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1. Introduction

This note is concerned with a question arising from some work of D. R.
Smart (2). In the introduction we indicate the nature of the problem.
Notations will be explained only in as far as they differ from those of (2).

Let S3 be a reflexive Banach space and T a bounded linear operator from
23 into itself. Following Smart we shall say that T is well-bounded if it is
possible to choose a constant K and a finite closed interval / = [a, b] of the
real line in such a way that

for every realx polynomial p{X). We may write the above inequality in the
form

(1) \\p(T)\\^K\p\j,

where \j>\j is defined to be the bracketed expression on the right hand side
of the original inequality. We shall usually omit the suffix / and simply
write \p\: but at one stage of § 3 the interval / enters essentially into the
argument. Throughout this note the symbolic denotes the constant occurring
in (1).

In his paper Smart develops for well-bounded operators a theory analo-
gous to the spectral theory of bounded Hermitian operators in Hilbert space.
He produces a functional calculus in which to every function p{X) which is
absolutely continuous on / there corresponds an operator p{ T) for which (1)
is valid. He also constructs a spectral family {Ex} of projections in S3, and
proves the existence of the "scalar operator"

5 = JMEX.
1 When 58 is a complex Banach space we may deduce that a similar condition, in which K

is replaced by 2K, is valid for complex polynomials. In this note, complex polynomials are not
needed, and the term "polynomial" is therefore used for "real polynomial."
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The operator 5—T is shown to be quasi-nilpotent, and it is conjectured that
S = T. In the present note we shall prove this conjecture.

2. Preliminaries

Throughout the remainder of this note it will be assumed that T is a well-
bounded operator acting in a reflexive Banach space S3, that {E^} is the
associated spectral family of projections in S3, and that 5 is the corresponding
scalar operator. For the definitions and properties of these operators we refer
to (2).

Let JU be an arbitrary real number. We define a function ffi (A) for each
positive integer n as follows:

'* O = [ 0 (A ̂  fi + l/n),

and /jjW)(A) is linear on the interval \ju —• l/n, /u, + 1/w]. We note that
/jjn)(A) is an absolutely continuous function of A which takes the value \
when A = /i.

LEMMA 1. Let x e S3. Then

as n -> oo. Convergence is in the norm topology of S3, and Efl_ denotes the
{strong) limit of Ex as A -> ju — 0.

PROOF. We shall first consider the case in which x may be expressed in the
form

x = p(T)x1 +
= u + v -f- w,

where p(X) is an absolutely continuous function vanishing on a neighbour-
hood of \JJL, oo), q(X) is an absolutely continuous function vanishing on a
neighbourhood of (— oo, //] , xv x2 e S3 and Tw = fiw. The set S3d of all such
elements x forms a dense subspace of S3 (see (2) § 4, the proof of Theorem A
(vi))-

Since /£*' (A) takes the value unity on (— oo, /x — l/n) and zero on
(JU + l/n, oo), it is clear that, for all sufficiently large n,

We deduce that

= p{T)xx

= u,
while / W (T) v = /«(T) ? (7) x2 = 0,
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for all sufficiently large n. Finally we note that, since Tw = fxw, we have

f(T)w = f{fx)w

for every polynomial f{X) and hence, by continuity, for every absolutely
continuous function /(A). Thus

/<r> ( T > = \w.
From equation (3) we now obtain

= u + \w

for all sufficiently large n. Since

EpX = u + w,

E^x = u,

(see (2) § 4), we have in fact shown that

for all sufficiently large n. Thus (2) is proved for the case in which x is an
element of the dense subspace SQd.

We now remark that, since

I/JT'I = sup |/W(A)| + var/W(A) ^ 2,

we have
\\f;\T)\\^2K (n= 1,2,3,. .-) .

From one of the Banach-Steinhaus theorems (see, for example, (1) 25,
Theorem 2.12.1) it now follows that (2) holds for all x e S3. This proves the
lemma.

