. Let hL be the class number of L, m the degree of L and

w — #>(/>r) /2. To prove Theorem 1, we need the following three lemmas. From

now on, for the sake of simplicity of notations, we put Ec = ECL, EC = ECL and

LEMMA 1. Let η = ΐj^ηi * * * TJtn^i be a unit of Ec. Then η ^ Ec if and only

if MLx = o (mod 2), where x = (xOf xv - - - f xm_1) and o is the zero vector of size

m. Therefore #Ec/E2 = 2H.

Proof. It is obvious from the definition of ML and pL.

LEMMA 2. Let s be the integer such that gs = 2, 1 < 5 < φ(pr). Then Eυ =

{η e Ec η2 = ησ (mod 4)}.

Proof. Suppose that η ^ Eu. Then there is an integer a such that a = η

(mod 4). Here a is written as a = Σ j i V ^ C ' C ^ e Z). So we have α 2 =

Σ r Γ - 1 ^ ζ 2 ' = a"' (mod 2). Hence α 4 = a2σ* (mod 4). Therefore rj2 = α 4 = α2<τS

= ϊ] (mod 4). This completes the proof.

LEMMA 3. Σ pr ^b = — 9 Su for eveγy u e Z.
A 1 1 r °
6 = 1 1 - ζpr

Proof Let ζ = ζpr and 5 = Σ r. Then we note that 5 is a real num-

ber. Putting a = gu, we get

1 ΠP r ί
c = y —2 = y

1 1 Ί

— H =
ζ f c 1 - ζ * J

+ A +
b

y

i>r-1 r 1 1 1
_ [e^αft «-(«-!) ft c^2ft «^ft ^ e^
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Thus we obtain the desired equation.

Proof of Theorem 1. We note that it suffices to show the equivalence in the

case L = Q(ζ 4- ζ ). In fact, since r\ι — Λ^Q(ζ+ζ-i)/I(εί ) for each i €= Z, we have

VO VI Vfw-l 1 1 /=0 1 1 ;=o e ί + W 1J-ί = 0 1 1 ; = o £ ί + w ; a n α VO VI Vra-1

Π^o Πj^0 ε ^ ^ = Π / = o Π^ o ε*^™', where x ί + m ;

 = x{ for any ί, j €= Z. In the

case / = p(r= 1), Kummer essentially showed that if ε^ε^1 ε ^ 1 e Ev, then

εo°ε1

>l"1ε2n"2 * * * εwLχ e ^ c ([11] p. 866 ~ p. 868). Now, in order to prove the con-

verse in the case / = p, we summarize his proof as follows: Let 5 be the integer

such that gs = 2, 1 < s < φ(p). Let a be the number of Q(ζ + ζ" 1 ) such that ε\

— £Q = 2aεσ

0 . Then

-I "I

α = H — (mod 2),
l - ζ2 l - C

where both numbers are 2-integral. Putting ε = ε^ε^ε*2 * * * ε^ i , we get

+ 2 Σ i / ' ] (mod 4).
1=0 J

2 _

Hence, by Lemma 2, ε e EΌ if and only if Σ"=£ xta
σ' = 0 (mod 2). The latter

condition is equivalent to

l)^0 (mod 2).

Here we replace ζ by ζa. Multiplying ζ~ ag in both sides, summing them with re-

spect to a — 1,2, *, p — 1 and using Lemma 3 (r = 1), i.e.,

we have Σ ^ Γ 0

1 ^ ( ^ +1_ ί - ^_,) = 0(mod2) for every . Since q = gi+s - gi+1+s

(mod 2), we obtain Σ^ΓQ xick_ι, = 0 (mod 2) for every /c. This implies that

e X " " 1 ^ 2 ε£_! e ^ by Lemma 1.

Now we consider the converse in the case / = p. By above argument it suf-

fices to show that Σ^ = o Xi(gj+ί-i ~ gj-t) = 0 (mod 2) for every j implies
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— 1n-1 /

Σ xλ
\

7 + ^ = 0 (mod 2).

