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Abstract
In analogy to classical spherical t-design points, we introduce the concept of t-design curves on the sphere. This
means that the line integral along a t-design curve integrates polynomials of degree t exactly. For low degrees, we
construct explicit examples. We also derive lower asymptotic bounds on the lengths of t-design curves. Our main
results prove the existence of asymptotically optimal t-design curves in the Euclidean 2-sphere and the existence of
t-design curves in the d-sphere.
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1. Introduction

Spherical designs are point sets in the sphere S𝑑 = {𝑥 ∈ R𝑑+1 : ‖𝑥‖ = 1} that yield exact quadrature
rules with constant weights for polynomial spaces. Thus, a finite set 𝑋𝑡 ⊆ S𝑑 is a t-design (or 𝑋𝑡 consists
of t-design points) if for every algebraic polynomial f in 𝑑 + 1 variables of (total) degree t, one has
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1
|𝑋𝑡 |

∑
𝑥∈𝑋𝑡

𝑓 (𝑥) =
∫
S𝑑

𝑓 . (1)

This concept plays an important role in numerical analysis, approximation theory and many related
fields, and the theory, construction and applications of spherical designs has become a highly developed
art. See [10, 40, 41] and [5, 21, 42, 48] for a sample of papers on spherical t-design points. In particular,
the existence of asymptotically optimal t-design points in the d-sphere has long been an open problem
and has eventually been proved by Bondarenko, Radchenko and Viazovska in [3].

In this paper, we study a variation where points are replaced by curves. The goal is again to obtain
quadrature formulas along curves in the sphere that are exact for polynomials of a given degree.
The central notion is the definition of a t-design curve. Precisely, a closed, piecewise smooth curve
𝛾 : [0, 1] → S

𝑑 with at most finitely many self intersections and with arc length ℓ(𝛾) is called a
t-design curve in S𝑑 if the line integral integrates exactly all algebraic polynomials in 𝑑 + 1 variables of
degree t,

1
ℓ(𝛾)

∫
𝛾

𝑓 =
∫
S𝑑

𝑓 . (2)

The use of curves instead of point evaluations in definition (2) is motivated by numerous analogous
applications of curves for the collection and processing of data on the sphere. Here is a short list of
applications of curves in a similar spirit: Low-discrepancy curves were discussed in [35] as an efficient
coverage of space with applications in robotics. See also the textbook [30] on robotics, where curves
are derived for motion planning to obtain an optimal path under several side constraints. Space-filling
curves are used as dimensionality reduction tools in optimization, image processing and deep learning
cf. [20, 8, 44]. Curves are applied in [14] to approximate probability measures. The concept of principal
curves is discussed in [24, 23, 28, 31] to best fit given data. In another statistical context, the information
tuning curve quantifies discriminatory abilities of populations of neurons [37, 27]. Motivated by more
geometric questions, length and thickness of ropes on spheres are studied in [17, 18] as variants of
packing problems. In the context of optimization problems, the shortest closed space curve to inspect
a sphere is determined in [19]; variations are discussed in [50]. Energy minimization and geometric
arrangements in biophysics lead to optimality questions of knots and ropes [7, 33, 49]. In mobile
sampling, curve trajectories provide sampling sets that enable efficient signal reconstruction [2, 25, 22,
26, 46, 45, 36].

Our goal is to study integration on the sphere by using information along closed curves rather than
point evaluations. The new notion of t-design curves in (2) addresses exact integration on the sphere
along curves and the related problem of the exact reconstruction of bandlimited functions on the sphere.
The pertinent questions of t-design curves on spheres are similar to those of spherical t-design points.

Problem (𝐴): What is the minimal (order of the) arc length of a t-design curve?
Problem (𝐵): Do t-design curves exist on S𝑑 for all 𝑡 ∈ N?
Problem (𝐶): If yes, are there t-design curves on S𝑑 achieving the optimal order of arc length?
Problem (𝐷): Provide explicit constructions of t-design curves.
The answers to the analogous questions for t-design points have a long history and culminate in the

solution of the Korevaar-Meyers conjecture by Bondarenko, Radchenko and Viazovska [3] mentioned
above.

Our program is to make a first attempt at these questions for t-design curves on d-spheres. We will
offer answers to (𝐴) and (𝐵) and give a solution of problem (𝐶) on the sphere S2. As a contribution to
Problem (𝐷), we will construct some examples of smooth t-design curves for small degrees t.

