K. Yoshino Nagoya Math. J. Vol. 145 (1997), 163—177

A CRITERION FOR THE PARITY OF THE CLASS NUMBER OF AN ABELIAN FIELD WITH PRIME POWER CONDUCTOR

KEN-ICHI YOSHINO

Introduction

Let f be a positive integer such that $f \not\equiv 2 \pmod{4}$. Let h_0 be the class number of the maximal real subfield of the f th cyclotomic field $\mathbf{Q}(\zeta_f)$. It is interesting to determine when h_0 is even. Kummer [11] investigated this problem when f is a prime and showed that if h_0 is even, then the relative class number h^* of the cyclotomic field is even (Satz III). Moreover he gave another necessary condition for $h_{
m 0}$ to be even (Satz IV). In [7] Hasse gave a necessary and sufficient condition for h^{st} to be even (Satz 45). On the other hand G. Gras and M.-N. Gras [6] gave a criterion for the parity of the class number of a cyclic extension of ${f Q}$ of odd prime degree (Théorème III2, Corollaires III2 and III3). Moreover G. Gras [5] generalized the criterion for an abelian extension of ${f Q}$ of odd degree (Théorème III. 2 and Corollaire IV. 2). In this paper, by using Kummer's method in [11] and elementary argument, when f is an odd prime power p', we shall simplify Théorème III. 2 in [5] and give a simple criterion for the parity of the class number of a real subfield of $\mathbf{Q}(\zeta_{f})$. Our result is also related to Cornell and Rosen [3]. They showed that if f is divisible by at least five primes, then h_0 is even and that if f is divisible by exactly two, three or four primes, so is h_0 under certain condition respectively (Theorem A, Propositions 5 and 6). Their method in [3], however, does not yield anything when f is a prime power. In section 1 we shall state our main results, i.e., Theorems 1 and 2 and their Corollaries. Among them, Theorem 1 is a simplification of Théorème III. 2 in [5] under the condition that f is a prime power and takes a fundamental role to prove our criterion for the parity of the class number of a real subfield of $\mathbf{Q}(\zeta_{p^r})$. In section 2 we shall prove Theorem 1 and Corollary by using four Lemmas. In section 3 we shall prove Theorem 2 and Corollary. In section 4 we shall give a few properties of invariants ρ_L and μ_L

Received May 2, 1995.

defined in section 1. In section 5 we shall give all the values of odd prime p < 3000 such that the class number of the maximal real subfield of the p th cyclotomic field is even (cf. [1], [13] p. 230).

The author would like to thank the referee for giving many helpful comments.

1. Notations and result

Let p be an odd prime and r a positive integer. Let g be a primitive root modulo p' and g_i the least positive residue of g' modulo p' for every $i \in \mathbb{Z}$. Then $g_{i+\varphi(p')} = g_i$ for every $i \in \mathbb{Z}$, where φ is the Euler totient function. Let $\zeta = \zeta_{p'} = \cos(2\pi/p') + \sqrt{-1}\sin(2\pi/p')$. This is a primitive p'th root of unity. For every $i \in \mathbb{Z}$, we put

$$\varepsilon_i = \frac{\zeta^{g_{i+1}} - \zeta^{-g_{i+1}}}{\zeta^{g_i} - \zeta^{-g_i}} = \frac{\sin \frac{2g_{i+1}\pi}{p^r}}{\sin \frac{2g_i\pi}{p^r}},$$

which is called a cyclotomic unit of $\mathbf{Q}(\zeta + \zeta^{-1})$. Putting $n = \varphi(p^r)/2$, we have $\varepsilon_{n+i} = \varepsilon_i$ for each $i \in \mathbf{Z}$ and $\varepsilon_0 \varepsilon_1 \cdots \varepsilon_{n-1} = -1$. Let E_0 be the group of units of $\mathbf{Q}(\zeta + \zeta^{-1})$ and E_c the subgroup of E_0 generated by cyclotomic units, i.e. $E_c = \langle \varepsilon_0, \varepsilon_1, \ldots, \varepsilon_{n-1} \rangle$. Let h_0 be the class number of $\mathbf{Q}(\zeta + \zeta^{-1})$. Then it is well known that $h_0 = [E_0: E_c]$ (cf. [7]). For every $i \in \mathbf{Z}$, we let $c_i = 0$ or 1 according as ε_i is positive or negative. We note that $2g_i - 2g_{i+1} = g_{i+s} - g_{i+1+s} \pm p^r c_i$ and therefore that $c_i \equiv g_{i+s} - g_{i+1+s} \pmod{2}$, where s is the integer such that $g_s = 2$, $1 \leq s < \varphi(p^r)$. (cf. [11]).

Let *L* be a real subfield of $\mathbf{Q}(\zeta)$ and *m* the degree of *L*. We denote by E_L the group of units of *L* and by E_{C_L} the subgroup of E_L generated by the cyclotomic units of *L*, i.e., $E_{C_L} = \langle \eta_0, \eta_1, \ldots, \eta_{m-1} \rangle$, where $\eta_i = N_{\mathbf{Q}(\zeta+\zeta^{-1})/L}(\varepsilon_i)$ for every $i \in \mathbf{Z}$. Then the class number h_L of *L* is represented by $h_L = [E_L: E_{C_L}]$. We let $d_i = 0$ or 1 by

$$d_i \equiv \sum_{j=0}^{\frac{n}{m}-1} c_{i+mj} \pmod{2}$$

for every $i \in \mathbb{Z}$. We note that $d_i = 0$ or 1 according as η_i is positive or negative and that $d_{i+m} = d_i$ for every $i \in \mathbb{Z}$. We then define the *m* by *m* matrices

$$M_L = (d_{i+j})_{0 \le i,j < m}$$
 and $M_L^* = (d_{i-j})_{0 \le i,j < m}$.

These matrices M_L and M_L^* are concerned with the Demjanenko matrix (cf. [8],

[12]). Using these matrices M_L and M_L^* , we give a criterion for the parity of the class number of L. Let $\mathbf{F}_2 = \mathbf{Z}/2\mathbf{Z}$. For any matrix M with coefficients in \mathbf{Z} , let $\operatorname{rank}_{\mathbf{F}_2} M$ denote the \mathbf{F}_2 -rank of M, namely, the rank of the reduction of M modulo 2. Let ρ_L and μ_L be the \mathbf{F}_2 -defects of M_L and $\binom{M_L}{M_L^*}$, respectively. That is, we let

$$\rho_L = m - \operatorname{rank}_{\mathbf{F}_2} M_L, \quad \mu_L = m - \operatorname{rank}_{\mathbf{F}_2} \binom{M_L}{M_L^*}.$$

Then $0 \leq \mu_L \leq \rho_L \leq m$.