This is proved as follows. Indeed,

pΣxλ — + —)=ΣχtΣk(ζ -ζ )
i=o x ι — r2g \ _ r28 ' ι=o A=I

# w (ζ - ζ )
M=0

n-1 p-2

= ΣχtΣ (gu - gu-ι)
i

i

g

i=Q

Here we replace the lattice point (ί, u) in the region 0 < i, u and i + u < n — 1

by the point (ί, u + 2«) and put k = i + u, where 2w =/> — 1. Then, since

gu+p-i = 8u, we have

n—\ I

ί=o ^

— 1 1 \ 3n-2 k n-1

7 "I ^ ) = λ ζ Σ, Xi\gk-i — gk-i-0 = 0 (mod 2).
~-C i - ζ 2 ί 7 *—1 i=0

Thus Theorem 1 is proved in the case f — p.

Next, by induction, we shall prove Theorem 1 in the case / = pr(r > 1). That

is, we assume that the assertion in Theorem 1 is true in the case j ' — pr and

prove that it holds true in the case f — p. Let N be the norm from Q(ζpr +

ζpr1) to Q(ζ^-i + ζ Λ) and let n = φ(pr) /2, m = φ(pr~l) /2 . We denote by

Ec and Eυ the groups Ec and Eυ for L — Q(ζpr + ζpr), respectively. Similar-

ly we use the notation ct

r and gt

r for / = pr. Let ζ = ζpr and ζ 0 = ζpr-i. Then

N(Ecir)) £ £ c ( r " " υ a n d NiE™) £ fi^"".

Now suppose that ε = ε^ε^1 * * ε ^ 1 ^ JBJ' . This implies that

Σ xi 7 + —) Ξ 0 (mod 2).
t-o i - ζ j _ ζ

W e s h a l l s h o w t h a t εo°ει

n~1 * * sni.x ^ Ec . B y a s s u m p t i o n w e h a v e N(ε) —

Niε^ε*1 ' ' ' ε^Zi) = V^rfi ' ' ' rfm-l e Ej , where rj, = iVίε,-) and y{ = Σfϊ^

xi+jm for every i. Multiplying ζ * in both sides of the above congruence, replac-

ing ζ by ζa and summing them with respect to a e {1,2,. . ., pr — 1} prime to p,

we obtain

Σ x, Σ ( ^ ,„„, + s

 W M ) = 0 (mod2).
ί=o α=i

(β,ί)=l

Hence
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Σx{ Σ ( — — r + )̂ = 0(mod2).

Here we divide the left side into two parts, i.e.,

, tr—l / fbg'*1'* ts—bg'"1 . , tr~ι—1 / pbgi+ι~ι p—bg

i 1 \ "1 f ^ 1 9*b I . . < \ "I >^^ "I

ι=° b=ι χ l - ζ l - ζ 7 *=o δ = 1 v l - ζ 0 l -
Therefore it follows from Lemma 3 that

n-\ . . . . n-\ . Λ. . Λλ

Σ / yy) \Y)\ v~τ / \Y—1^ \Y —1)\ f\ / t r\\

Xi(g,+ι-i ~ gj-i) ~ Σ Xi(gj+ι-i ~ gj-i ) = 0 (mod 2).

Let s — s r and s0 = s r be the integers such that g s

 = SSQ — 2,1 < 5

pr) and 1 < s0 < φ(pr~l). Thus

Σ XiclZ-s ~ Σ xιc
<

j

rSιl
)

So = 0 (mod 2),
ί=0 ί=0

since c[ = gjls — gilι+s (mod 2) for every i. By the assumption of induction,

VoVi ' ' ' Vm-l e EΌ implies 17O ̂ 7i ' " ?*-i G 5 c , i.e., Σ ί = 0 y,^., = 0

(mod 2) for every A:. Therefore

n. i
n—1 . , w—1 w . . m—\

Σ {r—Ϊ) v̂  v̂  (r—l) \-Λ (r—1) r\ / 1 o\

x,c,_(_Io= Σ Σ x^,,*^,-^., = Σ ί,^-, Ξ O (mod 2).
ί=0 ί=0 fc=0 i=0

Here we note that c;