Results. In the following, we denote the space of algebraic polynomials of 𝑑 + 1 real variables of
(total) degree t by Π𝑡 . As a necessary condition for the length of a t-design curve, we obtain the following
answer to Problem (𝐴).

https://doi.org/10.1017/fms.2023.106 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.106


Forum of Mathematics, Sigma 3

Theorem 1.1. Assume that a piecewise smooth, closed curve 𝛾 : [0, 1] → S𝑑 satisfies

1
ℓ(𝛾)

∫
𝛾

𝑓 =
∫
S𝑑

𝑓 for all 𝑓 ∈ Π𝑡 .

Then its length is bounded from below by

ℓ(𝛾) ≥ 𝐶𝑑𝑡𝑑−1

with some constant 𝐶𝑑 > 0 that may depend on the dimension d but is independent of t and 𝛾.
By comparison, a spherical t-design requires |𝑋𝑡 | � 𝑡𝑑 points [9, 40, 10].1
The next challenge is to prove the existence of t-design curves that match the asymptotic order 𝑡𝑑−1.

For the unit sphere in R3, we succeeded in proving the existence. This solves Problem (𝐶) for S2.
Theorem 1.2. In S2 there exists a sequence of t-design curves (𝛾𝑡 )𝑡 ∈N with length ℓ(𝛾𝑡 ) � 𝑡.

Note that even for 𝑑 = 2, the corresponding problem of the existence of spherical t-designs points was
solved only in 2011 [3]. In our proof, we will make substantial use of the result from [3]. In dimension
𝑑 ≥ 3, we prove the existence of t-design curves. This is a solution to Problem (𝐵).
Theorem 1.3. In S𝑑 for 𝑑 ≥ 3, there exists a sequence of t-design curves (𝛾𝑡 )𝑡 ∈N, such that ℓ(𝛾𝑡 ) �
𝑡𝑑 (𝑑−1)/2.

This asymptotic order does not match our lower bounds for 𝑑 ≥ 3 in Theorem 1.1. In the analogous
problem of t-design points, our Theorem 1.3 corresponds to the upper bounds of Korevaar and Meyers
[29] from 1993. It remains an interesting challenge to derive the existence of t-design curves on S𝑑 that
match the bounds of Theorem 1.1.

The existence theorems are constructive only in part, as they are based on the non-constructive results
of Bondarenko, Radchenko and Viazovska [3]. We will describe a procedure that associates to every
set of t-design points in S𝑑 a corresponding t-design curve. This part is constructive, and the result is a
closed, piecewise smooth curve that consists of arcs of Euclidean circles (by a circle in S𝑑 , we mean a
circle in the intersection of a 2-dimensional subspace of R𝑑+1 with S𝑑).

As a small contribution to Problem (𝐷), we will discuss some explicit constructions of smooth
t-design curves for very low polynomial degrees (𝑡 = 1, 2, 3). Explicit constructions of t-design points
and curves remain a difficult problem with many open threads.

Mobile sampling. Mobile sampling refers to the approximation or reconstruction of a function from
its values along a curve [45, 46]. The rationale for this mode of data acquisition is the small number
of required sensors. Sampling a function along a curve requires only one sensor, whereas the sampling
at a point set (e.g., t-design points) requires many sensors. In engineering applications, it is natural to
assume that the function f to be sampled is bandlimited on R𝑑 (i.e., the support of the Fourier transform
𝑓 is compact).

Transferred to the sphere S𝑑 , a function on the sphere is bandlimited if it is a polynomial restricted to
the sphere. Its degree is a measure for the bandwidth. A typical and natural scenario for mobile sampling
on the sphere would be the surveillance of meteorological or geophysical data along airplane routes.
The goal would be to reconstruct the complete data globally, which means literally on the entire ‘globe’
(i.e., S2). The connection between t-design curves and mobile sampling on the sphere is explained in
the following statement.
Corollary 1.4. Let 𝛾 be a 2𝑡-design curve on S𝑑 and f a polynomial of degree t. Then

1
ℓ(𝛾)

∫
𝛾
| 𝑓 |2 =

∫
S𝑑

| 𝑓 |2 . (3)

Furthermore, f is uniquely determined by its values along 𝛾.

1We write � if the left-hand side is bounded by a constant times the right-hand side. If � and � both hold, then we write �.
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Clearly, (3) follows immediately from the assumption because 𝑓 ∈ Π𝑡 implies that | 𝑓 |2 ∈ Π2𝑡 . The
uniqueness and an explicit reconstruction formula will be derived in Section 7.

