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Abstract

Measurement of water consumption and urinary nitrogen (UN) excretion of individual graz-
ing ruminants is difficult, time-consuming and expensive. Therefore, prediction and model-
ling are critical for research to improve N and water use efficiency. The objective of the
current work was to use a mechanistic model of a grazing ruminant, MINDY, to represent
drinking and urination diurnal patterns, and the resulting pattern of UN excretion. This
work is primarily an integration of existing knowledge of basic urination physiology and
water dynamics in ruminants. MINDY reproduces observed patterns of urination achieving
the correct temporal occurrence, relative volumes and nitrogen (N) concentration of individ-
ual urination events for a grazing dairy cow, comparable with those reported in the literature.
The model simulates daily water imbibed and UN realistically, as well as ingestion rates for
herbages with different protein content and contrasting grazing managements. Results of a
cross-validation indicate that the root mean square prediction error and mean absolute
error as % of the observed mean, respectively, were 26 and 23% for daily water imbibed, 26
and 27% for urination volume, and 25 and 19% for the frequency of urination. Although fur-
ther parameterization and validation are needed, for a new development in an exploratory
model like MINDY, these numbers are encouraging and reflect that the concepts encoded cap-
ture many of the underlying biological mechanisms that drive the diurnal pattern and daily
UN excretion, as well as thirst, acceptable.

Introduction

Cattle grazing temperate swards do not use nitrogen (N) and water efficiently (Satter & Roffler
1975; Jarvis 1993; Van der Hoek 1998). At least 0·70 of the N they ingest is not stored or
secreted in saleable products (e.g. milk, live weight gain) and >0·60 of that N is excreted
with water as urinary nitrogen (UN) (Kebreab et al. 2001; Gregorini et al. 2010, 2016).
Discharge of UN onto pasture is the greatest contributor to leached N in temperate grazing
environments (Di & Cameron 2002; Selbie et al. 2015). Therefore, in association with intensive
livestock production and increased demand for water and nutrients (Pimentel et al. 2004;
Hoekstra & Chapagain 2007), these inefficiencies frequently deplete and/or contaminate
water sources (Jongbloed & Lenis 1998; Ilea 2009). Individual measurements of UN excretion
and water consumption by grazing ruminants are difficult, time-consuming and expensive;
therefore, prediction and modelling are critical for research to improve N and water use
efficiency.

The need to know about the diurnal pattern of urination relates to the great variability of N
concentration, volume and diurnal frequency of individual urination events throughout the
day (Betteridge et al. 2013). For beef cattle and non-lactating dairy cows grazing temperate
swards, N concentration, volume and diurnal frequency of individual urination events vary
considerably, 0·8–14·1 g/l, 0·3–10 litres and 13–73 times/d, respectively (Betteridge et al.
1986, 2013). Similar variations have been reported for lactating dairy cows in New Zealand
(Shepherd et al. 2017). These variations have been related to animal N and water metabolism
(Maltz & Silanikove 1996; Appuhamy et al. 2014), as well as grazing management (Clark et al.
2010b; Gregorini et al. 2017), and dietary and animal features (Betteridge et al. 1986).
Collectively, they represent feeding and grazing management opportunities to modulate urin-
ation patterns and N excretion and discharges onto pastures (Gregorini et al. 2017).

Much empirical data and mathematical representations of water consumption and UN have
been accumulated and summarized (Murphy 1992; Silanikove 1992; Castillo et al. 2001) and
attempts to model them have been diverse (Winchester & Morris 1956; Holter & Urban Jr
1992; Bannink et al. 1999; Cardot et al. 2008; Khelil-Arfa et al. 2012; Appuhamy et al.
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2014). However, many N cycles and farm models use UN as input
data or only predict daily averages of UN, ignoring the known
variability of N concentration, volume and diurnal frequency of
daily individual urination events. The latter can create either
under or overestimations of UN, scaling errors and thereby false
perceptions (good or bad) of particular feeding and grazing man-
agements. Mechanistic and dynamic approaches that simulate UN
and water consumption are scarce, and to our knowledge, there
are no current models on the diurnal patterns of urination and
drinking by grazing ruminants.