Suppose now that [ix, ju2 are real numbers such that fix < fi2- For integers
n such that //2 — Pi > 2/w, we define a function ^M),/» (̂ ) ^ follows:

0 unless fix — \\n < X < /JL2 + 1/n,

1 when [JLX + 1/n ^ X ^ /u2 — 1/n,

and (f)^\Jli(X) is linear on each of the intervals \jx1 — 1/n, fa + 1/n] and
\ji% — 1/n, JU2 + 1/n]. We shall later use such functions in approximating to
step functions by absolutely continuous functions. It is apparent that
4ftl/itW *s absolutely continuous, and we have the following result.

LEMMA 2. Let x e 35. Then

n -> oo. Convergence is in the norm topology of $8.
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PROOF. Since

we have

and the result is an immediate consequence of Lemma 1.

REMARK. If Exx is continuous at A = /ult A = fj,2, then

as n ->• oo.

3. A subsidiary conjecture

In this section we obtain an estimate for \\S — T\\, and in the process
verify a subsidiary conjecture of Smart, made in formula (9) of (2). The
proof of this result involves only slight amendment of the "heuristic rea-
sons" put forward in § 5 of (2) in support of the conjecture.

Let XQ e S3. We shall obtain an estimate for \\Sx0 — TxQ\\. This will be
done by approximating to 5 by suitable functions of T in the strong operator
topology. We choose a fixed d > 0. For each integer N = 1, 2, 3, • • •, let
AN be a dissection

of the interval [a — 6, b + 0], with the properties

(i) dN = max (Xi+1 - X{) < 2(b - a + 2d)/N;
(ii) ExxQ is strongly continuous in X at each point Xt.

It is possible to choose such a dissection since the set of discontinuities of
EXXQ is at most enumerable ((2) Theorem A (ix), and the lemma following
Theorem C).

We may now consider the operators

N-l

i=0

(where AEX = Ex. — Ex), and

We have

SNx -> Sx as N -> oo (x e S3),

where
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the integral being defined in the sense of (2). Furthermore, for each fixed N,
we see from the remark following Lemma 2 that

N-l
SN)XO ~+ 2 *tAExz0 = SNx0

i=0

as n -> oo.
The operator T — S$ may be written in the form y)$(T), where

is the absolutely continuous function of A defined by

We now require an estimate for lipffl \j. We may restrict our attention to
those n for which nd > 1, and assume that the interval [Ao + 1/n, XN — 1/n],
or (what is the same) [a — 6 + 1/n, b -f- 6 — 1/n], contains / = [a, b]. We
may also suppose that n is sufficiently large to ensure that

A, + 1/n < V i - V» (* = O,1,-;N-1).

Now v^(A) is linear on each of the intervals

[A, + 1/n, Ai+1 - 1/n] (i = 0, 1, • • •, N - 1), and

[A, - 1/n, Af + l / » ] (i =1,2,--,N- 1) ,
while

^ (A, - 1/n) = A, - A,_x - 1/n (» = 1, 2, • • •, iV),

(A, + 1/n) = l/n {i = 0,1,-",N-l).

For sufficiently large n all these values are positive and we have

sup \vff (A) | ^ max (A, - A^) == ^ ,
/
var^n)(A) ^ (2iV- 1 ) ^

^ 4(6 - a + 20).

The last inequality follows from assumption (i) about the dissection AN. We
now have

IVW| ^ 4(6 - a + 20) + ^
and hence

^ 4^(6 - a + 2(9) + (^#.

Since 5 ^ a;0 -> S#x0 as «-> oo, we obtain

\\Tx0 — S^a;0|| ^ lim sup \\Tx0 — Sft]x0\\
n—oo

(6) ^||^||limsup||r-SW||

^ \\xo\\{±K(b -a + 2B)+ 6NK).
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The last inequality is a consequence of (5). Upon letting N -> oo in (6) we
obtain

\\Tx0 - Sxo\\ ^ 4K\\xo\\(b - a + 2d).