We also discuss some elementary consequences of t-design curves on the sphere in high-dimensional
Euclidean quadrature. Generalized Gauss-Laguerre quadrature combined with spherical t-design curves
lead to exact integration of polynomials of total degree t with respect to the measure e−‖𝑥 ‖d𝑥 on R𝑑 .

Methods. Both Theorems 1.1 and 1.2 are based on the existence of optimal t-design points. An
immediate guess would be to connect t-design points along geodesic arcs in S𝑑 and hope that a suitable
order of points would yield a t-design curve. As there are 𝑂 (𝑡𝑑) points in a t-design with a distance
𝑂 (𝑡−1) to the nearest neighbor, the solution of the traveling salesman problem would lead to a curve of
the desired length 𝑂 (𝑡𝑑−1) [14, Lemma 3]. However, so far this idea has not been fruitful, and we do
not know how such a path would yield exact quadrature.

Our idea is to connect the point evaluation 𝑓 → 𝑓 (𝑥), 𝑥 ∈ S𝑑 to an integral over the boundary of a
spherical cap by means of a formula of Samko [39]. In S2, the boundary of a spherical cap is a circle, and
thus the union of such circles with centers at t-design points yields a first quadrature rule. To generate
a single closed curve from this union of circles, we invoke some combinatorial arguments from graph
theory, such as spanning trees and Eulerian paths. The extension to higher dimensions is by induction
on the dimension d. Here we need some additional properties from spherical geometry.

Outlook. Spherical t-design points have proved a rich field of research with deep mathematical ques-
tions. The new theory of t-design curves offers a similarly rich playground for both challenging mathe-
matics and for the investigation of associated numerical and computational questions and applications.

On the mathematical side, the most immediate question is the existence of t-design curves of
asymptotically optimal length in S𝑑 for 𝑑 ≥ 3. Another direction is the exploration of t-design curves
on general compact Riemannian manifolds (extending the work on t-design points in [13, 15, 16]).
Theorem 1.1 on the lower bound on the length of a t-design curve carries over to the manifold setting,
but all constructive aspects are wide open.

Next, one might want to impose additional conditions on the curves. Our construction yields piece-
wise smooth, closed curves with finitely many corners and self-intersections. For aesthetical reasons,
one might want t-design curves to be smooth and simple (i.e., without corners and self-intersections).
So far, we know such examples only for degrees 𝑡 ≤ 3 on S2. Other aspects to be considered
might be curvature, contractibility (or other homotopy constraints) or the ratio between inner and
outer area for closed curves on surfaces. At this time, we are far from understanding any of these
questions.

The outline is as follows: In Section 2, we introduce the concept of t-design curves in S𝑑 , and
we derive asymptotic lower bounds on the curves’ length. Smooth spherical t-design curves in S2

for 𝑡 = 1, 2, 3 are provided in Section 3. Section 4 is dedicated to some preparations for our
two main theorems. The first one on the existence of asymptotically optimal t-design curves in S2

is derived in Section 5. The existence of t-design curves in S𝑑 is proved in Section 6. In Sec-
tion 7, we briefly discuss the use of t-design curves in mobile sampling and for high-dimensional
quadrature on R𝑑 .

2. From points to curves

We denote the collection of classical polynomials of total degree at most 𝑡 ∈ N in 𝑑 + 1 variables on
R
𝑑+1 by Π𝑡 . Each 𝑓 ∈ Π𝑡 can be evaluated on the unit sphere S𝑑 = {𝑥 ∈ R𝑑+1 : ‖𝑥‖ = 1}. We always

use the normalized surface measure, so that
∫
S𝑑

1 = 1. The (rotation-) invariant metric on S𝑑 is

dist(𝑥, 𝑦) = arccos〈𝑥, 𝑦〉 . (4)

It measures the length of the geodesic arc connecting x and y on S𝑑 .
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2.1. t-design points

For 𝑡 ∈ N, a finite set 𝑋 ⊂ S𝑑 is called t-design points (or simply t-design) in S𝑑 if

1
|𝑋 |

∑
𝑥∈𝑋

𝑓 (𝑥) =
∫
S𝑑

𝑓 , ∀ 𝑓 ∈ Π𝑡 . (5)

We call (𝑋𝑡 )𝑡 ∈N a sequence of t-design points in S𝑑 if each 𝑋𝑡 is a t-design for 𝑡 ∈ N.
It turns out that each sequence (𝑋𝑡 )𝑡 ∈N of t-design points in S𝑑 must satisfy

|𝑋𝑡 | � 𝑡𝑑 , 𝑡 ∈ N, (6)

where the constant may depend on d but is independent of t, cf. [6]. A sequence of t-design points
(𝑋𝑡 )𝑡 ∈N in S𝑑 is called asymptotically optimal if

|𝑋𝑡 | � 𝑡𝑑 , 𝑡 ∈ N.