MINDY is a deterministic, mechanistic and dynamic model of
a dairy cow representing diurnal patterns of ingestion, digestion
and metabolism, and production based on explicit relationships
among direct (ingestion, digestion and metabolism) and indirect
(feeding environment) controls of motivation to feed (Gregorini
et al. 2013, 2015b). MINDY is a cluster of six models: (1) Molly
models digestion, metabolism and production of a dairy cow
(Baldwin 1995), as modified by Gregorini et al. (2015a); (2) diur-
nal fluctuations in feeding motivation; (3) sward canopy structure
and herbage quality; (4) grazing behaviour; (5) dietary preference
and forage selection; and (6) foraging bioenergetics. MINDY also
integrates functional relationships between forage ingestion, oral
physiology and swallowing, and rumen digestion responsible for
variations in liquid outflows from the rumen (Gregorini et al.
unpublished). The primary objective of the current work was to
represent diurnal urination and drinking patterns, and the result-
ing pattern of UN in MINDY. The effort integrates existing
knowledge of basic urination physiology (Andersson & Arner
2004) and water dynamics in ruminants (Silanikove 1994; Maltz
& Silanikove 1996; Kadzere et al. 2002), which are responsible
for frequency and variations in the volume and N concentration
of urination events. The mathematical formulation, first princi-
ples, model parameters and function, as well as preliminary evalu-
ation (cross-validation) of the new development in MINDY are

described and presented, respectively, in the current paper.
Also, and for illustrative and conceptual evaluation of the new
model development, the hypothesis that herbage crude protein
and specific grazing management strategies alters UN and drink-
ing patterns were tested.

Rationale and Description of the Model Development

This development (Fig. 1) is a mechanistic and dynamic represen-
tation of water consumption (ingested with food and imbibed)
and urination pattern by grazing ruminants within MINDY
(Gregorini et al. 2013, 2015b). The code was developed and simu-
lations were conducted using ACSLXtreme (Aegis Technologies
Group, Austin, TX, USA). Numerical integration was conducted
using a fourth-order, fixed-step, Runge–Kutta method. The max-
imum integration interval was set to 0·001 d. The results pre-
sented in the current paper were collected after 5 d of
simulation to ensure the model had reached a steady state.

Water consumption

Amount of water imbibed
The rumen is the main water reservoir for ruminants (Church
1988). This water is used for metabolic, cooling and digestive pro-
cesses (Van Soest 1994). Ruminants attempt to maintain an opti-
mal rumen function (Yokoyama & Johnson 1988; Van Soest
1996), and a key requisite for that is stable microbial populations
(Bergen 1977; Hobson & Stewart 1997). To thrive and survive,
rumen microbial populations require water in a range between
0·80 and 0·85 of rumen contents (if water is accessible), independ-
ent of diet, season and type of ruminant (Van Vuuren 1993;
Gregorini et al. 2007, 2009b; Seo et al. 2007). In addition, animals
attempt to maintain blood volume, mobilizing water from various
pools of the body if necessary but mainly from the rumen

Fig. 1. Schematic representation of the processes of drinking and ingestion of water, urination and nitrogen (N) concentration in urine.
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(Miaron & Christopherson 1992), to avoid haemo-concentration
(Jain 1986). Therefore, it was assumed that the amount of water
in the rumen is ‘sensed’ by the animal, and in conjunction with
continuous ‘sensing’ of variations of water level in the body
(WaterBody) stimulates the motivation to drink, i.e. thirst.

The amount of water imbibed is represented in MINDY as a
function of rumen dry matter (DM) content (RumDM) and
WaterBody as follows:

If water is available, and RumDM ⩾ RumDMUpperLimit or
WaterBody⩽WaterBodyTrigger, then MINDY stops other activ-
ities (grazing, ruminating, idling) and drinks. MINDY drinks at
a rate of 18 litres/min corrected for body size (AnimalBodySize,
kg) (Pinheiro Machado Filho et al. 2004). MINDY stops drinking
when RumDM ⩽18·4% or reaches a maximum volume of the
rumen and WaterBody is ⩾WaterBodyTrigger (constant, 69·7%,
water content of fat-free body (Springell 1968)).

Rumen liquid, and thereby RumenDigesta, are affected by the
inflow and outflow of liquids to, from, and by-passing (water that
goes directly to the abomasum, passing fleetingly through the top
of the rumen and into the reticulum) the rumen. The model
assumes 0·0115 of the water imbibed (WaterImbibed, litre/min)
bypasses (WaterBypass, litre/min) the rumen (Woodford et al.
1984). For details on the mechanistic and dynamic representation
of digesta outflow from the rumen (solid and liquid) in MINDY
(Gregorini et al. 2015a; Gregorini et al. unpublished). The inflow
of liquid to the rumen is calculated as follows:

WaterInflow = WaterImbibed +WaterIngestion+ Saliva

+WaterOsmolarity −Waterbypass (1)

whereWaterIngestion (litre/min) is the product of herbage (or any
feed) intake rate and its moisture content. MINDY accounts for
changes in herbage moisture content throughout sward canopy
strata, during the day and throughout the year according to the
season (Delagarde et al. 2000; Gregorini et al. 2008, 2009c;
Gregorini 2012). Saliva is the inflow of saliva (litre/min) to the
rumen and depends on the activity. Salivation rate is 2·4 litres/d
while ruminating and 0·85 litre/d during idling (Maekawa et al.
2002); while eating, the rate of salivation (litre/min) depends on
the characteristics of the ingestive bolus and number of jaw move-
ments (severing and mastication) per bolus. MINDY simulates
differential jaw movement rates according to behavioural actions
(rumination, severing bites, oral processing, bolus formations)
and internal state (hunger), which are influenced by fibre content
of the forage (Gregorini et al. 2013; Gregorini et al. unpublished).
WaterOsmolarity (litre/min) is water exchange across the rumen
wall between rumen fluid and blood through osmolality as previ-
ously described (Gregorini et al. 2015a).

WaterBody is the continuous variable percentage of water in
the body. It is the ratio between water pool in the body
(WaterPool), excluding the rumen, and the body weight (BW)
excluding the gravid uterus. WaterInflowIntoWaterBody is calcu-
lated as follows:

WaterInflowIntoWaterBody = WaterOutflowRumen

+Waterbypass− Saliva

−WaterExcretion (2)

WaterOutflowRumen is the momentary outflow of liquid from
the rumen (See Gregorini et al. (2015a) for details of the

equations), and WaterExcretion is the water excreted as respir-
ation (kWaterRespired = 0·033 litre/kg BW/d, assuming half
the maximal respiratory rate, Murphy (1992)), transpiration
(kWaterTranspired, 0·0185 litre/kg BW/d, assuming 0·25 of the
maximal sweating rate), defecation (kWaterDefecated, 0·77,
assuming 23% faecal DM Murphy (1992)), urination, and milk
production (assuming 0·01 of ash in milk, while lactose, fat, pro-
tein and total milk are simulated mechanistically).

Water excretion as urine
Animal extra cellular water (WaterPool in MINDY) is the main
source of water for urine production and dilution of N
(Appuhamy et al. 2014). Cattle produce urine with a fixed ceiling
for urine osmolality, ∼1000 mmol/kg BW (Maltz & Silanikove
1996). If urea concentration in the kidney is high, water is with-
drawn from cellular water (WaterPool) because ruminants, as
opposite to monogastrics, cannot concentrate urine above this
ceiling (Silanikove 1994; Maltz & Silanikove 1996). Thus, incre-
ments in osmotic loads, e.g. by increases in N supply to the ani-
mal (i.e. intake and digestion) are associated with excessive urine
production (Maltz & Silanikove 1996). Based on these concepts
and data, plus basic urinary bladder physiology (Andersson &
Arner 2004), urination behaviour in MINDY is represented as
follows:

The bladder stores urine. Urine enters the bladder from the
kidneys. The bladder of cattle can hold a variable volume
(BladderVolume, litres) of urine. When the level of urine reaches
about half this volume, the pressure of the accumulating fluid sti-
mulates nervous impulses that relax the external sphincter and
urination occurs. Subsequently, when MINDY’s bladder is half
full, ‘she’ urinates. Bladder capacity (BladderCapacity, litres)
changes throughout pregnancy related to foetal size and within
the day in relation to rumen fill. Both pregnancy and rumen fill
reduce BladderCapacity and increase urination frequency, as
well as reducing the volume of individual urination events.
Then, if BladderVolume ⩾ BladderCapacity, MINDY empties the
bladder, i.e. urinates.

MINDY’s BladderVolume represents the current water content
in the bladder. BladderCapacity is the current bladder capacity,
which is calculated as the product of the maximum capacity of
the bladder (MaxBladderCapacity, litres), pregnancy effect
(BladderPregnancyFactor, proportion) and rumen volume effect
(BladderRumenVolumeFactor, proportion). MaxBladderCapacity
is a constant (8·0 litres) derived from model parameterization
(see next section on model parameterization) modulated by
body size. BladderPregnancyFactor is calculated as:

BladderPregnancyFactor = PregnancyFactorkPregMaxBladder (3)

PregnancyFactor = 1− GravidUterus
AnimalBodySize

(4)

PregnancyFactor ranges between 1 (non-pregnant) and ∼0·85 before
calving. GravidUterus is the fresh weight (kg) of the foetus plus the
uterus, and kPregMaxBladder is a constant (1·2) that controls the
reduction in urination trigger level as the foetus grows, due to the
increased pressure on the bladder. BladderRumenVolumeFactor is
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calculated as:

BladderRumenVolumeFactor

= 1− 0.8× e−kRumVolMaxBladder×RumenVolumefactor (5)

RumenVolumeFactor = Max 0, 1− RumenDigesta
MaximunRumenCapacity

( )

(6)

kRumVolMaxBladder is a constant with a value of 3, which lowers
the urination trigger level as the rumen fills up, due to increased
pressure on the bladder. MaximunRumenCapacity (kg) is the cap-
acity of the rumen to store fresh digesta. RumenVolumeFactor
ranges between 0 (rumen full) to 1 (rumen empty).

