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A CRITERION FOR THE PARITY OF THE CLASS
NUMBER OF AN ABELIAN FIELD WITH PRIME
POWER CONDUCTOR

KEN-ICHI YOSHINO

Introduction

Let f be a positive integer such that f Z 2 (mod 4). Let %, be the class num-
ber of the maximal real subfield of the fth cyclotomic field Q(,). It is interesting
to determine when %, is even. Kummer [11] investigated this problem when f is a
prime and showed that if %, is even, then the relative class number B of the cyc-
lotomic field is even (Satz III). Moreover he gave another necessary condition for
h, to be even (Satz IV). In [7] Hasse gave a necessary and sufficient condition for
h* to be even (Satz 45). On the other hand G. Gras and M.-N. Gras [6] gave a
criterion for the parity of the class number of a cyclic extension of Q of odd
prime degree (Théoreme III2, Corollaires III2 and II13). Moreover G. Gras [5]
generalized the criterion for an abelian extension of Q of odd degree (Théoréme
1. 2 and Corollaire IV. 2). In this paper, by using Kummer’s method in [11] and
elementary argument, when f is an odd prime power p’, we shall simplify
Théoréme III. 2 in [5] and give a simple criterion for the parity of the class num-
ber of a real subfield of Q({/). Our result is also related to Cornell and Rosen [3].
They showed that if f is divisible by at least five primes, then /%, is even and that
if f is divisible by exactly two, three or four primes, so is %, under certain condi-
tion respectively (Theorem A, Propositions 5 and 6). Their method in [3], however,
does not yield anything when f is a prime power. In section 1 we shall state our
main results, i.e., Theorems 1 and 2 and their Corollaries. Among them, Theorem
1 is a simplification of Théoréme III. 2 in [5] under the condition that f is a prime
power and takes a fundamental role to prove our criterion for the parity of the
class number of a real subfield of Q({,). In section 2 we shall prove Theorem 1
and Corollary by using four Lemmas. In section 3 we shall prove Theorem 2 and
Corollary. In section 4 we shall give a few properties of invariants p, and g,
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defined in section 1. In section 5 we shall give all the values of odd prime
p < 3000 such that the class number of the maximal real subfield of the pth cyc-
lotomic field is even (cf. [1], [13] p. 230).

The author would like to thank the referee for giving many helpful comments.

1. Notations and result

Let p be an odd prime and 7 a positive integer. Let g be a primitive root mod-
ulo p” and g, the least positive residue of g’ modulo p” for every i € Z. Then
8iropn = &; for every ¢ € Z, where ¢ is the Euler totient function. Let { = {,r =
cos(2x/p") +— 1sin(2x/p"). This is a primitive p'th root of unity. For every
1 € Z, we put

. 28T
Cgm _ C—gm sin p’
i ¢ — ¢ h sin 2gi7t ’
?
which is called a cyclotomic unit of Q(C + £%). Putting # = ¢(p") /2, we have
€n4i = &, for each ¢ € Z and €y, * * * ¢,_, = — 1. Let E, be the group of units of
QU+ ¢ and E_ the subgroup of E, generated by cyclotomic units, i.e. E, =
€y €1, . . . €,1. Let hy be the class number of Q({ + £)). Then it is well

known that k, = [E,: E.] (cf. [7]). For every i € Z, we let ¢, = 0 or 1 according
as ¢€; is positive or negative. We note that 2g; — 28,41 = Zizs ™ Gis14s L p’c; and
therefore that ¢; = g, — &ir1.s (mod 2), where s is the integer such that g, = 2,
1<s<@@). (cf[11]).

Let L be a real subfield of Q({) and m the degree of L. We denote by E; the
group of units of L and by EcL the subgroup of E; generated by the cyclotomic
units of L, ie, Ec. = <o, Ny ., Npoy?, Where 0; = Nqie . (e) for every 1 €
Z. Then the class number k; of L is represented by h, = [E; : E; 1. We let d, =
Oor1 by

n_
m
j

1
d,= 2 ¢, (mod2)
=0

for every 1 € Z. We note that d; = 0 or 1 according as 1, is positive or negative
and that d,,,, = d; for every ¢ € Z. We then define the m by m matrices

M, = (d,)o<ijem and ML* = (di-)o<ijcm

These matrices M, and ML* are concerned with the Demjanenko matrix (cf. [8],
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[12]). Using these matrices M, and ML*, we give a criterion for the parity of the
class number of L. Let F, = Z/2Z. For any matrix M with coefficients in Z, let
rankp, M denote the F,-rank of M, namely, the rank of the reduction of M modulo

M
2. Let o, and g, be the F,-defects of M} and (Mi ) respectively. That is, we let
L

M,
o, = m — rankp M;, u;, =m — rankg, < % )
M,
Then 0 < u;, < o, < m.