Again, we allow the constant to depend on d. Asymptotically optimal point sequences do exist [3, 13,
15, 16].

2.2. t-design curves

We now introduce a new concept by switching from points to a curve. By a curve, we mean a continuous,
piecewise differentiable function 𝛾 : [0, 1] → S

𝑑 with at most finitely many self-intersections. Since
the sphere is a closed manifold, we only consider closed curves.

We may interpret 𝛾 as a space curve in R𝑑+1, so that its length is

ℓ(𝛾) =
∫ 1

0
‖ 𝛾(𝑠)‖d𝑠,

where the speed ‖ 𝛾‖ of the curve is defined almost everywhere. The line integral is∫
𝛾

𝑓 =
∫ 1

0
𝑓 (𝛾(𝑠))‖ 𝛾(𝑠)‖d𝑠,

so that ℓ(𝛾) =
∫
𝛾

1. Note that
∫
𝛾

𝑓 does not depend on the parametrization and orientation of the curve.
In analogy to (5), we now introduce t-design curves.

Definition 2.1. For 𝑡 ∈ N, we say that 𝛾 is a t-design curve in S𝑑 if

1
ℓ(𝛾)

∫
𝛾

𝑓 =
∫
S𝑑

𝑓 , 𝑓 ∈ Π𝑡 . (7)

A sequence of curves (𝛾𝑡 )𝑡 ∈N is called a sequence of t-design curves in S𝑑 if each 𝛾𝑡 is a t-design for
𝑡 ∈ N.

Analogously to (6), one now expects lower asymptotic bounds on ℓ(𝛾𝑡 ); see also [14, Theorem 3 in
Section 5]. The following is Theorem 1.1 of the Introduction.

Theorem 2.2. If (𝛾𝑡 )𝑡 ∈N a sequence of t-design curves in S𝑑 , then

ℓ(𝛾𝑡 ) � 𝑡𝑑−1, 𝑡 ∈ N. (8)
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Proof. We use some results from [6] and [4]. Let Γ𝑡 = 𝛾𝑡 ([0, 1]) be the trajectory of 𝛾𝑡 . The covering
radius 𝜌𝑡 of Γ𝑡 is defined as

𝜌𝑡 := sup
𝑥∈S𝑑

(
inf
𝑦∈Γ𝑡

dist(𝑥, 𝑦)
)
. (9)

By this definition, there is 𝑥 ∈ S𝑑 such that the closed ball 𝐵𝜌𝑡/2(𝑥) = {𝑦 ∈ S𝑑 : dist(𝑥, 𝑦) ≤ 𝜌𝑡
2 } of

radius 𝜌𝑡/2 centered at x does not intersect Γ𝑡 ; that is,

𝐵𝜌𝑡/2(𝑥) ∩ Γ𝑡 = ∅. (10)

Let us denote the Laplace-Beltrami operator on the sphere S𝑑 by Δ and the identity operator by I.
According to [6, Lemma 5.2 with 𝑠 = 2𝑑 and 𝑝 = 1], see also [4] for the original idea, there is a function
𝑓𝑡 supported on 𝐵𝜌𝑡/2(𝑥) such that

‖(𝐼 − Δ)𝑑 𝑓𝑡 ‖𝐿1 (S𝑑) � 1, and 𝜌2𝑑
𝑡 �

∫
S𝑑

𝑓𝑡 . (11)

Since (10) implies
∫
𝛾𝑡

𝑓𝑡 = 0, the t-design assumption and [4, Theorem 2.12] lead to����∫
S𝑑

𝑓𝑡

���� � 𝑡−2𝑑 ‖(𝐼 − Δ)𝑑 𝑓𝑡 ‖𝐿1 . (12)

By combining (12) with (11), we deduce 𝜌2𝑑
𝑡 � 𝑡−2𝑑 , so that

𝜌𝑡 � 𝑡−1. (13)

To relate 𝜌𝑡 with ℓ(𝛾𝑡 ), we apply a packing argument. Let n be the maximum number of disjoint
balls of radius 2𝜌𝑡 in S𝑑 (i.e., 𝐵2𝜌𝑡 (𝑥 𝑗 ) ∩ 𝐵2𝜌𝑡 (𝑥𝑘 ) = ∅ for 𝑗 , 𝑘 = 1, . . . , 𝑛 with 𝑗 ≠ 𝑘). Then the balls
𝐵4𝜌𝑡 (𝑥 𝑗 ) cover S𝑑; otherwise, there is 𝑥 ∈ S𝑑 , such that 𝑥 ∉