Now we denote by $E_{C_L}^+$ the group of totally positive units in E_{C_L} . Let E_{U_L} be the group of primary units in E_{C_L} , i.e., $E_{U_L} = \{\eta \in E_{C_L}; \alpha^2 \equiv \eta \pmod{4} \}$ for some integer $\alpha \in L\}$ (cf. [9] §59, §61). Let σ be the generator of the Galois group of $\mathbf{Q}(\zeta)$ over \mathbf{Q} such that $\zeta^{\sigma} = \zeta^{g}$. The aim of this paper is to prove the following theorems and corollaries.

THEOREM 1. Let p be an odd prime. Let L be a real abelian field of degree mwith conductor $p^r(r \ge 1)$. Let $x_0, x_1, \ldots, x_{m-1}$ be rational integers. Then $\eta_0^{x_0}\eta_1^{x_1}\cdots$ $\eta_{m-1}^{x_{m-1}} \in E_{U_L}$ if and only if $\eta_0^{x_0}\eta_1^{x_{m-1}}\eta_2^{x_{m-2}}\cdots \eta_{m-1}^{x_1} \in E_{C_L}^+$. Therefore E_{U_L} is characterized by $E_{U_L} = \{\eta_0^{x_0}\eta_1^{x_1}\cdots \eta_{m-1}^{x_{m-1}} \in E_{C_L}; M_L^* x \equiv \mathbf{0} \pmod{2}\}$, where $x = {}^t(x_0, x_1, \ldots, x_{m-1})$ is the transpose of $(x_0, x_1, \ldots, x_{m-1})$ and $\mathbf{0}$ is the zero vector of size m.

Remark 1. Theorem 1 is a simplification of Théorème III. 2 in [5]. In fact, since $\eta_i = \eta_0^{\sigma^i}$ for every $i \in \mathbb{Z}$, we have $E_{C_L} = \eta_0^{\mathbb{Z}[\sigma]}$. We consider the automorphism of $\mathbb{Z}[\sigma]$ induced by $\sigma \to \sigma^{-1}$. By the automorphism, each element $\eta_0^{x_0} \eta_1^{x_1} \cdots \eta_{m-1}^{x_{m-1}} = \eta_0^{x_0+x_1\sigma+\dots+x_{m-1}\sigma^{m-1}}$ of E_{U_L} is corresponding to $\eta_0^{x_0+x_1\sigma^{-1}+\dots+x_{m-1}\sigma^{-(m-1)}} = \eta_0^{x_0} \eta_1^{x_{m-1}} \cdots \eta_{m-1}^{x_1}$ of $E_{c_L}^+$.

Our criterion for the parity of the class number is as follows.

COROLLARY. Let p be an odd prime. Let L be a real abelian field with conductor $p^{r}(r \geq 1)$ and h_{L} the class number of L. Then h_{L} is even if and only if $\mu_{L} > 0$.

THEOREM 2. Let p be an odd prime and r a positive integer. Let K be an imaginary abelian field with conductor p^r . Let K_0 be the maximal real subfield of K and h_K^* the relative class number of K. Then $h_K^* \equiv \det M_{K_0} \pmod{2}$.

COROLLARY. For an imaginary abelian field K with conductor p^r , h_K^* is even if and only if $\rho_{K_0} > 0$.

Remark 2. For an imaginary subfield K of $\mathbf{Q}(\zeta_{pr})$, it follows from the above two Corollaries that if h_{K_0} is even, then h_K^* is even, since $\rho_{K_0} \ge \mu_{K_0} \ge 0$.

2. Proof of Theorem 1 and Corollary

Let p be an odd prime. Let L be a real subfield of $\mathbf{Q}(\zeta)$ not contained in $\mathbf{Q}(\zeta^p)$, where $\zeta = \zeta_{p^r}$. Let h_L be the class number of L, m the degree of L and $n = \varphi(p^r)/2$. To prove Theorem 1, we need the following three lemmas. From now on, for the sake of simplicity of notations, we put $E_c = E_{c_L}$, $E_c^+ = E_{c_L}^+$ and $E_u = E_{u_L}$.

LEMMA 1. Let $\eta = \eta_0^{x_0} \eta_1^{x_1} \cdots \eta_{m-1}^{x_{m-1}}$ be a unit of E_c . Then $\eta \in E_c^+$ if and only if $M_L x \equiv \mathbf{0} \pmod{2}$, where $x = {}^t (x_0, x_1, \cdots, x_{m-1})$ and $\mathbf{0}$ is the zero vector of size m. Therefore $\# E_c^+ / E_c^2 = 2^{\rho_L}$.

Proof. It is obvious from the definition of M_L and ρ_L .

LEMMA 2. Let s be the integer such that $g_s = 2, 1 \le s < \varphi(p^r)$. Then $E_u = \{\eta \in E_c; \eta^2 \equiv \eta^{\sigma^s} \pmod{4}\}.$

Proof. Suppose that $\eta \in E_{U}$. Then there is an integer α such that $\alpha^{2} \equiv \eta \pmod{4}$. Here α is written as $\alpha = \sum_{i=0}^{\varphi(p^{r})-1} x_{i} \zeta^{i} (x_{i} \in \mathbb{Z})$. So we have $\alpha^{2} \equiv \sum_{i=0}^{\varphi(p^{r})-1} x_{i} \zeta^{2i} = \alpha^{\sigma^{s}} \pmod{2}$. Hence $\alpha^{4} \equiv \alpha^{2\sigma^{s}} \pmod{4}$. Therefore $\eta^{2} \equiv \alpha^{4} \equiv \alpha^{2\sigma^{s}} \equiv \eta^{\sigma^{s}} \pmod{4}$. This completes the proof.

LEMMA 3.
$$\sum_{b=1}^{p^{r}-1} \frac{\zeta_{p^{r}}^{-bg_{u}}}{1-\zeta_{p^{r}}^{b}} = \frac{p^{r}-1}{2} - g_{u}$$
 for every $u \in \mathbb{Z}$.