Now we denote by E;L the group of totally positive units in E¢ . Let Ey, be
the group of primary units in E¢, i.e., Ey, = {n € E¢; ? =y (mod 4) for some
integer @ € L} (cf. [9] §59, §61). Let o be the generator of the Galois group of
Q) over Q such that {” = {*. The aim of this paper is to prove the following
theorems and corollaries.

THEOREM 1.  Let p be an odd prime. Let L be a real abelian field of degree m
with conductor p"(r 2 1). Let x,, ,, . . ., X,,_, be rational integers. Then 03°ny* - - -
Nl e Ey if and only if NNy el € E;L. Therefore Ey is characte-
rized by Ey; = {pgon* -+ gyt € Ec; M,_*x = 0 (mod 2)}, where x ="(x,, 3, . . .,
Z,,_1) is the transpose of (L, Xy,. .., L,_,) and 0 is the zero vector of size m.

Remark 1. Theorem 1 is a simplification of Théoréme III. 2 in [5] In fact,
since n; = 7}8“ for every ¢ € Z, we have E;, = r]ozm. We consider the automorph-
ism of Z[o] induced by 0— o¢”'. By the automorphism, each element n'n* -« « -
= nﬁ"”‘ﬂ'“”""‘qm_l of E; is corresponding to n§°+z‘”_l+'"+I”"‘0—(m_l) =

Lo, Ly Z +
NoM™ " =+ * My—y Of EcL~
Our criterion for the parity of the class number is as follows.

COROLLARY. Let p be an odd prime. Let L be a real abelian field with conductor
P (r = 1) and hy the class wumber of L. Then h; is even if and only if g, > 0.

THEOREM 2. Let p be an odd prime and ¥ a positive integer. Let K be an imagin-
ary abelian field with conductor p’. Let K, be the maximal veal subfield of K and h:

the relative class number of K. Then h;: = det My, (mod 2).

COROLLARY.  For an imaginary abelian field K with conductor p’, h: is even if
and only if pg, > 0.
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Remark 2. For an imaginary subfield K of Q({,), it follows from the above
two Corollaries that if A is even, then h: is even, since pg, = g, = 0.

2. Proof of Theorem 1 and Corollary

Let p be an odd prime. Let L be a real subfield of Q({) not contained in
Q("), where { = C,r. Let by be the class number of L, m the degree of L and
n= @) /2. To prove Theorem 1, we need the following three lemmas. From
now on, for the sake of simplicity of notations, we put E, = E, El = Ec+L and
Ey, = Ey,.

LEMMA 1. Let p = notny’ -+ 0ot be a unit of Ec. Then n € EZ if and only
if Myx = o (mod 2), where x = "(x,, 2, " *, L,,_,) and 0 is the zero vector of size
m. Therefore # Eq /Ege = 2%,

Proof. 1t is obvious from the definition of M, and p;.

LemMa 2. Let s be the integer such that g, = 2,1 < s < @('). Then E, =
{n € Ec;n" =7 (mod 4)}.

Proof. Suppose that n € E,. Then there is an integer a such that o = N
(mod 4). Here a is written as a = Z‘;’L‘;"'l (' (x, €Z). So we have a’ =
S0t 2 0% = a” (mod 2). Hence @ = & (mod 4). Therefore n° = a' = o*”
= nas (mod 4). This completes the proof.