The volume of each urination event equals the BladderVolume
that triggers MINDY to empty the bladder. BladderVolume equals
WaterUrine (litre/d), which drains any surplus water from
WaterBody into the bladder. If this is not enough water to dilute
UN as expected, it draws water fromWaterBody even if there is no
surplus; making MINDY thirsty, which stimulates ‘her’ to replen-
ish WaterBody by drinking.

WaterUrine = MAX MinimunWaterUrineDilution,(
MinimunWaterSurplusResidence

) (7)

Urinary nitrogen concentration

The UN concentration (g/l) of each urination event at each urin-
ation time is calculated as follows:

UN = UNAccumulatedSinceLastUrination
BladderVolume

(8)

where UNAccumulatedSinceLastUrination (g) is accumulated urea
in the blood since the last urination, and the BladderVolume is
given by WaterUrine (Eqn (7)).

MinimumWaterUrineDilution=1000× UN
TargetConcentrationUN

(9)

TargetConcentrationUN = MaximumConcentrationUN

× 1− e−(kConcentrationUN×UN)/(AnimalBodySize)( ) (10)

MinimumWaterSurplusResidence

= WaterPool −WaterPoolTaget
( )× kWaterUrine

× AnimalBodySize (11)

where MinimumWaterUrineDilution (litre/d) is the minimum rate
of water flowing to the bladder to achieve target dilution of the
momentary N excretion rate. MinimumWater SurplusResidence
(litre/d) is the minimal amount of water flowing to the bladder
required to excrete water surplus. TargetConcentrationUN (g/l) is
the maximal concentration of N for the current N excretion rate

as UN. MaximumConcentration UN (10·56 g/l) is a constant
representing the maximum concertation of UN at each urination
event. MaximumConcentrationUN value was fitted to the UN
data (corrected by BW) reported by Nennich et al. (2006),
Broderick (2003), Wattiaux & Karg (2004), Burgos et al. (2005),
Woodward et al. (2013) and Betteridge et al. (1986).
kConcentrationUN (unitless) is an exponential decay constant fit-
ted as MaximunConcentrationUN. kWaterUrine is an exponential
constant (0·18) determining the flow (litre/d) of water to the
bladder.

Model Parameterization and Cross-validation

Ten data sets (Betteridge et al. 1986; Dado & Allen 1993, 1994;
Aland et al. 2002; Jago et al. 2005; Cardot et al. 2008;
Oudshoorn et al. 2008; Clark et al. 2010a, b) were used to (a) par-
ameterize the model, using the ‘Learn from All’ methodology
described by Witten et al. (2011); (b) calculate each parameter’s
standard error using the bootstrap method (Efron 1982, 1983);
and (c) calculate the model’s predictive error using the cross-
validation method (Witten et al. 2011). These data sets included
cows with different characteristics and diverse diets, reported pat-
tern of water imbibed and urination and provided daily volumes
of water in and urine excreted.

Model parameters standard errors were estimated using the
bootstrap method (Efron 1982, 1983; Witten et al. 2011) as fol-
lows: (1) selecting items (treatments means) from the whole
data set randomly, so some items appeared more than once in
the selection; (2) for each parameter, fixing all parameters except
one to the best values from the cross-validation phase; (3) finding
the best value for this parameter (i.e. the one that was fixed); (4)
repeating steps 2 and 3 for each parameter; (5) repeating steps 1–4
with 5 different random selections and (6) calculating each para-
meter’s standard error, from the X values collected, to get the
standard errors of the model parameters. The model parameter
estimates and standard errors are presented in Table 1. In all
cases, the model parameters were well defined by the data as evi-
denced by the low standard errors (<10% of the respective esti-
mates) of the parameter estimates.