⋃𝑛
𝑗=1 𝐵4𝜌𝑡 (𝑥 𝑗 ) and 𝐵2𝜌𝑡 (𝑥) is disjoint from

all 𝐵2𝜌𝑡 (𝑥 𝑗 ), contradicting the maximality of n.
We note that every ball 𝐵𝑟 (𝑥) inS𝑑 with radius 0 < 𝑟 ≤ 1 has volume vol(𝐵𝑟 (𝑥)) � 𝑟𝑑 . Consequently,

1 ≤
𝑛∑
𝑗=1

vol(𝐵4𝜌𝑡 (𝑥 𝑗 )) � 𝑛𝜌𝑑
𝑡 ,

so that we obtain

𝑛 � 𝜌−𝑑
𝑡 .

This is known as the Gilbert-Varshamov bound in coding theory, cf. [1].
Since 𝐵2𝜌𝑡 (𝑥 𝑗 ) ∩𝐵2𝜌𝑡 (𝑥𝑘 ) = ∅, the distance between two distinct balls 𝐵𝜌𝑡 (𝑥 𝑗 ) and 𝐵𝜌𝑡 (𝑥𝑘 ) is at least

2𝜌𝑡 . Due to the definition of the covering radius 𝜌𝑡 and the compactness of Γ𝑡 and S𝑑 , the trajectory Γ𝑡
intersects each ball 𝐵𝜌𝑡 (𝑥𝑘 ). Therefore, the length of 𝛾𝑡 must satisfy

ℓ(𝛾𝑡 ) � 𝑛𝜌𝑡 � 𝜌1−𝑑
𝑡 . (14)

Since (13) is equivalent to 𝜌−1
𝑡 � 𝑡, the bound (14) leads to

ℓ(𝛾𝑡 ) � 𝜌1−𝑑
𝑡 � 𝑡𝑑−1. �

The lower bound on the length of 𝛾𝑡 leads to the concept of asymptotic optimality for curves.
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Definition 2.3. A sequence (𝛾𝑡 )𝑡 ∈N of t-design curves in S𝑑 is called asymptotically optimal if

ℓ(𝛾𝑡 ) � 𝑡𝑑−1, 𝑡 ∈ N.

In the remainder of the paper, we study the existence of t-design curves on the sphere S𝑑 .

3. Some spherical t-design curves for small t in S2

Here we construct smooth t-design curves in S2 for 𝑡 = 1, 2, 3. For 1 ≤ 𝑘 ∈ N and 𝑎 ∈ [0, 1], consider
the family of curves 𝛾 (𝑘,𝑎) : [0, 1] → S2 given by

𝛾 (𝑘,𝑎) (𝑠) := 	
�
𝑎 cos(2𝜋𝑠) + (1 − 𝑎) cos(2𝜋(2𝑘 − 1)𝑠)
𝑎 sin(2𝜋𝑠) − (1 − 𝑎) sin(2𝜋(2𝑘 − 1)𝑠)

2
√

𝑎(1 − 𝑎) sin(2𝜋𝑘𝑠)

�� . (15)

If 𝑘 = 1, then 𝛾 (𝑘,𝑎) describes a great circle, and it is easy to see that every great circle in S𝑑 yields a
1-design. The family 𝛾 (𝑘,𝑎) also gives rise to spherical 2-design and 3-design curves.

Proposition 3.1. The curves 𝛾 (𝑘,𝑎) have the following properties:

(i) 𝛾 (𝑘,𝑎) is a 1-design curve for all 𝑘 ∈ N.
(ii) There is 𝑎2 ∈ ( 1

2 , 1) such that 𝛾 (2,𝑎2) is a 2-design curve.
(iii) For 𝑘 ≥ 3, there is 𝑎𝑘 ∈ ( 1

2 , 1) such that 𝛾 (𝑘,𝑎𝑘 ) is a 3-design curve.