Proof. Let $\zeta = \zeta_{p^r}$ and $S = \sum_{b=1}^{p^r-1} \frac{\zeta^{-bg_u}}{1-\zeta^b}$. Then we note that S is a real number. Putting $a = g_u$, we get

$$S = \sum_{b=1}^{p^{r}-1} \frac{\zeta^{-ab}}{1-\zeta^{b}} = \sum_{b=1}^{p^{r}-1} \frac{1}{\zeta^{(a-1)b}} \left\{ \frac{1}{\zeta^{b}} + \frac{1}{1-\zeta^{b}} \right\}$$
$$= \sum_{b=1}^{p^{r}-1} \frac{1}{\zeta^{(a-2)b}} \left\{ \frac{1}{\zeta^{2b}} + \frac{1}{\zeta^{b}} + \frac{1}{1-\zeta^{b}} \right\}$$
$$= \sum_{b=1}^{p^{r}-1} \left\{ \frac{1}{\zeta^{ab}} + \frac{1}{\zeta^{(a-1)b}} + \dots + \frac{1}{\zeta^{2b}} + \frac{1}{\zeta^{b}} + \frac{1}{1-\zeta^{b}} \right\}$$

$$= -a + \frac{p^r - 1}{2}.$$

Thus we obtain the desired equation.

Proof of Theorem 1. We note that it suffices to show the equivalence in the case $L = \mathbf{Q}(\zeta + \zeta^{-1})$. In fact, since $\eta_i = N_{\mathbf{Q}(\zeta + \zeta^{-1})/L}(\varepsilon_i)$ for each $i \in \mathbf{Z}$, we have $\eta_0^{x_0} \eta_1^{x_1} \cdots \eta_{m-1}^{x_{m-1}} = \prod_{i=0}^{m-1} \prod_{j=0}^{n} \varepsilon_{i+mj}^{x_1} = \prod_{i=0}^{m-1} \prod_{j=0}^{n-1} \varepsilon_{i+mj}^{x_{i+mj}}$ and $\eta_0^{x_0} \eta_1^{x_{m-1}} \cdots \eta_{m-1}^{x_1} = \prod_{i=0}^{m-1} \prod_{j=0}^{m-1} \varepsilon_{i+mj}^{x_{n-i}} = \prod_{i=0}^{m-1} \prod_{j=0}^{n-1} \varepsilon_{i+mj}^{x_{n-i-mj}}$, where $x_{i+mj} = x_i$ for any $i, j \in \mathbf{Z}$. In the case f = p(r = 1), Kummer essentially showed that if $\varepsilon_0^{x_0} \varepsilon_1^{x_1} \cdots \varepsilon_{n-1}^{x_{n-1}} \in E_U$, then $\varepsilon_0^{x_0} \varepsilon_1^{x_{n-1}} \varepsilon_{n-1}^{x_{n-1}} \in E_C$ ([11] p. 866 \sim p. 868). Now, in order to prove the converse in the case f = p, we summarize his proof as follows: Let s be the integer such that $g_s = 2, 1 \leq s < \varphi(p)$. Let α be the number of $\mathbf{Q}(\zeta + \zeta^{-1})$ such that ε_0^2

$$\alpha \equiv \frac{-1}{1-\zeta^2} + \frac{1}{1-\zeta^{2g}} \pmod{2},$$

where both numbers are 2-integral. Putting $\varepsilon = \varepsilon_0^{x_0} \varepsilon_1^{x_1} \varepsilon_2^{x_2} \cdots \varepsilon_{n-1}^{x_{n-1}}$, we get

$$\varepsilon^{2} \equiv \varepsilon^{\sigma^{s}} \Big\{ 1 + 2 \sum_{i=0}^{n-1} x_{i} \alpha^{\sigma^{i}} \Big\} \pmod{4}.$$

Hence, by Lemma 2, $\varepsilon \in E_U$ if and only if $\sum_{i=0}^{n-1} x_i \alpha^{\sigma^i} \equiv 0 \pmod{2}$. The latter condition is equivalent to

$$\sum_{i=0}^{n-1} x_i \left(\frac{-1}{1-\zeta^{2g^i}} + \frac{1}{1-\zeta^{2g^{i+1}}} \right) \equiv 0 \pmod{2}.$$

Here we replace ζ by ζ^{a} . Multiplying $\zeta^{-2ag^{i+1}}$ in both sides, summing them with respect to $a = 1, 2, \dots, p - 1$ and using Lemma 3 (r = 1), i.e.,

$$\sum_{b=1}^{p-1} \frac{\zeta^{-bg^{i}}}{1-\zeta^{b}} = \frac{p-1}{2} - g_{i},$$

we have $\sum_{i=0}^{n-1} x_i (g_{j+1-i} - g_{j-i}) \equiv 0 \pmod{2}$ for every *j*. Since $c_i \equiv g_{i+s} - g_{i+1+s} \pmod{2}$, we obtain $\sum_{i=0}^{n-1} x_i c_{k-i} \equiv 0 \pmod{2}$ for every *k*. This implies that $\varepsilon_0^{x_0} \varepsilon_1^{x_{n-1}} \varepsilon_2^{x_{n-2}} \cdots \varepsilon_{n-1}^{x_1} \in E_c^+$ by Lemma 1.

Now we consider the converse in the case f = p. By above argument it suffices to show that $\sum_{i=0}^{n-1} x_i (g_{j+1-i} - g_{j-i}) \equiv 0 \pmod{2}$ for every *j* implies

KEN-ICHI YOSHINO

$$\sum_{i=0}^{n-1} x_i \left(\frac{-1}{1 - \zeta^{2g^i}} + \frac{1}{1 - \zeta^{2g^{i+1}}} \right) \equiv 0 \pmod{2}.$$

This is proved as follows. Indeed,

$$p\sum_{i=0}^{n-1} x_i \left(\frac{-1}{1-\zeta^{2g^i}} + \frac{1}{1-\zeta^{2g^{i+1}}}\right) = \sum_{i=0}^{n-1} x_i \sum_{k=1}^{p-1} k(\zeta^{2g^{ik}} - \zeta^{2g^{i+1}k})$$
$$= \sum_{i=0}^{n-1} x_i \sum_{u=0}^{p-2} g_u(\zeta^{2g^{i+u}} - \zeta^{2g^{i+u+1}})$$
$$= \sum_{i=0}^{n-1} x_i \sum_{u=0}^{p-2} (g_u - g_{u-1}) \zeta^{2g^{i+u}}$$

Here we replace the lattice point (i, u) in the region $0 \le i$, u and $i + u \le n - 1$ by the point (i, u + 2n) and put k = i + u, where 2n = p - 1. Then, since $g_{u+p-1} = g_u$, we have

$$\sum_{i=0}^{n-1} x_i \left(\frac{-1}{1-\zeta^{2g^i}} + \frac{1}{1-\zeta^{2g^{i+1}}} \right) \equiv \sum_{k=n-1}^{3n-2} \zeta^{2g^k} \sum_{i=0}^{n-1} x_i (g_{k-i} - g_{k-i-1}) \equiv 0 \pmod{2}.$$

Thus Theorem 1 is proved in the case f = p.