=1 —rbgu r__
LEMMA 3. 2 & it

v every u € Z.
= 1_C:, 2 Eu fo every

-1 C —bgy

Proof. Let {=1{,y and S= 2
ber. Putting a = g,, we get =1 1—-¢

S:pr_l C—ab —p’g—l 1 {i.}. 1 ]

;- Then we note that S is a real num-

11— Cb A C(a-nb Cb 1— Cb
TS | 1 1 1
T & e {7 + ot — b}
=1 § ¢ ¢ 1-¢C
p7-1 1
= {1ab+ (a-m+'”+—12§+ib+ ! b}
=1 °C ¢ ¢ ¢ 1-c
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p—1

=—a+ 3

Thus we obtain the desired equation.

Proof of Theorem 1. We note that it suffices to show the equivalence in the

case L =Q({+ ™). In fact, since 5, = N qereni(e) for each ¢ € Z, we have
momtt e+ = T e, = TG D, el and mpeni™ g, =
! H.%_—lsz""f =) II%_‘1 €;m  where x,,,; =, for any i, j € Z. In the
1=0 Y=g Citmj i=0 ‘Yo Citmj i+mj i
case f = p(r = 1), Kummer essentially showed that if €;%" - - - &, € Ey;, then
ey - ent, € EX ([11] p. 866 ~p. 868). Now, in order to prove the con-
verse in the case f = p, we summarize his proof as follows: Let s be the integer
such that g, = 2,1 < s < ¢(p). Let a be the number of Q({ + ¢™) such that €.

S S
— ¢ = 2ae, . Then

-1

1
a= >+ 5 (mod2),
1= 1-¢
where both numbers are 2-integral. Putting & = &g'e;’e;”  * * €,"7, we get

I

s n-1 i
=g [1 +23 x,a"} (mod 4).
1=0

Hence, by Lemma 2, ¢ € Ey if and only if >y x,aai = 0 (mod 2). The latter
condition is equivalent to

n-1 —_—
2 x,-< 12 -+ 1 - M) =0 (mod2).
i=0 1 _ C 74 1 _ C 74

Here we replace { by Ca. Multiplying C_zagm in both sides, summing them with re-
specttoa =1,2,--+, p — 1 and using Lemma 3 (r = 1), i.e.,

i O p—

b=1]_—Cb-_ 2

- giy

we have 270 (g1 — g,_) = 0(mod 2) for every j. Since ¢, = giys — Zisies
(mod 2), we obtain X, x,c,_, = 0 (mod 2) for every k. This implies that
e, - 6yt € Ef by Lemma 1.

Now we consider the converse in the case f = p. By above argument it suf-
fices to show that >, x,(g;11-i — &) = 0 (mod 2) for every j implies
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n—1 —_
Zx,-< 12,.+ lz,ﬂ) =0 (mod?2).
i=0 1 _ C 74 1 . C 4

This is proved as follows. Indeed,

n—1 -1 1 n-1 - i i+1
PEa( ) = T Tk -
i=0 1 C 1 C i=0 k=1
_ n=-1 p-2 2gi* 2gttur!
= Z; &.(C e )
i=0 u=0
n—1 -2

gl+u

sraX @)t

Here we replace the lattice point (¢, #) in the region 0 < i, wand i + u <n —1
by the point (f, # + 2n) and put k =i+ u, where 2» = p — 1. Then, since
8uip—1 — &y We have

n—1 fa— 1 1 . 3n—-2 26 _

> :c,.< -+ m) = 2 Z Z(g; — &i—i—p) =0 (mod 2).
1=0 1— ng 1 — ng k=n—1

Thus Theorem 1 is proved in the case f = p.

Next, by induction, we shall prove Theorem 1 in the case f = p"(» > 1). That
is, we assume that the assertion in Theorem 1 is true in the case f=p"‘ and
prove that it holds true in the case f=p". Let N be the norm from Q({, +
Cp—rl) to Q(Cpr— + C;,fl) and let n= @) /2, m=¢@ ") /2. We denote by
EH') nd EU the groups E and E for L = Q(C,,r + Cpr) respectively. Similar-
ly we use the notation ¢, “ and g, "for f=p" Let £ = Cyr and §, = {,-1. Then
N(Eg(”) c Ec+<r—1) and N(El(,r)) c E((]r—l).