To verify Proposition 3.1, recall that the surface measure on S2 is normalized, so that
∫
S2 1 = 1. Due

to the sphere’s symmetries, integrals over the sphere of every monomial of odd degree vanish. Moreover,
when 𝑥, 𝑦, 𝑧 denote the coordinate functions in R3, we have

0 =
∫
S2

𝑥𝑦 =
∫
S2

𝑥𝑧 =
∫
S2

𝑦𝑧, (16)

1
3
=

∫
S2

𝑥2 =
∫
S2

𝑦2 =
∫
S2

𝑧2. (17)

By definition of length, we directly observe∫
S2

1 = 1 =
1

ℓ(𝛾 (𝑘,𝑎) )

∫ 1

0
‖ 𝛾 (𝑘,𝑎) (𝑠)‖d𝑠 =

1
ℓ(𝛾 (𝑘,𝑎) )

∫
𝛾 (𝑘,𝑎)

1. (18)

To treat line integrals of the other monomials, will use the following lemma.

Lemma 3.2. There are real-valued coefficients (𝑐 (𝑘,𝑎)
𝑛 )𝑛∈N ∈ ℓ1(Z) such that

‖ 𝛾 (𝑘,𝑎) (𝑠)‖ =
∑
𝑛∈N

𝑐 (𝑘,𝑎)
𝑛 cos(4𝜋𝑘𝑛𝑠),

and 𝛾 (𝑘,𝑎) has an arc length parametrization.

Proof of Lemma 3.2. The arc length parametrization exists whenever ‖ 𝛾 (𝑘,𝑎) (𝑠)‖ is positive. Indeed,
an elementary calculation reveals that

‖ 𝛾 (𝑘,𝑎) (𝑠)‖2 = 𝛼 (𝑘,𝑎) + 𝛽 (𝑘,𝑎) cos(4𝜋𝑘𝑠) (19)
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with the nonnegative constants

𝛼 (𝑘,𝑎) = 4𝜋2
(
(2𝑘 − 1)2 − 2𝑎(3𝑘2 − 4𝑘 + 1) + 2𝑎2 (𝑘 − 1)2

)
(20)

= 4𝜋2
(
𝑎2 + (2𝑘 − 1)2(1 − 𝑎)2 + 2𝑘2𝑎(1 − 𝑎)

)
, (21)

𝛽 (𝑘,𝑎) = 8𝜋2𝑎(1 − 𝑎) (𝑘 − 1)2. (22)

Their difference

𝛼 (𝑘,𝑎) − 𝛽 (𝑘,𝑎) = 4𝜋2
(
𝑎2 + (2𝑘 − 1)2(1 − 𝑎)2 + 2𝑎(1 − 𝑎) (2𝑘 − 1)

)
(23)

is positive for all 𝑎 ∈ [0, 1], so that also ‖ 𝛾 (𝑘,𝑎) (𝑠)‖2 is positive for all 𝑠 ∈ R. The theorem of
Wiener Lévy implies that 𝑠 ↦→ ‖ 𝛾 (𝑘,𝑎) (𝑠)‖ possesses an absolutely convergent Fourier series. Since
‖ 𝛾 (𝑘,𝑎) (𝑠)‖2 has period 1/(2𝑘), its square root has the same period, and thus only terms of the form
cos(4𝜋𝑘𝑛𝑠) appear in the Fourier series of ‖ 𝛾 (𝑘,𝑎) (𝑠)‖. �

Proof of Proposition 3.1. (i) Exact integration of the constant function has already been checked in
(18). Since 𝛾 (𝑘,𝑎) does not contain any term of the form cos(4𝜋𝑘𝑛𝑠) for 𝑛 ∈ N, Lemma 3.2 and the
orthogonality relations of the Fourier basis imply∫ 1

0
𝛾 (𝑘,𝑎) (𝑠)‖ 𝛾 (𝑘,𝑎) (𝑠)‖d𝑠 = 0,

which matches the requirement that integrals of degree 1 monomials vanish.
(ii) For 𝑘 ≥ 2, by the definition of 𝛾 (𝑘,𝑎) , its x and y-coordinates are trigonometric polynomials of

degree ≤ 2𝑘−1 and the z-coordinate is a trigonometric polynomial of degree k, consequently the product
of two distinct components of 𝛾 (𝑘,𝑎) is a trigonometric polynomial of degree at most 4𝑘 − 2 without a
constant term. Therefore, the products 𝑥𝑦, 𝑥𝑧, 𝑦𝑧 do not contain any term of the form cos(4𝜋𝑛𝑘𝑡), for
𝑛 ∈ N, and we deduce

0 =
∫
𝛾 (𝑘,𝑎)

𝑥𝑦 =
∫
𝛾 (𝑘,𝑎)

𝑥𝑧 =
∫
𝛾 (𝑘,𝑎)

𝑦𝑧,

which matches the identities (16) for the monomials of degree 2.
One sees directly from the definition of the coordinates of 𝛾 (𝑘,𝑎) that∫

𝛾 (𝑘,𝑎)
𝑥2 =

∫
𝛾 (𝑘,𝑎)

𝑦2.