Next, by induction, we shall prove Theorem 1 in the case $f = p^r(r > 1)$. That is, we assume that the assertion in Theorem 1 is true in the case $f = p^{r-1}$ and prove that it holds true in the case $f = p^r$. Let N be the norm from $\mathbf{Q}(\zeta_{p^r} + \zeta_{p^{r-1}}^{-1})$ to $\mathbf{Q}(\zeta_{p^{r-1}} + \zeta_{p^{r-1}}^{-1})$ and let $n = \varphi(p^r)/2$, $m = \varphi(p^{r-1})/2$. We denote by $E_c^{+(r)}$ and $E_U^{(r)}$ the groups E_c^+ and E_U for $L = \mathbf{Q}(\zeta_{p^r} + \zeta_{p^r}^{-1})$, respectively. Similarly we use the notation $c_i^{(r)}$ and $g_i^{(r)}$ for $f = p^r$. Let $\zeta = \zeta_{p^r}$ and $\zeta_0 = \zeta_{p^{r-1}}$. Then $N(E_c^{+(r)}) \subseteq E_c^{+(r-1)}$ and $N(E_U^{(r)}) \subseteq E_U^{(r-1)}$.

Now suppose that $\varepsilon = \varepsilon_0^{x_0} \varepsilon_1^{x_1} \cdots \varepsilon_{n-1}^{x_{n-1}} \in E_U^{(r)}$. This implies that

$$\sum_{i=0}^{n-1} x_i \left(\frac{-1}{1-\zeta^{2g^i}} + \frac{1}{1-\zeta^{2g^{i+1}}} \right) \equiv 0 \pmod{2}.$$

We shall show that $\varepsilon_0^{x_0}\varepsilon_1^{x_{n-1}}\cdots\varepsilon_{n-1}^{x_1}\in E_c^{+(r)}$. By assumption we have $N(\varepsilon) = N(\varepsilon_0^{x_0}\varepsilon_1^{x_1}\cdots\varepsilon_{n-1}^{x_{n-1}}) = \eta_0^{y_0}\eta_1^{y_1}\cdots\eta_{m-1}^{y_{m-1}}\in E_U^{(r-1)}$, where $\eta_i = N(\varepsilon_i)$ and $y_i = \sum_{j=0}^{\frac{n}{m-1}} x_{i+jm}$ for every *i*. Multiplying $\zeta^{-2g^{i+1}}$ in both sides of the above congruence, replacing ζ by ζ^a and summing them with respect to $a \in \{1, 2, \ldots, p^r - 1\}$ prime to *p*, we obtain

$$\sum_{i=0}^{n-1} x_i \sum_{\substack{a=1\\(a,p)=1}}^{p^r-1} \left(\frac{-\zeta^{-2ag^{i+1}}}{1-\zeta^{2ag^i}} + \frac{\zeta^{-2ag^{i+1}}}{1-\zeta^{2ag^{i+1}}} \right) \equiv 0 \pmod{2}.$$

Hence

$$\sum_{i=0}^{n-1} x_i \sum_{\substack{b=1\\(b,p)=1}}^{p^r-1} \left(\frac{-\zeta^{bg^{i+1-i}}}{1-\zeta^b} + \frac{\zeta^{-bg^{i-i}}}{1-\zeta^b} \right) \equiv 0 \pmod{2}$$

Here we divide the left side into two parts, i.e.,

$$\sum_{i=0}^{n-1} x_i \sum_{b=1}^{p^r-1} \left(\frac{-\zeta^{bg^{i+1-i}}}{1-\zeta^b} + \frac{\zeta^{-bg^{i-i}}}{1-\zeta^b} \right) - \sum_{i=0}^{n-1} x_i \sum_{b=1}^{p^{r-1}-1} \left(\frac{-\zeta_0^{bg^{i+1-i}}}{1-\zeta_0^b} + \frac{\zeta_0^{-bg^{i-i}}}{1-\zeta_0^b} \right) \equiv 0 \pmod{2}.$$

Therefore it follows from Lemma 3 that

$$\sum_{i=0}^{n-1} x_i (g_{j+1-i}^{(r)} - g_{j-i}^{(r)}) - \sum_{i=0}^{n-1} x_i (g_{j+1-i}^{(r-1)} - g_{j-i}^{(r-1)}) \equiv 0 \pmod{2}.$$

Let $s = s^{(r)}$ and $s_0 = s^{(r-1)}$ be the integers such that $g_s^{(r)} = g_{s_0}^{(r-1)} = 2, 1 \le s$ $< \varphi(p^r)$ and $1 \le s_0 < \varphi(p^{r-1})$. Thus

$$\sum_{i=0}^{n-1} x_i c_{j-i-s}^{(r)} - \sum_{i=0}^{n-1} x_i c_{j-i-s_0}^{(r-1)} \equiv 0 \pmod{2},$$

since $c_i^{(r)} \equiv g_{i+s}^{(r)} - g_{i+1+s}^{(r)} \pmod{2}$ for every *i*. By the assumption of induction, $\eta_0^{y_0} \eta_1^{y_1} \cdots \eta_{m-1}^{y_{m-1}} \in E_U^{(r-1)}$ implies $\eta_0^{y_0} \eta_1^{y_{m-1}} \cdots \eta_{m-1}^{y_1} \in E_C^{+(r-1)}$, i.e., $\sum_{i=0}^{m-1} y_i c_{k-i}^{(r-1)} \equiv 0$ (mod 2) for every k. Therefore

$$\sum_{i=0}^{n-1} x_i c_{j-i-s_0}^{(r-1)} = \sum_{i=0}^{m-1} \sum_{k=0}^{m-1} x_{i+mk} c_{j-i-mk-s_0}^{(r-1)} = \sum_{i=0}^{m-1} y_i c_{j-i-s_0}^{(r-1)} \equiv 0 \pmod{2}.$$