The Cross-Validation phase was performed using method-
ology described by Witten et al. (2011): First, allocating the
data (treatments’ means of data sets in this case) randomly into
P groups, then excluding one group at a time – finding best para-
meters, collecting individual bias measurements for the excluded
group, and repeating steps 1, 2 and 3 M times with different ran-
dom allocation each time. Finally, averaging and reporting all the
M × P deviance measurements from step 3 (i.e. all the excluded

Table 1. Model parameters estimates and standard errors (S.E.)

Parameter Value S.E.

RumDMLowerLimit 0.180 1

RumDMUpperLimit 0.184 0.0017

WaterBody 0.697 0.0050

kPregMaxBladder 0.59 0.044

kRumVolMaxBladder 3.00 0.055

kWatterUrine 0.180 0.0023

MaxBladderCapacity (litres) 8.0 0.21
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groups). The assessment of the model’s predictive error was con-
ducted using the mean square prediction of error (MSPE), the
square root of MSPE and MSPE decomposition in mean and sys-
tematic bias and random error, as well as the mean absolute error
(MAE) (Bibby & Toutenburg 1977; Tedeschi 2006). MAE mea-
sures the average magnitude of the errors in a set of predictions,
without considering their direction. It is the average over the test
sample of the absolute differences between prediction and actual
observation where all individual differences have equal weight.
MSPE was calculated as follows:

MSPE =
∑n

i=1 Observed− Predicted[ ]2
n

The MSPE measures the distance between observed and pre-
dicted values, and its square root, RMSPE, is used to obtain the
same units as the observed and predicted values. The RMSPE
gives an estimation of the mean error amplitude, a RMSPE
<10% and between 10 and 25% of observed mean indicates,
respectively, satisfactory and acceptable predictions (Fuentes-Pila
et al. 1996).

Results of the cross-validation indicate that MINDY predicts
daily water imbibed, urination volume and frequency of urination
with a RMSPE and MAE as % of the observed mean of 26·33 and
23·30%; 25·80 and 27·14%; 25·10 and 18·76%, respectively. The
model displayed the following mean bias, systematic bias, and
random error (MSPE decomposition, Tedeschi (2006)) for daily
water imbibed, urination volume and frequency of urination,
respectively: 4·93, 33·75 and 61·31%; 90·19, 9·06 and 0·75%;
and, 6·83, 8·42 and 84·74%. Decomposition of the MSPE, then,
indicates that the structure of this new module in MINDY still
needs improvement, especially in terms of daily water imbibed
(model over-prediction) and daily urination volume (model
over-prediction). This MSPE decomposition also indicates that
considerable more, and more accurate (e.g. urination volumes
and individual water imbibed under pastoral conditions) and spe-
cific data (e.g. bladder volume of dairy cows of various size and
age) is needed to further parameterization and validation of
MINDY’s new module to ensure no lack-of-fit and account for
non-random variation better. However, for a new development
in an exploratory model like MINDY, these numbers (predictive
errors) and the random errors, especially for urination frequency
and water imbibed are encouraging, and reflect that the concepts
encoded capture ‘relatively acceptable’ many of the underlying
biological mechanisms that drive the diurnal pattern and daily
UN excretion, as well as thirst.

MINDY’s illustrative prediction of urination and UN patterns,
as presented in the following section, suggests a realistic model
response to herbage chemical composition and grazing manage-
ments. Model outputs are in close agreement with data reported
by Shepherd et al. (2017), when evaluating urine excretion from
dairy cows under different farm systems. This indicates the
model predicts UN concentration at the level of urination event
within one standard deviation (S.D.) of the observed means.

Illustrations and Discussion

The current work has formulated and described a new develop-
ment in MINDY, with a preliminary conceptual validation con-
ducted under a range of feeding scenarios. Validation means
the model is acceptable for its intended purpose because it

meets specified performance requirements (Rykiel 1996). The
purpose of the present development was to integrate knowledge
of urination physiology (Andersson & Arner 2004) and water
dynamics (Silanikove 1994; Maltz & Silanikove 1996; Kadzere
et al. 2002) responsible for frequency and variations in volume
and UN into MINDY’s framework. The context of the model is
a ‘foraging ruminant’. Model performance was also assessed by
MINDY’s ability to simulate sensible diurnal patterns of urination
and drinking in response to various grazing scenarios, commonly
used in intensive pastoral dairy farms.

To illustrate these simulations, MINDY was presented to: (1)
herbage with contrasting contents of crude protein; (2) different
timings of pasture allocation; and (3) a period of restriction in
available grazing time to determine whether MINDY’s diurnal
urination and drinking patterns were sensitive to herbage crude
protein content or intake and management of grazing patterns,
and if so, whether that would change daily excretion of N and
water imbibed. In all simulations, the outputs required from
MINDY were: intake rates of water and herbage, N concentration,
frequency, volume and diurnal distribution of urination events, as
well as frequency, volume and diurnal distribution of drinking
events.