Let 𝑐 (𝑘,𝑎)
0 = ℓ(𝛾 (𝑘,𝑎) ) and 𝑐 (𝑘,𝑎)

1 be the coefficients in Lemma 3.2. We now need to investigate

1
ℓ(𝛾 (𝑘,𝑎) )

∫
𝛾 (𝑘,𝑎)

𝑧2 = 2𝑎(1 − 𝑎)
(
1 −

1
2 𝑐 (𝑘,𝑎)

1

𝑐 (𝑘,𝑎)
0

)
=: 𝜂(𝑎) . (24)

We aim for a parameter 𝑎𝑘 such that (24) equals 1
3 , but we cannot solve this directly. For 𝑎 = 0 and

𝑎 = 1, the expression vanishes. We will verify that 𝜂(1/2) > 1/3. Then the continuity in a and the
intermediate value theorem ensure that there is 𝑎𝑘 ∈ ( 1

2 , 1) such that 𝜂(𝑎𝑘 ) = 1/3.
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Rewriting (24) for 𝑎 = 1
2 , we note that 𝜂( 1

2 ) ≥
1
3 , if and only if

1
2 𝑐

(𝑘, 1
2 )

1

𝑐
(𝑘, 1

2 )
0

≤ 1
3

. (25)

To obtain a lower bound on 𝑐
(𝑘, 1

2 )
0 , we observe that by (23), 𝛼 (𝑘, 1

2 ) − 𝛽 (𝑘, 1
2 ) = 4𝜋2𝑘2. Therefore, we have√

𝛼 (𝑘, 1
2 ) + 𝛽 (𝑘, 1

2 ) cos(4𝜋𝑘𝑠) ≥
√

𝛼 (𝑘, 1
2 ) − 𝛽 (𝑘, 1

2 ) ≥ 2𝜋𝑘,

which leads to

𝑐
(𝑘, 1

2 )
0 =

∫ 1

0

√
𝛼 (𝑘, 1

2 ) + 𝛽 (𝑘, 1
2 ) cos(4𝜋𝑘𝑠)d𝑠 ≥ 2𝜋𝑘 .

To obtain an upper bound on 1
2 𝑐

(𝑘, 1
2 )

1 , we first observe that the substitution 𝑠′ = 2𝑘𝑠 and periodicity lead
to

1
2

𝑐
(𝑘, 1

2 )
1 =

∫ 1

0

√
𝛼 (𝑘, 1

2 ) + 𝛽 (𝑘, 1
2 ) cos(4𝜋𝑘𝑠) cos(4𝜋𝑘𝑠)d𝑠

=
∫ 1

0

√
𝛼 (𝑘, 1

2 ) + 𝛽 (𝑘, 1
2 ) cos(2𝜋𝑠) cos(2𝜋𝑠)d𝑠 .

We bound the positive part
∫ 1

4
− 1

4
. . . and the negative part

∫ 3
4

1
4

. . . separately. The observation 𝛼 (𝑘, 1
2 ) +

𝛽 (𝑘, 1
2 ) = 4𝜋2 (2𝑘2 − 2𝑘 + 1) ≤ 8𝜋2𝑘2 leads to∫ 1

4

− 1
4

√
𝛼 (𝑘, 1

2 ) + 𝛽 (𝑘, 1
2 ) cos(2𝜋𝑠) cos(2𝜋𝑠)d𝑠 ≤

∫ 1
4

− 1
4

√
8𝜋𝑘 cos(2𝜋𝑠)d𝑠 =

√
8𝑘 .

For the negative part, we recall 𝛼 (𝑘, 1
2 ) + 𝛽 (𝑘, 1

2 ) cos(2𝜋𝑠) ≥ 𝛼 (𝑘, 1
2 ) − 𝛽 (𝑘, 1

2 ) = 4𝜋2𝑘2 and obtain∫ 3
4

1
4

√
𝛼 (𝑘, 1

2 ) + 𝛽 (𝑘, 1
2 ) cos(2𝜋𝑠) cos(2𝜋𝑠)d𝑠 ≤

∫ 3
4

1
4

2𝜋𝑘 cos(2𝜋𝑠)d𝑠 = −2𝑘 .