Here we note that $c_{j-t-mk-s_0}^{(r-1)} = c_{j-t-s_0}^{(r-1)}$. Thus we have $\sum_{i=0}^{n-1} x_i c_{k-i}^{(r)} \equiv 0 \pmod{2}$ for every k, which shows that $\varepsilon_0^{x_0} \varepsilon_1^{x_{n-1}} \cdots \varepsilon_{n-1}^{x_1} \in E_C^{+(r)}$. Conversely, we show that if $\varepsilon = \varepsilon_0^{x_0} \varepsilon_1^{x_{n-1}} \cdots \varepsilon_{n-1}^{x_1} \in E_C^{+(r)}$, then $\varepsilon_0^{x_0} \varepsilon_1^{x_1} \cdots \varepsilon_{n-1}^{x_{n-1}}$ $\in E_U^{(r)}$. By above argument it suffices to show that if $\sum_{i=0}^{n-1} x_i c_{k-i}^{(r)} \equiv 0 \pmod{2}$ for every k, then we have

$$\sum_{i=0}^{n-1} x_i \left(\frac{-1}{1-\zeta^{2g^i}} + \frac{1}{1-\zeta^{2g^{i+1}}} \right) \equiv 0 \pmod{2}.$$

Put $H(i) = \frac{-1}{1 - \zeta^{2g^{i}}} + \frac{1}{1 - \zeta^{2g^{i+1}}}$ and $H_0(i) = \frac{-1}{1 - \zeta^{2g^{i}}} + \frac{1}{1 - \zeta^{2g^{i+1}}}$ for every *i*.

Then, noting that $H_0(i + m) = -H_0(i)$ for every *i*, we have

$$p^{r} \sum_{i=0}^{n-1} x_{i} H(i) = \sum_{i=0}^{n-1} x_{i} \sum_{k=0}^{p^{r}-1} k(\zeta^{2g^{i}k} - \zeta^{2g^{i+1}k})$$

=
$$\sum_{i=0}^{n-1} x_{i} \sum_{\substack{k=0\\(k,p)=1}}^{p^{r}-1} k(\zeta^{2g^{i}k} - \zeta^{2g^{i+1}k}) + p \sum_{i=0}^{n-1} x_{i} \sum_{k=0}^{p^{r-1}-1} k(\zeta^{2g^{i}k} - \zeta^{2g^{i+1}k})$$

$$=\sum_{i=0}^{n-1} x_i \sum_{u=0}^{2n-1} g_u^{(r)} (\zeta^{2g^{i+u}} - \zeta^{2g^{i+u+1}}) + p^r \sum_{i=0}^{n-1} x_i H_0(i)$$

$$=\sum_{i=0}^{n-1} x_i \sum_{u=0}^{2n-1} (g_u^{(r)} - g_{u-1}^{(r)}) \zeta^{2g^{i+u}} + p^r \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} x_{i+mj} H_0(i + mj)$$

$$\equiv \sum_{k=n-1}^{3n-2} \zeta^{2g^k} \sum_{i=0}^{n-1} x_i c_{k-i-s-1}^{(r)} + \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} x_{i+mj} H_0(i) \pmod{2}$$

$$\equiv \sum_{i=0}^{m-1} y_i H_0(i) \pmod{2}.$$

Here, by the assumption of induction, we use the following fact: $\eta_0^{y_0} \eta_1^{y_{m-1}} \cdots \eta_{m-1}^{y_1} \in E_c^{(r-1)}$ implies $\eta_0^{y_0} \eta_1^{y_1} \cdots \eta_{m-1}^{y_{m-1}} \in E_U^{(r-1)}$, which is equivalent to $\sum_{i=0}^{m-1} y_i H_0(i) \equiv 0 \pmod{2}$. Therefore we obtain

$$\sum_{i=0}^{n-1} x_i H(i) = \sum_{i=0}^{n-1} x_i \left(\frac{-1}{1-\zeta^{2g^i}} + \frac{1}{1-\zeta^{2g^{i+1}}} \right) \equiv 0 \pmod{2}.$$

Thus the equivalence in Theorem 1 is proved. The characterization of $E_U^{(r)}$ is easily deduced by Lemma 1. This completes the proof of Theorem 1.

LEMMA 4. Let L be a real abelian field with conductor p^r . Then h_L is even if and only if $E_c^+ / E_c^2 \cap E_U / E_c^2 \neq \{1\}$.

Proof. Suppose that h_L is even. Since $h_L = [E_L : E_C]$, there exists a unit ε of E_L such that $\varepsilon^2 \in E_C$ and $\varepsilon \notin E_C$. Therefore $\varepsilon^2 E_C^2 \neq E_C^2$ is an element of $E_C^+ / E_C^2 \cap E_U / E_C^2$.

Conversely, if $E_c^+/E_c^2 \cap E_U/E_c^2 \neq \{1\}$, there is a unit ε of $E_c^+ \cap E_U$ which is not contained in E_c^2 . Here we may assume that $L(\sqrt{\varepsilon})/L$ is an extension of degree 2. Because $\sqrt{\varepsilon} \in L$ implies that $h_L = [E_L: E_c]$ is even. Therefore, since $\varepsilon \in E_U$, it follows from Satz 120 in Hecke [9] that any prime ideal of L is unramified in $L(\sqrt{\varepsilon})/L$. On the other hand $L(\sqrt{\varepsilon})/L$ is also unramified at all infinite prime divisors of L, because ε is totally positive. This implies that h_L is even.

Remark 3. Combining Lemma 4 with Theorem 1, we easily obtain that if $\rho_L > [m/2]$, then h_L is even, where [] is the Gaussian symbol. However the converse is not valid in general. For example, let L be the real cyclic field of degree 31 with conductor 116933. Then we have $\mu_L = \rho_L = 10$, so that $2 \mid h_L$. On the other hand, if L is the subfield of $\mathbf{Q}(\zeta_{311})$ of degree 31, then $\mu_L = 0$ and $\rho_L = 10$. So we have $2 \not\prec h_L$. Therefore these examples show that the parity of class number of a real abelian field L with prime conductor is not determined by ρ_L .