The effect of crude protein content of herbage on urinary
nitrogen excretion pattern and water consumption

Urinary N excretion is related directly to N intake (Castillo et al.
2001; Gregorini et al. 2016). As N intake increases, UN excretions
increase exponentially (Kebreab et al. 2002). Although this phe-
nomenon is well documented and several models simulate it,
there is a lack of information on the effect of crude protein in
herbage on diurnal patterns of UN excretion and water consump-
tion. Then a scenario where MINDY (initialized as a pregnant
Friesian dairy cow (500 kg liveweight) in mid-lactation (150 day
in milk)) grazed a Lolium perenne L. sward (9 cm height and
3000 kg DM/ha) under set stock grazing management with herb-
age containing either 200 or 300 g crude protein (CP)/kg DM was
simulated. These levels of CP reflect the effect of low v. high levels
of N fertilization (0–50 v. 205–300 kg N/ha) on pastures
(Goswami & Willcox 1969).

Figure 2 andTable 2 presentMINDY’s simulated diurnal patterns
and daily values of UN excretion and water consumption, respect-
ively, according to herbage crude protein content (g/kgDM).
These results also account for different herbage intake patterns
(meals’ frequency, duration and intensity). It must be noted that, in
MINDY chemical composition, and dry matter content of herbage
fluctuates during the day and amongst sward canopy strata (See
Gregorini et al. (2013) for details on equations)). Intake pattern, in
conjunction with diurnal fluctuations in moisture content of the
herbage (loss of moisture from dawn to dusk due to transpiration
and evaporation and accumulation of dry matter (photosynthates))
determine water ingestion patterns throughout the day; which in
turn determine daily water ingestion (64 v. 61 litres for 200 and
300 g CP/kg DM, respectively; Table 2).

Herbage with high crude protein led MINDY to excrete a con-
siderably greater amount (72% more) of UN compared with that
excreted when grazing swards with low levels of crude protein.
Similar results (115 v. 348 g UN/d) have been reported by
Delagarde et al. (1997) (cited by Castillo et al. 2000) for dairy
cows grazing Lolium perenne L. swards fertilized with 0 and
250 kg N/ha, respectively. Patterns of urination also differed
between treatments. Grazing swards with high crude protein led

The Journal of Agricultural Science 75

https://doi.org/10.1017/S0021859617000806 Published online by Cambridge University Press

https://doi.org/10.1017/S0021859617000806


MINDY to have a greater urination frequency and a greater and
steady concentration of N in each urination event (the difference
between the highest and the lowest UN concentration were 0·3 v.
1·3 g/l for the low and high crude protein herbage, respectively).

Diurnal patterns of urination volumes were similar, with the
greatest volumes overnight and early in the morning and the low-
est after or within meals. This pattern reflects the eating pattern
and the effect of rumen fill on bladder capacity. Such a pattern
is supported by Betteridge et al. (2013) and Shepherd et al.
(2017). When MINDY grazed herbage with a high level of
crude protein, individual volumes of urination events were

greater. This difference and the greater urination frequency led
MINDY to produce eight litres extra of urine per day on the
high crude protein diet.

As discussed above, cattle produce urine with a fixed ceiling for
urine osmolality, ∼1000 mmol/kg live weight (Maltz & Silanikove
1996). If the urea concentration in the kidneys is high, more water
is required to dilute the urine (Silanikove 1994; Maltz &
Silanikove 1996), and water intake by drinking increases. Thus,
‘toxic’ increments in N supply to the animal, by ingestion and
or digestion, lead to greater water excretion in urine and or exces-
sive urine production; i.e. diuresis (Maltz & Silanikove 1996;

Fig. 2. Predicted values of the effect of herbage crude protein content ((a) 200 v. (b) 300 g/kg DM) on urinary nitrogen (N) excretion and water consumption pat-
terns of a dairy cow (500 kg liveweight, ∼150 days in milk) grazing a Lolium perenne L. sward under set stocking grazing management (9 cm height and 3000 kg DM/
ha)*. *x-axis is time of day, y-axis (green) is herbage intake rate, and z-axis (blue) water ingestion. Yellow squares are urinary N concentration for each urination
event, Orange diamonds are individual volumes of urination events, and White triangles are drinking events with their respective volume of water imbibed.
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Appuhamy et al. 2014). The upper volume of non-diuresis for
dairy cows is around 15 litres/d (Maltz & Silanikove 1996). At
relatively similar water ingestion, MINDY imbibed 17 litres
more water when grazing high compared with low crude protein
herbage, evidencing the greater need (also evidenced by the drink-
ing frequency, seven v. three imbibing events) for water to dilute
the increased surplus of N when consuming high compared with
low crude protein herbage. These modelling results support the
concept of diuresis and suggest feeding regimens with excess N
cause diuresis. Associated phenomena, such as an excess of N
intake and water consumption, are of particular interest from
environmental, nutritional and animal welfare standpoints, as
feed induced diuresis results in inefficiencies in water and N
use by the animals.