Now suppose that ¢ = g% -+ ;"7 € E,(,’), This implies that

nl -1 1
Zx,( =+ 2M)EO (mod 2).
i=0 1 _ C & 1 . C &
We shall show that &’ * -+ - &, € E}”. By assumption we have N(g) =
n_
Nl - - - v = nient - 7]”:”1 ‘e EJ 7", where n, = N(e,) and y, = PN
Z;,;m for every i. Multiplying C in both sides of the above congruence, replac-
ing { by {* and summing them with respect to @ € {1,2,..., p" — 1} prime to p,
we obtain

a1 -1 _ C—zag’+1 C—Zag’*‘
z 2 + =0 (mod2).

; _ _ p2ag _ p2ag'™!
=0 (aPl= 1 C 1 C

Hence
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el o1 _ Cbg/ﬂ—t C_bgj-t
Sz, Y (o) =0 (mod ).
S ¢ 1-¢
Here we divide the left side into two parts, i.e
et ﬁ’—l _ bgi+1—i __bgi—i -1 p’"‘—1 . bg}+1—i _hg}—l
Sa T (e ) S (R 2 ) = 0mod 2.
1=0 ]_—C ]_—C i=0 b=1 1—C0 1——C
Therefore it follows from Lemma 3 that
2 280 — &0 — z (gt — 7" =0 (mod2).
Let s=s” and s,=s""" be the integers such that g~ = gs(:_l) =21<s
< @@ and 1 < s, < (™). Thus
"l r-1 _
E) ZiCiois Z Z,, -, = 0 (mod 2),
. () (n (r)
since ¢; = gt+s gl+l+$

Yo U1

(mod 2) for every ¢ By the assumption of induction
ey et € By

 implies ne'ni™ " - iy € STV e, 2 g6 =0
(mod 2) for every k. Therefore

n—

n
2
m—1m
(r=1) (r—1)
Sact =%y ’
1=0 k=

(r=1)
o i+mkcj—i—mk—s0 = Zd; Yi€,—i- So =0 (mOd 2)
i= i=
Here we note that c;r,”m,c_s = ;’,11 Thus we have 2, .rc,i”i =0 (mod 2) for
every k, which shows that ;%" -+ - .., € E“”.
Conversely, we show that if e = ez"ef”‘ coo gt € EX7 then % -+ - )
= Em By above argument it suffices to show that if 2, x,c,ir), =0 (mod 2)
for every k, then we have
nl —1 1
> x,( i ; m) =0 (mod 2).
R G
. -1 1 \ —1 1 )
Put H(G) = i o and H, (1) = " + L for every 1.
1-¢F 1-¢" — & - ¢
Then, noting that H,(i + m) = — H,(i) for every i, we have
i n—1  p"- i i+1
p Z sz(i) — Z (ngk . ng k)
i=0 1=0 k=0
n—1 -1
= xi Z

-II.

0 k=
k,p)

k(czgk _ ng k) +p Z z, Z k(czg'k Zg‘”k)
0 i=0
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1 2n=1 () ;o 281%% 2gi* ¥+l , n—1 .
x; 2 g, (" —¢C ) +p" 2 x,H,®3)
0 u=0 1=0

B

n—1 2n—1 i+u m=1m . -
= 4 ) (gziﬂ - g,i'-)l)Cu +p = Z Ty (0 + my)

i=0 u=0 1=0 j=0

2

-2 e =1 , m—1m )
= X incl(c—)i—s—1+ 2 2 ZyyH (D) (mod 2)

k=n—1 i=0 i=0 j=0

m—1

2 yH,() (mod?2).

i=0

Here, by the assumption of induction, we use the following fact: pg'n}™™ * 7,
€ EC”"” implies nen - piml € E,(,r—l), which is equivalent to S y,H,(i) =
0 (mod 2). Therefore we obtain

-1 1 )
1 _ ngi 1 _ ngHl

n—1 n—1

2 HO = 2 x,~< =0 (mod 2).

1=0 1=0

Thus the equivalence in Theorem 1 is proved. The characterization of El(,') is easi-
ly deduced by Lemma 1. This completes the proof of Theorem 1.

LEMMA 4. Let L be a real abelian field with conductor p’. Then hy, is even if and
only if EX /E: N E,/E% # {1}.

Proof. Suppose that k; is even. Since #;, = [E, : E.], there exists a unit & of
E, such that & € E; and & € E. Therefore ¢ EZ # E. is an element of ES /E>
N E,/E.