Proof of Corollary. We consider the homomorphism ψ from E_c into the set of vectors of size m with components in \mathbf{F}_2 , which is defined by

$$\eta_0^{x_0}\eta_1^{x_1}\cdots \eta_{m-1}^{x_{m-1}}\mapsto {}^t(\overline{x_0}, \overline{x_1}, \cdots, \overline{x_{m-1}}),$$

where $\overline{x_i} = x_i + 2\mathbf{Z}$ for each *i*. Clearly the kernel of ψ is E_c^2 . Let $X_L = \psi(E_c^+)$ and $Y_L = \psi(E_U)$. Then, by Lemma 1 and Theorem 1, we have

$$X_L = \{x ; M_L x = 0\}$$
 and $Y_L = \{x ; M_L^* x = 0\}$

where $x = {}^{t}(\overline{x_{0}}, \overline{x_{1}}, \cdots, \overline{x_{m-1}})$ and **o** is the zero vector of size *m*. Hence we obtain

$$X_L \cap Y_L = \left\{ oldsymbol{x} ext{ ; } \left(egin{array}{c} M_L \ M_L^* \end{array}
ight) oldsymbol{x} = oldsymbol{o}
ight\},$$

where **o** is the zero vector of size 2m. So the definition of μ_L shows that $\#(X_L \cap Y_L) = 2^{\mu_L}$. Therefore it follows from Lemma 4 that h_L is even if and only if $X_L \cap Y_L \neq \{\mathbf{0}\}$, i.e., $\mu_L > 0$. This completes the proof of Corollary of Theorem 1.

3. Proof of Theorem 2 and Corollary

Let p be an odd prime. Let K be an imaginary abelian field with conductor p', i.e., an imaginary subfield of $\mathbf{Q}(\zeta)$ not contained in $\mathbf{Q}(\zeta^p)$, where $\zeta = \zeta_{p'}$. Let h_K^* be the relative class number of K. Let K_0 be the maximal real subfield of K. Let mbe the degree of K_0 . Regarding K_0 as L, we use the same notations as in section 1. Let Q_K be the unit index of K and w_K the number of roots of unity in K. The relative class number h_K^* is given by

$$h_{K}^{*} = Q_{K} w_{K} \prod_{\chi_{1}} \frac{1}{2f(\chi_{1})} \sum_{a=1}^{f(\chi_{1})} - \chi_{1}(a) a,$$

where χ_1 runs through the odd characters of K and $f(\chi_1)$ is the conductor of χ_1 (cf. [7]). Here we notice that for any odd character χ_1 of K

$$\frac{1}{f(\chi_1)}\sum_{a=1}^{f(\chi_1)}\chi_1(a)a=\frac{1}{p^r}\sum_{a=1}^{p^r}\chi_1(a)a.$$

Therefore, since $Q_K = 1$ and $w_K = 2p^b$, where b = r or 0 according as $K = \mathbf{Q}(\zeta)$ or not, we have

$$h_{K}^{*} = 2p^{b} \mid \prod_{j=0}^{m-1} \frac{1}{2p^{r}} \sum_{a=1}^{p^{r}-1} \chi^{2j+1}(a) a \mid,$$

Here χ is a generating character of K. Put $\alpha = \chi(g)$. Then α is a primitive 2mth

root of unity. So putting $F(x) = \sum_{i=0}^{2n-1} g_i x^i$ where $2n = \varphi(p^r)$, we obtain

$$h_{\kappa}^{*}=\frac{2p^{b}}{\left(2p^{r}\right)^{m}}\mid F(\alpha)F(\alpha^{3})\cdots F(\alpha^{2m-1})\mid.$$

We put $A_i = \sum_{j=0}^{\frac{n}{m}-1} g_{i+2mj}$ for any *i*. Then, on $\{\alpha^k \mid k \in \mathbb{Z}\}$, $F(x) = \sum_{i=0}^{2m-1} A_i x^i$ since $\alpha^{2m} = 1$. Hence, for any odd integer *k*, we have

$$(1 - \alpha^{-k})F(\alpha^{k}) = \sum_{i=0}^{2m-1} (A_{i} - A_{i+1})\alpha^{ik}$$
$$= \sum_{i=0}^{m-1} (A_{i} - A_{i+1})\alpha^{ik} + \sum_{i=0}^{m-1} (A_{i+m} - A_{i+m+1})\alpha^{(i+m)k}$$
$$= 2\sum_{i=0}^{m-1} (A_{i} - A_{i+1})\alpha^{ik},$$

because $A_i + A_{i+m} = \frac{p^r \varphi(p^r)}{2m}$ for any *i* and $\alpha^{km} = -1$ for any odd *k*. It is obvious that $\prod_{j=0}^{m-1} (1 - \alpha^{-2j-1}) = 2$. Hence, putting $G(x) = \sum_{i=0}^{m-1} (A_i - A_{i+1}) x^i$, we have

$$p^{rm-b}h_{K}^{*} = |G(\alpha)G(\alpha^{3})\cdots G(\alpha^{2m-1})| = |\det(A_{i+j} - A_{i+j+1})|_{0 \le i,j < m}|.$$

Here, as to the second equality, we refer to the probrem 5 in [2] p. 367. Since n/m is odd, we set n/m = 2v + 1. Then

$$A_{i+s} - A_{i+s+1} = \sum_{j=0}^{2v} (g_{i+s+2mj} - g_{i+s+1+2mj}) \equiv \sum_{j=0}^{2v} c_{i+2mj} \pmod{2}$$
$$= \{\sum_{j=0}^{v} + \sum_{j=v+1}^{2v} \} c_{i+2mj} = \sum_{j=0}^{v} c_{i+2mj} + \sum_{j=0}^{v-1} c_{i+2m(j+v+1)}$$
$$= \sum_{j=0}^{v} c_{i+2mj} + \sum_{j=0}^{v-1} c_{i+m+2mj} = \sum_{j=0}^{2v} c_{i+mj}.$$

Therefore $A_{i+s} - A_{i+s+1} \equiv d_i \pmod{2}$ for any *i*. Thus we obtain

$$h_K^* \equiv \det(A_{i+j} - A_{i+j+1}) \equiv \det(A_{i+j+s} - A_{i+j+s+1})$$
$$\equiv \det(d_{i+j}) = \det M_{K_*} \pmod{2}.$$

This completes the proof of Theorem 2. Corollary is an immediate consequence of Theorem 2 by the definition of ρ_{K_0} .

4. Properties of ρ_L and μ_L

In this section we shall give three properties of ρ_L and μ_L , which are useful to

calculate ρ_K and μ_K for the maximal real subfield K of $\mathbf{Q}(\zeta_{p^r})$. We note that $\rho_{\mathbf{Q}} = \mu_{\mathbf{Q}} = 0$.

PROPOSITION 1. Let L be a real subfield of $\mathbf{Q}(\zeta_{p^r})$ and F a subfield of L. Let h^* be the relative class number of $\mathbf{Q}(\zeta_{p^r})$ and a the integer such that $2^a \| h^*$. Then $\rho_F \leq \rho_L \leq a$. Moreover, if $\rho_F = \rho_L$, then $\mu_F = \mu_L$.