The effect of grazing management on urinary nitrogen pattern
and water consumption

Dietary management to dilute excess N in herbage from temper-
ate swards, effectively reducing the N: fermentable carbohydrates
ratio, reduces UN (Castillo et al. 2000; Gregorini et al. 2010,
2016). Thus grazing management that matches intake patterns
with diurnal fluctuations in herbage chemical composition can
reduce UN, as reported by Bryant et al. (2010) and Gregorini
et al. (2010). However, most of the effort has focused on daily
UN and production variables (Gregorini 2012). To reduce UN
load onto pastures, more information is needed on the effect of
grazing management on the temporal distribution of urination
and related N excretion.

Reducing grazing time on pasture can alter intake patterns of
dairy cows without significant losses in milk production, and
reduces UN load onto pastures (Oudshoorn et al. 2008;
Gregorini et al. 2009a; Clark et al. 2010b). Quantifying the effect
of pasture restriction on diurnal patterns of UN and UN load
(individual urination volume and N) onto pasture is not easy,
and has not yet been investigated and reported thoroughly.

Three scenarios were simulated, where MINDY (initialized as a
pregnant Friesian dairy cow (500 kg live weight) in late-lactation
(200 day in milk)) strip-grazed a Lolium perenne L. sward (30 cm
height (extended tiller length) and 3000 kg DM/ha), with strips
(100 m2/d) allocated either after morning (8 a.m.) or afternoon
milking (4 p.m.), or stand-off (restricted) from pasture between
milkings with the new pasture strip allocated at 4 p.m. The
mean crude protein and fibre contents of herbage were 240 and
480 g/kg DM, respectively (Note: In MINDY, the chemical com-
position of herbage fluctuates during the day and amongst sward
canopy strata (see Gregorini et al. 2013 for details on equations)).

Figure 3 and Table 2 present MINDY’s diurnal patterns and
daily values of UN and water consumption, respectively, accord-
ing to the timing of pasture allocation and the effect of a stand-off
period from pasture. As in Fig. 2, these results also describe dif-
ferent herbage intake patterns, which influence water ingestion
patterns throughout the day, and in turn the daily total ingestion
of water (81, 77 and 58 litres/d for 8 a.m. and 4 p.m. pasture allo-
cations and 4 p.m. with a stand-off period between milkings,
respectively; Table 2).

Allocating the pasture after the afternoon milking v. the com-
mon practice of allocating it after the morning milking (Chris
Glassey pers. comm.) led MINDY to excrete 29% less urine vol-
ume and 6% less UN. These results are explained by water inges-
tion and amount imbibed (14 v. 11 litres/d), as well as a reduction
(∼10%) in N intake. These results also indicate that opportunities
exist to alter urination patterns through the timing of pasture allo-
cation (Gregorini et al. 2017). As mentioned, daily and diurnal
patterns of UN simulated by MINDY are in close agreement
with empirical data reported by Shepherd et al. (2017), when
evaluating the UN excretion pattern of strip-grazed dairy cows
under similar New Zealand conditions.

Excess N intake, and consequent diuresis is also described in
the simulations with MINDY. The results are most dramatic in
model outputs when a new pasture strip was allocated in the
morning when herbages present the highest N: readily ferment-
able carbohydrate ratio (Gregorini 2012). Other evidence of the
need to dilute excess N by kidneys is that, even though MINDY
ingested a considerable amount of water (herbage has the highest
moisture content in the morning), ‘she’ drinks soon after such a
big intake of water (Fig. 3). In conjunction with the high intake
rate in the morning, such a water flow (ingested and imbibed)
into and out of the rumen increases urination frequency and
reduces the volume of individual urinations. Reductions in UN
concentration per urination are seen even later in the day
(∼4 h) as a product of this phenomenon and the reduction of
N intake in the hours subsequent to the late-afternoon
early-evening meal.