('7-L/c-s0

 = c;-7-s0

 T n u s w e n a v e Σ*Γo ̂ - ^ ^ Ξ 0 (mod 2) for

every /c, which shows that ε^ε^"1 * * ε̂ Li G £ c ( r )

Conversely, we show that if ε = ε^ε^"1 * * * ε^1_1 ^ EQ r, then ε^ε^1 * * z%-\

€= £^ . By above argument it suffices to show that if Σ ί = 0 %iCk_t = 0 (mod 2)

for every kf then we have

— 1 1 \
Γ̂ = 0 (mod 2).

-j -j -j -|

Put Hit) j H — and i/0(?) = 7 H — for every i.

Then, noting that H0(i + m) = — / / Q ( 0 for every ί, we have

n-l n-1 ί r - l f f + 1

p Σ, xιH(ι) = Σ, Xi Σ, /c(ζ — ζ )
ί 0 ί0 k0

= Σ Xi Σ Λ(ζ - ζ ) + / > Σ χ f Σ /c(ζ0 - ζ0 )
ί = 0 fc=0 i=0 k=Q

Uc,p) = l
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= Σ χt, Σ gu (ζ - ζ ) +ρ Σ xfJϊo
ί=0

n Ί

n-l 2n-l i+u m-1 m L

^ "%i ^ ^&u £u—l'^> P ^ ^ ^i+mj-^O^ WIJ)

3n—2 k n-l m—ί m~

= Σ C Σ i ^ V ^ Σ Σ xi+miHΰ(i) (mod 2)
k=n-l ί=0 i=0 ;=0
w - 1

= Σ yiHQ(i) (mod 2).
ί=0

Here, by the assumption of induction, we use the following fact: Tj^rf^1'1 * ϊ]v^1

^ Ec implies η^ril1 ' * * τfm-l e Eu » which is equivalent to Σ™=0 ytHQ(i) =

0 (mod 2). Therefore we obtain

*Σ XiH(i) = nΣ xi ~ 1 . + —-) = 0 (mod 2).
t = 0

 l

 ί = 0 X - r2g{

 1 r2gt+11

Thus the equivalence in Theorem 1 is proved. The characterization of fij' is easi-

ly deduced by Lemma 1. This completes the proof of Theorem 1.

LEMMA 4. Let L be a real abelian field with conductor p . Then hL is even if and

only if El/E2

C Π EΌ/E2

C Φ {1}.

Proof. Suppose that hL is even. Since hL = [EL: Ec], there exists a unit ε of
9 9 9 9 L. o

£ L such that ε ^ Ec and ε ^ i?c. Therefore ε Ec Φ Ec is an element of i? c / £ c

n £ί//£c

Conversely, if E* /Έ2

C Π ̂ / ^ ^ ίlK there is a unit ε of Ec Π ̂  which

is not contained in Ec. Here we may assume that L(\fε) /L is an extension of de-

gree 2. Because yfε ̂  L implies that hL = [EL: Ec] is even. Therefore, since ε ^

Ey, it follows from Satz 120 in Hecke [9] that any prime ideal of L is unramified

in L{yfε) /L. On the other hand L(yfε) /L is also unramified at all infinite prime

divisors of L, because ε is totally positive. This implies that hL is even.