Since this holds for every 6 > 0, while x0 is an arbitrary element of 23,

(7) \\T-s\\^*K{b-a).

We note that, in (7), K is the constant occurring in (1). Hence we have the
following result.

LEMMA 3. Let T be a bounded linear operator acting in a reflexive Banach
space 93, and let J = [a, b] be a finite closed interval of the real line. Suppose
that there is a constant K such that

\\p{T)\\^K\p\j

for every polynomial p{X). Then \\S — T\\ ^ 4K(b — a), where S is the scalar
operator associated with T.

The above lemma gives an estimate for \\S — T||. Our aim in the remaind-
er of this section is to sharpen this result by obtaining a similar estimate for
the bound of the operator obtained by restricting S — T to the subspace
{Ep — Ea)SQ, where a, /? are arbitrary real numbers. Before we can do this
we need the following auxiliary result.

LEMMA 4. Let <f>{X) be an absolutely continuous function vanishing on an
interval [a, /?]. Then <f>{T)(Efi ~ Ea) = 0.

PROOF. We first consider the special case in which, for some 6 > 0, <£(A)
vanishes on the interval [a, /? + 6].

For any c in (a, /?) and d in (/?, /? + 6) we have, for all sufficiently large n,

<x<c <d + -<p + d.
n n

For such n, ^(fyftfy (A) = 0 (where <f>^]
d (A) is defined as in Lemma 2). From

that lemma we deduce that, if x e SB, then

n—*-oo

= 0.

When c -> a + 0 and d -> /? + 0 we obtain

</>(T)(Efi--Ea)x = 0 («

This proves the required result in the special case. In the general case we
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define
f 4>(X) (A < a),

0 (a ̂  A ̂  j8 + 0),<f>0{X) —

It is easily verified that <f>e is an absolutely continuous function which van-
ishes on the interval [a, (3 + 6], and that \<f> — ̂ l -> 0 as 6 -> 0-f-. We
deduce that (f>e{T)(Eft — Ea) = 0, and that

fi - Ea)\\

as 6 -> 0 + . Since the left hand side is independent of 6, this completes the
proof of the lemma.

We now state and prove one of the subsidiary conjectures made in (2).

LEMMA 5. Let T be a bounded linear operator acting in a reflexive Banach
space 33, let J = [a, b] be a finite closed interval of the real line, and suppose
that there is a constant K such that

\\p{T)\\^K\p\j

for every polynomial >̂(A). Let a, /? be real numbers, and denote by S30 the space
(Ea — Ep)y$, and by SQ, To the restrictions to S30 of S, T (where S is the scalar
operator associated with T). Then

| | S 0 - r o | | ^

PROOF. We may suppose that a < /?. Since ||̂ > (7 )̂11 fg H^CHI! for every
po.ynomial p{X), we have

(8) \\p(T0)\\^K\p\j

for all polynomials, and, in fact, for all absolutely continuous functions. We
now wish to show that, if Jo denotes the interval [a, /?], then / may be re-
placed by Jo in (8). Given an absolutely continuous function P(X), let/>0(A)
be the function equal to p(X) on Jo and constant on each of the intervals
(~oo, a] and [ft, oo). Lemma 4 implies that p(T0) = P0{T0), and we have

(9) ll*(ro)|| = \\Po(To)\\ ^

Hence To is a well-bounded operator. The family of projections in S30, which
is obtained by restricting to $80 the projections Ex, has all the properties
which are required by Theorem A of (2) for the spectral family of projections
associated with To. Hence, by the uniqueness clause of that theorem, we
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see that the two families coincide. It follows that So is the scalar operator
associated with To. We now deduce from (9), and from Lemma 3 applied to
To, that

4. The proof that S = T

We shall use Lemma 5 and the following result.