The number of urination events (11 v. 17), mean volume (2·9
v. 2·4 litres) and their diurnal distribution (Fig. 3) when MINDY
is allocated a new pasture strip at 4 p.m. is also different from
morning allocations. With the afternoon allocation, the volume
and UN deposited onto non-pasture surfaces (milking shed and
races) was 0·130 and 0·032 of the respective totals, compared
with 0·097 and 0·037 for the morning allocation. Overall, these
results are close to the 0·85 of daily urine volume deposited
onto pastures reported by Clark et al. (2010b) for late-lactation
dairy cows strip-grazing Lolium perenne L. in New Zealand.
These values are also similar to that (24 g N/d) for UN deposited
on the non-pasture surfaces (Shepherd et al. 2017).

Clark et al. (2010b) also reported that reducing pasture acces-
sibility by 8 h reduced urine volume deposited onto pasture by

Table 2. Predicted values of the effect of herbage crude protein content and
grazing managements on daily values of urination and drinking behaviour
variables

Variable

Grazing methodsa

SSLN SSHN AM PM PMSO

Herbage dry matter
intake (kg/d)

15.6 15.1 16.2 16.5 13.2

Milk yield (kg/d) 19.2 22.3 14.2 14.5 13.7

Urinary nitrogen (kg/d) 0.188 0.324 0.293 0.278 0.259

Urinary volume (litre/d) 26.3 34.0 41.1 31.9 28.9

Urinations/day 6 8 17 11 9

Water ingested (litre/d) 64.5 61.4 81.2 77.2 57.7

Water imbibed (litre/d) 19.2 36.2 14.7 11.7 24.5

Drinks/day 3 7 3 2 5

aSSLN, set stocked grazing low N ryegrass herbage; SSHN, set stocked grazing high crude
protein herbage; AM, strip-grazed with the daily pasture strip allocated in the morning, 8
a.m.; PM, strip-grazed with the daily pasture strip allocated in the afternoon, 4 p.m.; and
PMSO, strip-grazed with the daily pasture strip allocated in the afternoon, 4 p.m. and
stood-off from pasture between milking events (6.00 and 15.00 h).
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50% when pasture was offered in two sets of 4 h after milking,
and 56% when pasture was offered for eight continuous hours
between milking events. Shepherd et al. (2017) reported that

restricting pasture between milking events can reduce UN load
by 36·5% (i.e. captures in the stand-off pad and races). The pre-
sent simulation with MINDY indicates a 27% reduction. Thus,

Fig. 3. Predicted values of the effect of timing of pasture strip allocation ((a), 8 a.m. v. (b), 4 p.m., after morning and afternoon milkings) and (c), a period of
restriction of pasture (8 a.m. to 2 p.m.) between milking on urinary nitrogen (N) excretion and water consumption patterns of a dairy cow (500 kg liveweight,
∼200 days in milk) strip-grazing a Lolium perenne L. sward. *x-axis is time of day, y-axis (green) is herbage intake rate, and z-axis (blue) water ingestion. Yellow
squares are Urinary N concentration for each urination event, Orange diamonds are individual volumes of urination events, and White triangles are drinking events
with their respective volume of water imbibed.
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MINDY’s predictions of urination and UN patterns fall within
expected ranges.

Summary and Concluding Remarks

The model development presented in the current paper makes
explicit the functional relationships among direct and indirect
controls of urination and UN, as well as the motivation of grazing
ruminants to drink. Results of the evaluation indicate that the
RMSPE and MAE, respectively, were 26 and 23% for daily
water imbibed, 26 and 27% for urination volume, and 25 and
19% for the frequency of urination. Decomposition of the
MSPE, i.e. mean biases and random errors, indicated that the
structure of this new module in MINDY still needs some im-
provement and that more data is needed. Consequently, further
parameterization and validation are needed. However, for a new
development in an exploratory model like MINDY, these numbers
are encouraging and reflect that the concepts encoded capture
acceptably many of the underlying biological mechanisms that
drive the diurnal pattern and daily UN excretion, as well as thirst.

MINDY reproduces patterns of urination acceptably, achieving
the correct temporal occurrence and the relative volumes and N
concentration of individual urination events of a grazing dairy
cow as compared with the few reported in the literature. The
model’s response to those functional relationships also allows
simulating daily UN and water ingestion in forage and imbibe
for contrasting grazing managements and ingestion of herbages
with different protein content. This is an advance in understand-
ing and modelling of excretory and drinking behaviour patterns
of free-range ruminants. Previous modelling efforts on N excre-
tion or water intake have been either purely empirical or not com-
prehensive enough to include these more complex concepts.
Therefore, MINDY represents a step forward.
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