Remark 3. Combining Lemma 4 with Theorem 1, we easily obtain that if

pL > [m/2], then hL is even, where [ ] is the Gaussian symbol. However the con-

verse is not valid in general. For example, let L be the real cyclic field of degree

31 with conductor 116933. Then we have μL = pL = 10, so that 2 | hL. On the

other hand, if L is the subfield of Q(ζ 3 π) of degree 31, then μL = 0 and pL —

10. So we have 2 X hL. Therefore these examples show that the parity of class

number of a real abelian field L with prime conductor is not determined by pL.
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Proof of Corollary. We consider the homomorphism φ from Ec into the set of

vectors of size m with components in F 2 , which is defined by

Ύ)X°Ύ)Xl τ)Xm~ι ι-> ' fr~ ~r r )
'JO Vl 7Jm-l v«*0» Xl> > Xm-1' >

where Έt = xt + 2Z for each i. Clearly the kernel of φ is E% Let XL =

φ(Ec) and YL = φ{Ev). Then, by Lemma 1 and Theorem 1, we have

XL = {x MLx = o} and YL = {x ML x = o},

where x = (5"0, xj, * , 5 ^ ) and o is the zero vector of size m. Hence we obtain

where o is the zero vector of size 2m. So the definition of μL shows that # {XL Π

FL) = 2UL. Therefore it follows from Lemma 4 that hL is even if and only if XL Π

YL Φ {o}, i.e., μL > 0. This completes the proof of Corollary of Theorem 1.

3. Proof of Theorem 2 and Corollary

Let p be an odd prime. Let K be an imaginary abelian field with conductor pr,

i.e., an imaginary subfield of Q(ζ) not contained in Q(ζ ), where ζ = ζpr. Let hκ

be the relative class number of K. Let KQ be the maximal real subfield of K. Let m

be the degree of Ko. Regarding Ko as L, we use the same notations as in section 1.

Let Qκ be the unit index of K and wκ the number of roots of unity in K. The rela-

tive class number hκ is given by

* 1 / ( X l )

where χx runs through the odd characters of K and f(χj) is the conductor of χ1

(cf. [7]). Here we notice that for any odd character χx of K

\ Z(Xχ) J pr

77—Y Σ χM)a = — Σ χγ(a)a.

Therefore, since 0 ^ = 1 and wκ — 2p, where b = r or 0 according as K —

Q(ζ) or not, we have

m-\ \ Pr-l

hκ = 2p I Π — - Σ χ ; + (α)fl |,

Here χ is a generating character of K. Put a — χ(g). Then α is a primitive 2mth
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root of unity. So putting F(x) = Σt

nJQ 8ix% where 2n = φ(pr), we obtain

I -" F(a ) |.

We put Λ, = Σ J ; 1 ft+2my for any ι. Then, on {α* | * e Z}, FCr) = Σ^'1 Atx*

since α = 1. Hence, for any odd integer k, we have

2m-1

(1 - a'k)F(a) = Σ 04, - 4 + 1 )α"

m—\ m—\

ί=0 i=Q

m-\

ί=0

u A \ A Prψ(pr>) £ Λ km Λ ,

because A{ -r Ai+m = — o * o r a n y ι a n c^ a = " 1 loi

obvious that H™JQ (1 — a~2]~ι) = 2. Hence, putting G(x) = ΣfJ^1 (At — Ai+ι)x\

we have

prm~X = I G(a)G(a3) • • • Gία2"1"1) | = | detO4 ί W - A,+i+1)OiίU<m |.

Here, as to the second equality, we refer to the probrem 5 in [2] p. 367. Since

n/m is odd, we set n/m = 2υ + 1. Then

2υ 2υ

A t+s Ά i+s+1 ^-* {έ>i+s+2mj Mi+s+l+2mj' = *-» ^i+2mj vIΏOCl Δ)
; = 0 ;=0

v 2υ v υ—1

ι2~ι ~τ 2Lι iCt+2mj ~~ 2u Ci+2mj ~*~ ^ ^i+2m(j+v+l)
;=0 j=v+l ; = 0 ; = 0

v v—1 2v

— 2J ci+2mj i 2J ci+m+2mj — 2u ci+mj.
; = 0 j=0 ;=0

Therefore Ai+S — Aΐ+S+1 = d{ (mod 2) for any i. Thus we obtain

Â  = det(A f+i - Ai+j+1) = άet(Ai+j+s - Ai+j+s+ι)

= άet(di+j) = άetMKo (mod 2).