Conversely, if Eg/E% N E,/E% # {1}, there is a unit ¢ of EZ N E, which
is not contained in Eé Here we may assume that L(/e) /L is an extension of de-
gree 2. Because e € L implies that &, = [E, : E.] is even. Therefore, since ¢ €
E,, it follows from Satz 120 in Hecke [9] that any prime ideal of L is unramified
in L(ye) /L. On the other hand L{(ye) /L is also unramified at all infinite prime
divisors of L, because ¢ is totally positive. This implies that A, is even.

Remark 3. Combining Lemma 4 with Theorem 1, we easily obtain that if
o, > Im /2], then h; is even, where | |is the Gaussian symbol. However the con-
verse is not valid in general. For example, let L be the real cyclic field of degree
31 with conductor 116933. Then we have g; = p; = 10, so that 2| &;. On the
other hand, if L is the subfield of Q({,,,) of degree 31, then g, = 0 and p, =
10. So we have 2 X h;. Therefore these examples show that the parity of class
number of a real abelian field L with prime conductor is not determined by p;.
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Proof of Corollary. We consider the homomorphism ¢ from E into the set of
vectors of size m with components in F,, which is defined by

zo, I

z _
Moy " Vet ™ (-1'0, Ty Ty,

where T, = x, + 2Z for each i. Clearly the kernel of ¢ is EZ Let X, =
¢(EZ) and Y, = ¢(E,). Then, by Lemma 1 and Theorem 1, we have

X, ={x;Mx=0} and Y, = {x;M x=o},

where x = '(37—0, Z, ", T,_) and 0 is the zero vector of size m. Hence we obtain
M,
X, Ny = {x,( *>x=o],
M;

where 0 is the zero vector of size 2m. So the definition of y; shows that # (X, N
Y,) = 2" Therefore it follows from Lemma 4 that %, is even if and only if X; N
Y, # {0}, i.e, g, > 0. This completes the proof of Corollary of Theorem 1.

3. Proof of Theorem 2 and Corollary

Let p be an odd prime. Let K be an imaginary abelian field with conductor p’,
i.e., an imaginary subfield of Q({) not contained in Q((”), where { = Cyr. Let h:
be the relative class number of K. Let K, be the maximal real subfield of K. Let m
be the degree of K. Regarding K, as L, we use the same notations as in section 1.
Let @k be the unit index of K and wy the number of roots of unity in K. The rela-
tive class number h; is given by

fxy)

= Qg 11 2f(X1) Z x.(@a,

where y; runs through the odd characters of K and f(y,) is the conductor of X,
(cf. [7]). Here we notice that for any odd character x, of K
1 fxy

7oy Z x@a= ,'gxl(a)a.

Therefore, since @ =1 and wy = 21)”, where b =17 or 0 according as K =
Q0 or not, we have

m=-1 1 -1
b 2]+l(a)a|’

102p a=1

Here x is a generating character of K. Put &« = x(g). Then « is a primitive 2mth

https://doi.org/10.1017/50027763000006152 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000006152

172 KEN-ICHI YOSHINO

2n—-1

root of unity. So putting F(z) = X" gz’ where 2n = ¢(p"), we obtain

2p’ -
ni=—L_|FF@) - F@™™ |,
2p)
We put 4; = Zigl Zisam; for any i Then, on {a'|k € Z}, F(x) = ZZ”O_I Az’

since a”™” = 1. Hence, for any odd integer k, we have

1-aFa =% @4 ~A,)a"

i=0

m—1 m-1 i
=2 A4 - Ai+1)atk + 2 Ay, — Ai+m+1)a(l+m)k
i=0 i=0
m—1 )
=2 Z (A, - A,~+1)0(‘k,
i=0

r ¥
because 4, + A;,,, = p_(g%l for any 7 and ™ = —1 for any odd k. It is
obvious that H:";ol (1 — a ™) = 2. Hence, putting G(x) = X7} (4, — A,,)x’,

we have
Prm_bh: = ' G(a’)G(O(B) T G(azm_l) I = 'det(Ai+j - Ai+;‘+1)o§i,j<m ,

Here, as to the second equality, we refer to the probrem 5 in [2] p. 367. Since
n/m is odd, we set #/m = 2v + 1. Then