LEMMA 6. Let £be a Banach space, xk a function of a real variable X, taking
values in 36. Suppose that xx satisfies a Lipschitz condition

(10) WXr-XiW^M^-Xl

Then (i) given an element f in the dual space 36*, there is a subset A{f) of thereal
line, which is of measure zero and such that

\ X /

exists whenever X4 A(f);
(ii) if in addition 36 is reflexive then there is a set A of measure zero which

contains all the sets A(f) (/e36*); and when X4A,

H — X

converges weakly to an element yx of 36 as (i -> X;
(iii) if, further, yx = 0 (X4A), then xx is constant.

PROOF, (i) Given / e 36*, let

4>f{X) = fM-
Since

\cf>f(X) - <f>f(^)\ = | / ( * A - * , ) |

^ M\\f\\ \X - f*\,

it follows that the function <f>f(X) is absolutely continuous and therefore dif-
ferentiable for almost all X. Let A (/) denote the exceptional set (of measure
zero). Then when X4A(f),

as fi - > X.

(ii) In the first instance we make the additional assumption that 36 is
separable. Since 36 is reflexive, it follows that 36* is also separable (Zaanen
(3) 152, Theorem 10, with E = 36*). Let (/„) be a sequence of elements form-
ing a dense subset of 36*, and define
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A = \JA{fn).
n

Clearly A is a set of measure zero. We now choose and fix a real number X
not in A, and when /u =£ X we define

( 1 1 ) * , , A = * ' " *
fj, - X

From (10) it follows that

(12) II*MII^M-
The limit

exists when / is a member of the sequence (fn). Since the members of this
sequence form a dense subset of 3E*, while the elements x^>A are uniformly
bounded, it follows that the limit \p(f) exists for every / e 3E*, and that ip
is a bounded linear functional on •£* ((1) 25, Theorem 2.12.1). Since 3E is
reflexive there is an element yx of 36 such that

We have

= /(2/A),

as required.
If X is not separable, we denote by 3£0 the closed subspace generated by

elements of the form #A. Then 36°, considered as a Banach space in its own
right, is reflexive, and is also separable (being generated by elements xx with
rational X). We may consider xx as a function taking values in 36O. Since the
weak topology on 36O is exactly the topology induced on 36O by the weak
topology on 36, the required result may now be deduced from the special
case in which 36 is separable.

(iii) Let / e 3£*. The function f{xx) is absolutely continuous, and when
X 4 A we have

= f{yx)
= o.

Hence the function f{xx) has zero derivative almost everywhere, and is
therefore constant. Since this holds for every / e 3£*, we deduce that xk is
constant.

We are now in a position to prove our main result.
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THEOREM. Let T be a well-bounded operator acting in a reflexive Banach
space 33, and let S be the associated scalar operator. Then S = T.

PROOF. Let x e 33, and set

xx = (S - T)Exx.

We recall from (2) that \\EX\\ ̂  2K. Since

it follows from Lemma 5 that

X\ \\Exx - £,* | |

|| • \fi—X\.

The conditions of Lemma 6 (i) and (ii) are therefore satisfied. We deduce
that, for almost all X, the element

" A ~ p-X
of S3 tends weakly, as fi -> A, to a vector yx in S3. We now prove that yx, when
it exists, is zero. For if p > /n > X, we have

(£„ - Ek)x^ =(/*- X)~i(Ep - EJ{E, - EX)(S - T)x

= {p - X)-i{E,- EX){S -T)x

Here we have used the fact that the projections Ex commute with S and T,
and satisfy the relations EaEfi — EfiEa = Ea (a ^ /?). Allowing /< to de-
crease to X, we obtain

Finally, letting p decrease to X, and using the right continuity of Ex, we find
that

From Lemma 6 (iii) it follows that xx is constant, and by choosing X < a we
deduce that xx vanishes identically. When X > b we obtain

(S _ 7 > = 0.

This holds for every x e 93. Hence S = T.
I am indebted to Dr. Smart for a number of suggestions which have sim-

plified some of the proofs in this note.
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