This completes the proof of Theorem 2. Corollary is an immediate consequence of

Theorem 2 by the definition of pκ.

4. Properties of pL and μL

In this section we shall give three properties of pL and μL, which are useful to
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calculate pκ and μκ for the maximal real subfield K of Q(ζ^) . We note that p Q =

PROPOSITION 1. Let L be a real subfield ofQ(ζpr) and F a subfield of L. Let h*

be the relative class number of Q(ζy) and a the integer such that 2 \\ h . Then pF

< pL< a. Moreover, if pF — pL, then μF — μL.

PROPOSITION 2. Let F ^ L be real subfields of Q(ζpr). Suppose that L/F is an

extension of 2-power degree. Then μF — 0 (resp. pF — 0) if and only if μL — 0 (resp.

PL = 0).

PROPOSITION 3. Let F ^ L be real subfields of Q(ζpr). Suppose that L/F is an

extension of prime degree I > 2. Let f be the order of 2 modulo I. Then pL = pF and

μL = μF (mod/).

We here prove Proposition 1. Let K be the maximal real subfield of Q(ζ^) .

We first show that pκ < a. Let n = φ(pr) /2 and A = (gi+j — gί+j+ι)o<ιJ<n. By

the proof of Theorem 2 we have prn rh = \ άetA\. Here we note that gi+s —

gi+s+i = ct (mod 2), where s is the integer such that gs — 2, 1 < 5 < φ(pr).

Therefore the reduction modulo 2 of Mκ — (ct+J)0<tJ<n equals (gt+J+s ~~

gt+]+s+ι\<u<n> where g{ = gt + 2Z for each i. Hence Mκ and A have the same

F2-rank n — pκ. Thus we obtain 2Pκ \ h , which implies pκ ^ a. Next we define

Xκ and Yκ for K just as XL and YL are defined for L in the proof of Corollary of

Theorem 1. Let m— [L:Q]. We consider the map i F^—-> F 2 which is defined

by

x^ (x, x,' - , x ) ,

where F™ is the direct sum of m copies of F 2 and x — (xQ, xv * , xm^. Then i

gives natural inclusions XL <^-> Xκ and YL C_> Yκ. Hence we have pL < pκ < a.

Similar argument shows that XF C^ XL and YF C_> YL. So pF < pL. Therefore the

assumption pF = pL implies that XF — XL and YF — YL. Thus we have μF — μL.

Most part of Proposition 2 is an immediate consequence of Theorems in [10]

and our Corollary of Theorem 1. But it is directly proved by using the matrices

ML and ML , etc. and by calculating their F2-ranks as follows. Indeed, since 0

< μF < μL% we may show that μF — 0 implies μL — 0, with assuming [L: F] — 2.

Let [F : Q] = m. Let d{ be the integer defined in section 1, that is, d{ = 0 or 1

according as r\i — NQiζ+ζ-ι)/L(εί) is positive or negative. Since [L: Q] = 2m, we
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have di+2m = dt for every i, and ML = (di+ί)0^u<2m9 M* = (<*,_,)<> £U<2«

Suppose that μF — 0, i.e., rank F z I ^ 1 = m. Then there are 2m by 2m matrix Q

\MF I
and m by m matrix R such that

where Em is »ί by m unit matrix and 0 is m by m zero matrix. Now, putting 4̂ =

(dl+j)O1ztj<m
 a n d -^ = (di+j+m)Oiί,j<m, then

5 A

and MF = A + B (mod 2) (cf. Proof of Lemma 3 in [14]). Then, by definition

A* B*

B* A*

where A* = (<*,_,)„<;,.,<,,, and 5 * = (d,_i+m)0^,J<m. Since M p * = / + 5 *

(mod 2), we have

= r a n k F 2 | 4 * R * j = rank F 2

= rank F

N M* 0

Therefore, using above matrices Q and R, we obtain

A MF

Q θ\l A* MF

0 Q) \MF 0
VM? 0

where I _ I = Q I * ] R- Thus we get μL = 0. Similarly we can show that pF =

0 implies pL = 0. This completes the proof of Proposition 2.