2; 2v
Ays—Apygn = (gi+s+2mj — Givsreom) = Zo Civom; (mod 2)
is

<

-
Il
=]

v—1

M=
M=

2v
2+ 2 em =
1

Cisomi T 2 CivemG+v+D
j=0 j=v+ j=0

j=0
v—=1

2v
Civamy T % Civmeami — % Civmj
j= j=

I
Mo s

i
o

7
Therefore A;,; — A,,5+1 = d; (mod 2) for any ¢. Thus we obtain

h;(k = det(Az+j - Ai+j+1) = det(Ai+i+s - Ai+j+s+1)
= det(d;,;) = detMy, (mod2).

This completes the proof of Theorem 2. Corollary is an immediate consequence of
Theorem 2 by the definition of oy, .

4. Properties of o, and #;

In this section we shall give three properties of p; and g, which are useful to
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calculate pg and gy for the maximal real subfield K of Q({,). We note that o =
U =0

ProPOSITION 1. Let L be a real subfield of Q(C,) and F a subfield of L. Let h*
be the velative class number of Q(Cpr) and a the integer such that 2% W Then Or
< p, £ a. Moveover, if 0 = 0, then tty, = ;.

PrOPOSITION 2. Let F'< L be veal subfields of Q({,n. Suppose that L/F is an
extension of 2-power degree. Then ttp = 0 (resp. pp = 0) if and only if ¢, = 0 (resp.
oL = 0).

PropPoSITION 3. Let F € L be real subfields of Q({,n). Suppose that L/F is an
extension of prime degree | > 2. Let [ be the order of 2 modulo I. Then p, = pp and

fty = tp (mod f).

We here prove Proposition 1. Let K be the maximal real subfield of Q({,»).
We first show that ox < @ Let n = @(p") /2 and A = (g,,; = Gis,s1) 0<ri<n BY
the proof of Theorem 2 we have p”""h™ = |det A|. Here we note that Givs
Zivssr = ¢, (mod2), where s is the integer such that g, = 2,1 < s < o).
Therefore the reduction modulo 2 of My = (¢, )o<.yen equals (g, —
Zirrsit)o<ijen Where g, = g, + 2Z for each i. Hence My and A have the same
F,-rank #n — p. Thus we obtain 2°%| £, which implies oy < a. Next we define
Xy and Yy for K just as X, and Y, are defined for L in the proof of Corollary of
Theorem 1. Let m = [L:QJ]. We consider the map ¢ ; F, — F, which is defined
by

x+ (x,x, ", ©),

where F) is the direct sum of m copies of F, and x = (x,, x,," " *, ,,_,). Then ¢
gives natural inclusions X; < Xy and Y; < Y. Hence we have p, < o, < a.
Similar argument shows that X < X, and ¥ < Y, So pp < p,. Therefore the
assumption pr = o, implies that X; = X, and Y; = ¥,. Thus we have u, = y,.

Most part of Proposition 2 is an immediate consequence of Theorems in [10]
and our Corollary of Theorem 1. But it is directly proved by using the matrices
M, and ML*, etc. and by calculating their F,-ranks as follows. Indeed, since 0
< tp S ;. we may show that gp = 0 implies g; = 0, with assuming [L: Fl = 2.
Let [F : Q] = m. Let d; be the integer defined in section 1, that is, d; = 0 or 1
according as 7; = Nqig,.(&) is positive or negative. Since [L:Q] = 2m, we
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—_ - —_ * _
have d;,,, = d, for every i, and M, = (di+j)0£i,i<2m’ M; = (di—j)osi,j<2m-

M,

Suppose that g = 0, i.e., ranky, <Mi) = m. Then there are 2m by 2m matrix @
F

and m by m matrix R such that

o(ye) 2=(%)

where E,, is m by m unit matrix and O is m by m zero matrix. Now, putting A =

(di+j)0£i,i<m and B = (di+j+m)OSx,j<m' then

A B
M= (3 A >
and My = A + B (mod 2) (cf. Proof of Lemma 3 in [14]). Then, by definition
* *
M= ( 2* i . )

where A* = (d;_)o<ijem and B* = (d;_jim)o<ijem Since M)=A4"+B*
(mod 2), we have

A B A B
M, B A M, M,
ranky, u* = rankg, A* B* | rankpg, A* B*
) B* A* My M,
F F

A M,

M. O

= rank
i A® My
M O

Therefore, using above matrices @ and R, we obtain

A MF Sl Em
(Q 0) AN M) (R o)z S, O
0Q)\M. 0 |\OR E, O |’