PROPOSITION 2. Let $F \subseteq L$ be real subfields of $\mathbf{Q}(\zeta_{pr})$. Suppose that L/F is an extension of 2-power degree. Then $\mu_F = 0$ (resp. $\rho_F = 0$) if and only if $\mu_L = 0$ (resp. $\rho_L = 0$).

PROPOSITION 3. Let $F \subseteq L$ be real subfields of $\mathbf{Q}(\zeta_{\rho r})$. Suppose that L/F is an extension of prime degree l > 2. Let f be the order of 2 modulo l. Then $\rho_L \equiv \rho_F$ and $\mu_L \equiv \mu_F \pmod{f}$.

We here prove Proposition 1. Let K be the maximal real subfield of $\mathbf{Q}(\zeta_{p^r})$. We first show that $\rho_K \leq a$. Let $n = \varphi(p^r)/2$ and $A = (g_{i+j} - g_{i+j+1})_{0 \leq i,j < n}$. By the proof of Theorem 2 we have $p^{rn-r}h^* = |\det A|$. Here we note that $g_{i+s} - g_{i+s+1} \equiv c_i \pmod{2}$, where s is the integer such that $g_s = 2, 1 \leq s < \varphi(p^r)$. Therefore the reduction modulo 2 of $M_K = (c_{i+j})_{0 \leq i,j < n}$ equals $(\overline{g_{i+j+s}} - \overline{g_{i+j+s+1}})_{0 \leq i,j < n}$, where $\overline{g}_i = g_i + 2\mathbf{Z}$ for each i. Hence M_K and A have the same \mathbf{F}_2 -rank $n - \rho_K$. Thus we obtain $2^{\rho_K} | h^*$, which implies $\rho_K \leq a$. Next we define X_K and Y_K for K just as X_L and Y_L are defined for L in the proof of Corollary of Theorem 1. Let $m = [L: \mathbf{Q}]$. We consider the map $i; \mathbf{F}_2^m \to \mathbf{F}_2^n$ which is defined by

$$x\mapsto (x, x, \cdots, x),$$

where \mathbf{F}_2^m is the direct sum of m copies of \mathbf{F}_2 and $\mathbf{x} = (x_0, x_1, \cdots, x_{m-1})$. Then i gives natural inclusions $X_L \hookrightarrow X_K$ and $Y_L \hookrightarrow Y_K$. Hence we have $\rho_L \le \rho_K \le a$. Similar argument shows that $X_F \hookrightarrow X_L$ and $Y_F \hookrightarrow Y_L$. So $\rho_F \le \rho_L$. Therefore the assumption $\rho_F = \rho_L$ implies that $X_F = X_L$ and $Y_F = Y_L$. Thus we have $\mu_F = \mu_L$.

Most part of Proposition 2 is an immediate consequence of Theorems in [10] and our Corollary of Theorem 1. But it is directly proved by using the matrices M_L and M_L^* , etc. and by calculating their \mathbf{F}_2 -ranks as follows. Indeed, since $0 \leq \mu_F \leq \mu_L$, we may show that $\mu_F = 0$ implies $\mu_L = 0$, with assuming [L:F] = 2. Let $[F:\mathbf{Q}] = m$. Let d_i be the integer defined in section 1, that is, $d_i = 0$ or 1 according as $\eta_i = N_{\mathbf{Q}(\zeta+\zeta^{-1})/L}(\varepsilon_i)$ is positive or negative. Since $[L:\mathbf{Q}] = 2m$, we have $d_{i+2m} = d_i$ for every *i*, and $M_L = (d_{i+j})_{0 \le i,j < 2m}$, $M_L^* = (d_{i-j})_{0 \le i,j < 2m}$. Suppose that $\mu_F = 0$, i.e., $\operatorname{rank}_{\mathbf{F}_2} \begin{pmatrix} M_F \\ M_F^* \end{pmatrix} = m$. Then there are 2m by 2m matrix Q and m by m matrix R such that

$$Q\begin{pmatrix}M_F\\M_F^*\end{pmatrix} R = \begin{pmatrix}E_m\\O\end{pmatrix},$$

where E_m is *m* by *m* unit matrix and *O* is *m* by *m* zero matrix. Now, putting $A = (d_{i+j})_{0 \le i,j < m}$ and $B = (d_{i+j+m})_{0 \le i,j < m}$, then

$$M_L = \begin{pmatrix} A & B \\ B & A \end{pmatrix}$$

and $M_F \equiv A + B \pmod{2}$ (cf. Proof of Lemma 3 in [14]). Then, by definition

$$M_L^* = \begin{pmatrix} A^* & B^* \\ B^* & A^* \end{pmatrix},$$

where $A^* = (d_{i-j})_{0 \le i,j < m}$ and $B^* = (d_{i-j+m})_{0 \le i,j < m}$. Since $M_F^* \equiv A^* + B^* \pmod{2}$, we have

$$\operatorname{rank}_{\mathbf{F}_{2}}\begin{pmatrix}M_{L}\\M_{L}^{*}\end{pmatrix} = \operatorname{rank}_{\mathbf{F}_{2}}\begin{pmatrix}A & B\\B & A\\A^{*} & B^{*}\\B^{*} & A^{*}\end{pmatrix} = \operatorname{rank}_{\mathbf{F}_{2}}\begin{pmatrix}A & B\\M_{F} & M_{F}\\A^{*} & B^{*}\\M_{F}^{*} & M_{F}^{*}\end{pmatrix}$$
$$= \operatorname{rank}_{\mathbf{F}_{2}}\begin{pmatrix}A & M_{F}\\M_{F} & O\\A^{*} & M_{F}^{*}\\M_{F}^{*} & O\end{pmatrix}.$$

Therefore, using above matrices Q and R, we obtain

$$\begin{pmatrix} Q & O \\ O & Q \end{pmatrix} \begin{pmatrix} A & M_F \\ A^* & M_F^* \\ M_F & O \\ M_F^* & O \end{pmatrix} \begin{pmatrix} R & O \\ O & R \end{pmatrix} = \begin{pmatrix} S_1 & E_m \\ S_2 & O \\ E_m & O \\ O & O \end{pmatrix},$$

where $\binom{S_1}{S_2} = Q\binom{A}{A^*}R$. Thus we get $\mu_L = 0$. Similarly we can show that $\rho_F = 0$ implies $\rho_L = 0$. This completes the proof of Proposition 2.