https://doi.org/10.1017/S0027763000006152 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000006152


PARITY OF THE CLASS NUMBER OF AN ABELIAN FIELD 175

Proposition 3 is proved as follows. Let m and n be the degrees of F and L,

respectively. As shown in the proof of Proposition 1, we may regard XF and YF as

subgroups of XL and YL, respectively. Then G(L/F) naturally acts on XL/XF,

that is, {Cr0, xl9. . ., xn_^)XFY = (xn_m, , xn_lf x0, xv * *, xn_m_)XF for any

Gr0, xί9''', xn-ι)XF

 e XL/XF and for a generator σ of G(L/F). Since [L: F] = /

is an odd prime, it easily follows that the orbit of every element of XL/XF except

1 has / elements. Hence 2PL~PF = 1 (mod/). Thus we obtain pL = pF (mod/).

Similarly applying above argument to XL Π YL/XF Π YF, we get μL = μF (mod

/ ) . This completes the proof of Proposition 3.

5. Numerical example

In this section we tabulate all the values of odd prime p < 3000 such that the

class number of the maximal real subfield K of Q(ζ^) is even. Since pκ > μκ > 0,

we may examine the primes p such that pκ > 0, i.e., 2 | h by Corollary of

Theorem 2, where h is the relative class number of Q,(ζp). For such primes py we

calculate the values of pκ and μκ by Gaussian elimination method and tabulate

them.

In the following table we denote by a the integer such that 2a || h , by L a

subfield with pL = pκ and by m the degree of L. Here, as the value of a, we use

the value of k in the Table III in [4].

Table. The values of pκ and μκ for the maximal real subfield K of the cycloto-

mic field with prime conductor p, 2 < p < 3000.

P
29

113

163

197

239

277

311

337

349

373

397

421

a

3

3

2

3

6

4

10

6

4

5

6

4

m

7

7

3

7

7

6

31

21

6

31

6

15

PL

3

3

2

3

3

4

10

6

4

5

4

4

3

3

2

3

3

4

10

6

4

5

4

4

0

0

2

0

0

4

0

0

4

0

4

0

463

491

547

607

659

683

701

709

751

827

853

883

a

3

6

2

4

3

5

3

4

4

6

2

6

m

7

7

3

3

7

31

7

6

15

7

3

63

PL

3

6

2

2

3

5

3

4

4

6

2

6

PK

3

6

2

2

3

5

3

4

4

6

2

6

0

6

2

2

0

0

0

4

0

6

2

0
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P
937

941

953

967

1009

1021

1051

1093

1117

1163

1171

1399

1429

1471

1499

1699

1777

1789

a

2

8

3

3

8

8

6

3

5

3

4

4

3

3

3

2

4

4

m

3

10

7

7

63

255

21

7

31

7

15

3

7

7

7

3

6

6

Pi

2

8

3

3

8

8

6

3

5

3

4

2

3

3

3

2

4

4

PK

2

8

3

3

8

8

6

3

5

3

4

2

3

3

3

2

4

4

μ
κ

2

8

0

0

2

0

0

0

0

0

0

2

0

0

0

2

4

4

P
1879

1951

2011

2131

2143

2161

2221

2297

2311

2381

2521

2591

2689

2797

2803

2843

2857

2927

a

2

2

4

2

3

4

4

3

5

6

3

3

2

4

2

3

3

6

m

3

3

15

3

7

15

15

7

21

14

7

7

3

6

3

7

7

7

Pi

2

2

4

2

3

4

4

3

5

6

3

3

2

4

2

3

3

6

PK

2

2

4

2

3

4

4

3

5

6

3

3

2

4

2

3

3

6

2

2

0

2

0

4

0

0

2

0

0

0

2

4

2

0

0

6
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