M 0 0 0

S A
where <Sl> = (A*> R. Thus we get ¢; = 0. Similarly we can show that p, =
2

0 implies p; = 0. This completes the proof of Proposition 2.
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Proposition 3 is proved as follows. Let m and # be the degrees of F and L,
respectively. As shown in the proof of Proposition 1, we may regard X and Y; as
subgroups of X, and Y, respectively. Then G(L/F) naturally acts on X, /X,
that is, {(y, Ty, ..., T )Xo} = @y " ") Ty Loy Ty " * *» Lyopyy) X foOr any
(x,, 2y, ", 2,.) Xz € X, /X, and for a generator ¢ of G(L/F). Since [L: F] = [
is an odd prime, it easily follows that the orbit of every element of X; /X, except
1 has [ elements. Hence 2°°° 7 =1 (mod }). Thus we obtain o, = p, (mod f).
Similarly applying above argument to X, N Y, /X, N Y5, we get g, = yp (mod
f). This completes the proof of Proposition 3.

5. Numerical example

In this section we tabulate all the values of odd prime p < 3000 such that the
class number of the maximal real subfield K of Q({,) is even. Since pg = g 2 0,
we may examine the primes p such that o, >0, ie., 2| n* by Corollary of
Theorem 2, where h™ is the relative class number of Q(Z,). For such primes p, we
calculate the values of oy and gy by Gaussian elimination method and tabulate
them.

In the following table we denote by a@ the integer such that 2° "h* by L a
subfield with o, = px and by m the degree of L. Here, as the value of a, we use
the value of k in the Table III in [4].

Table. The values of px and g for the maximal real subfield K of the cycloto-
mic field with prime conductor p, 2 < p < 3000.

p a m Oy Ok ____Hk b a m O Ok Uk
29 3 7 3 3 0 463 3 7 3 3 0
113 3 7 3 3 0 491 6 7 6 6 6
163 2 3 2 2 2 547 2 3 2 2 2
197 3 7 3 3 0 607 4 3 2 2 2
239 6 7 3 3 0 659 3 7 3 3 0
277 4 6 4 4 4 683 5 31 5 5 0
311} 10 31 10 10 0 701 3 7 3 3 0
337 6 21 6 6 0 709 4 6 4 4 4
349 4 6 4 4 4 751 4 15 4 4 0
373 5 31 5 5 0 827 6 7 6 6 6
397 6 6 4 4 4 853 2 3 2 2 2
421 4 15 4 4 0 883 6 63 6 6 0
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a m OL Ok Mk p a m oL Ok Mg

937 2 3 2 2 2 1879 2 3 2 2 2
941 8 10 8 8 8 || 1951 2 3 2 2 2
953 3 7 3 3 0| 2011 4 15 4 4 0
967 3 7 3 3 0] 2131 2 3 2 2 2
1009 8 63 8 8 2| 2143 3 7 3 3 0
1021 8 255 8 8 0| 2161 4 15 4 4 4
1051 6 21 6 6 0| 2221 4 15 4 4 0
1093 3 7 3 3 01 2297 3 7 3 3 0
1117 5 31 5 5 0| 2311 5 21 5 5 2
1163 3 7 3 3 0| 2381 6 14 6 6 0
1171 4 15 4 4 0| 2521 3 7 3 3 0
1399 4 3 2 2 2| 2591 3 7 3 3 0
1429 3 7 3 3 0| 2689 2 3 2 2 2
1471 3 7 3 3 0| 2797 4 6 4 4 4
1499 3 7 3 3 0| 2803 2 3 2 2 2
1699 2 3 2 2 2| 2843 3 7 3 3 0
1777 4 6 4 4 4 | 2857 3 7 3 3 0
1789 4 6 4 4 4 | 2927 6 7 6 6 6
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