Proposition 3 is proved as follows. Let m and n be the degrees of F and L, respectively. As shown in the proof of Proposition 1, we may regard X_F and Y_F as subgroups of X_L and Y_L , respectively. Then G(L/F) naturally acts on X_L/X_F , that is, $\{(x_0, x_1, \ldots, x_{n-1})X_F\}^{\sigma} = (x_{n-m}, \cdots, x_{n-1}, x_0, x_1, \cdots, x_{n-m-1})X_F$ for any $(x_0, x_1, \cdots, x_{n-1})X_F \in X_L/X_F$ and for a generator σ of G(L/F). Since [L:F] = l is an odd prime, it easily follows that the orbit of every element of X_L/X_F except 1 has l elements. Hence $2^{\rho_L-\rho_F} \equiv 1 \pmod{l}$. Thus we obtain $\rho_L \equiv \rho_F \pmod{f}$. Similarly applying above argument to $X_L \cap Y_L/X_F \cap Y_F$, we get $\mu_L \equiv \mu_F \pmod{f}$. This completes the proof of Proposition 3.

5. Numerical example

In this section we tabulate all the values of odd prime p < 3000 such that the class number of the maximal real subfield K of $\mathbf{Q}(\zeta_p)$ is even. Since $\rho_K \ge \mu_K \ge 0$, we may examine the primes p such that $\rho_K > 0$, i.e., $2 \mid h^*$ by Corollary of Theorem 2, where h^* is the relative class number of $\mathbf{Q}(\zeta_p)$. For such primes p, we calculate the values of ρ_K and μ_K by Gaussian elimination method and tabulate them.

In the following table we denote by a the integer such that $2^a || h^*$, by L a subfield with $\rho_L = \rho_K$ and by m the degree of L. Here, as the value of a, we use the value of k in the Table III in [4].

þ	a	т	$ ho_L$	ρ_{K}	μ_{K}	Þ	a	т	ρ_L	ρ_{K}	μ_{K}
29	3	7	3	3	0	463	3	7	3	3	0
113	3	7	3	3	0	491	6	7	6	6	6
163	2	3	2	2	2	547	2	3	2	2	2
197	3	7	3	3	0	607	4	3	2	2	2
239	6	7	3	3	0	659	3	7	3	3	0
277	4	6	4	4	4	683	5	31	5	5	0
311	10	31	10	10	0	701	3	7	3	3	0
337	6	21	6	6	0	709	4	6	4	4	4
349	4	6	4	4	4	751	4	15	4	4	0
373	5	31	5	5	0	827	6	7	6	6	6
397	6	6	4	4	4	853	2	3	2	2	2
421	4	15	4	4	0	883	6	63	6	6	0

Table. The values of ρ_K and μ_K for the maximal real subfield K of the cyclotomic field with prime conductor p, 2 .

KEN-ICHI YOSHINO

Þ	a	т	ρ_L	ρ_{K}	μ_{K}	Þ	a	т	ρ_L	ρ_{K}	μ_{K}
937	2	3	2	2	2	1879	2	3	2	2	2
941	8	10	8	8	8	1951	2	3	2	2	2
953	3	7	3	3	0	2011	4	15	4	4	0
967	3	7	3	3	0	2131	2	3	2	2	2
1009	8	63	8	8	2	2143	3	7	3	3	0
1021	8	255	8	8	0	2161	4	15	4	4	4
1051	6	21	6	6	0	2221	4	15	4	4	0
1093	3	7	3	3	0	2297	3	7	3	3	0
1117	5	31	5	5	0	2311	5	21	5	5	2
1163	3	7	3	3	0	2381	6	14	6	6	0
1171	4	15	4	4	0	2521	3	7	3	3	0
1399	4	3	2	2	2	2591	3	7	3	3	0
1429	3	7	3	3	0	2689	2	3	2	2	2
1471	3	7	3	3	0	2797	4	6	4	4	4
1499	3	7	3	3	0	2803	2	3	2	2	2
1699	2	3	2	2	2	2843	3	7	3	3	0
1777	4	6	4	4	4	2857	3	7	3	3	0
1789	4	6	4	4	4	2927	6	7	6	6	6

REFERENCES

- N. Ankeny, S. Chowla and H. Hasse, On the class number of the maximal real subfield of a cyclotomic field, J. reine angew. Math., 217 (1965), 217-220.
- [2] Z. I. Borevich and I. R. Shafarevich, Number Theory, Academic Press, 1966.
- [3] G. Cornell and M. I. Rosen, The *l*-rank of the real class group of cyclotomic fields, Compositio Math., 53 (1984), 133-141.
- [4] G. Fung, A. Granville and H. C. Williams, Computation of the first factor of the class number of cyclotomic fields, J. Number Theory, 42 (1992), 297-312.
- [5] G. Gras, Critère de parité du nombre de classes des extensions abéliennes réelles de Q de degré impair, Bull. Soc. Math. France, 103 (1975), 177-190.
- [6] G. Gras and M.-N. Gras, Signature des unités cyclotomiques et parité du nombre de classes des extensions cycliques de Q de degré premier impair, Ann. Inst. Fourier, Grenoble, 25 (1975), 1-22.
- [7] H. Hasse, Uber die Klassenzahl abelscher Zahlkörper, Akademie-Verlag, Berlin, 1952; Springer-Verlag, 1985.
- [8] F. Hazama, Demjanenko matrix, class number, and Hodge group, J. Number Theory, 34 (1990), 174-177.
- [9] E. Hecke, Vorlesungen über die Theorie der algebraischen Zahlen, Chelsea Pub. Co., 1948.
- [10] K. Iwasawa, A note on class numbers of algebraic number fields, Abh. Math. Sem.

Univ. Hamburg, 20 (1956), 257-258.

- [11] E. E. Kummer, Über eine Eigenschaft der Einheiten der aus den Wurzeln der Gleichung $\alpha^{\lambda} = 1$ gebildeten complexen Zahlen, und über den zweiten Factor der Klassenzahl, Monatsber. Akad. Wiss., Berlin (1870), 855-880. Reprinted in Collected Papers, vol. I, Springer-Verlag, 1975, 919-944.
- W. Schwarz, Demjanenko matrix and 2-divisibility of class numbers, Arch. Math.,
 60 (1993), 154-156.
- [13] L. C. Washington, Introduction to cyclotomic fields, Springer-Verlag, 1982.
- [14] K. Yoshino, On the class number of an abelian field with prime conductor, Proc. Japan Acad., 69 A (1993), 278-281.

Department of Mathematics Kanazawa Medical University Uchinada-machi, Ishikawa 920-02 Japan