Combining these bounds, we derive

1
2

𝑐
(𝑘, 1

2 )
1 ≤ (

√
8 − 2)𝑘 ≤ 𝑘.

Therefore, we do have

1
2 𝑐

(𝑘, 1
2 )

1

𝑐
(𝑘, 1

2 )
0

≤ 1
2𝜋

<
1
3

.

The intermediate value theorem ensures that we can match (17).
(iii) The integrals over S2 of the monomials of degree 3 vanish. For 𝑘 ≥ 3, a product of 3 components

of 𝛾 (𝑘,𝑎) does not contain any terms of the form cos(4𝜋𝑘𝑛𝑠), where 𝑛 ∈ N. Lemma 3.2 implies that the
integral over 𝛾 (𝑘,𝑎) of every degree 3 monomial vanishes. �

https://doi.org/10.1017/fms.2023.106 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.106


10 M. Ehler and K. Gröchenig

Figure 1. Curves in Example 3.3: Γ (2,𝑎2) and 𝛾 (3,𝑎3) are smooth curves, and 𝛾 (2,𝑎2) resembles the seam
of a tennis ball.

Example 3.3. The values 𝑎2 ≈ 0.7778 and 𝑎3 ≈ 0.7660 lead to the trajectories Γ (2,𝑎2) and Γ (3,𝑎3)

depicted in Figure 1. The lengths satisfy ℓ(𝛾 (2,𝑎2) ) ≈ 9.786, and ℓ(𝛾 (3,𝑎3) ) ≈ 14.232.

4. Preparatory results

We will derive two preparatory results that are needed for our main theorems in subsequent sections.
The first one is about the connectivity of a graph associated to a covering, and the second one is about
the integration along the boundary of spherical caps.

4.1. Connectivity of graphs associated to coverings

The spherical cap of radius 0 < 𝑟 < 𝜋
2 centered at 𝑥 ∈ S𝑑 is

𝐵𝑟 (𝑥) = {𝑧 ∈ S𝑑 : dist(𝑥, 𝑧) ≤ 𝑟}.

To every finite set 𝑋 ⊆ S𝑑 and 𝑟 > 0, we associate a graph G𝑟 as follows: its vertices are the points of
X. Two points 𝑥, 𝑦 ∈ 𝑋 are connected by an edge if 𝐵𝑟 (𝑥) ∩ 𝐵𝑟 (𝑦) ≠ ∅.

Lemma 4.1. Let 𝜌 be the covering radius of X. If 𝑟 ≥ 𝜌, then the graph G𝑟 is connected.

Proof. Since 𝑟 ≥ 𝜌, the covering property ⋃
𝑥∈𝑋

𝐵𝑟 (𝑥) = S𝑑

holds. We fix 𝑥0 ∈ 𝑋 and consider its connected component C, which consists of all vertices connected
to 𝑥0 by some path. The set S𝑑 \

⋃
𝑥∈C 𝐵𝑟 (𝑥) is open since

⋃
𝑥∈C 𝐵𝑟 (𝑥) is closed. If S𝑑 \

⋃
𝑥∈C 𝐵𝑟 (𝑥) ≠ ∅,

then there is a sequence (𝑦𝑛)𝑛∈N ⊂ S𝑑 \
⋃

𝑥∈C 𝐵𝑟 (𝑥) such that 𝑦𝑛 → 𝑦 ∈
⋃

𝑥∈C 𝐵𝑟 (𝑥). This means that
𝑦 ∈ 𝐵𝑟 (𝑥) for some 𝑥 ∈ C. Each 𝑦𝑛 is contained in a spherical cap 𝐵𝑟 (𝑥) for some 𝑥 ∈ 𝑋 \ C. Since
there are only finitely many, there is a subsequence 𝑦𝑛𝑘 and some 𝑥 ∈ 𝑋 \ C such that 𝑦𝑛𝑘 ∈ 𝐵𝑟 (𝑥) and
𝑦𝑛𝑘 → 𝑦. Consequently, for given 𝜖 > 0 and k large enough,

dist(𝑥, 𝑥) ≤ dist(𝑥, 𝑦𝑛𝑘 ) + dist(𝑦𝑛𝑘 , 𝑦) + dist(𝑦, 𝑥) ≤ 𝑟 + 𝜖 + 𝑟.

This implies dist(𝑥, 𝑥) ≤ 2𝑟 and, hence, 𝐵𝑟 (𝑥) ∩ 𝐵𝑟 (𝑥) ≠ ∅. Since 𝑥 ∈ C, then by definition of G𝑟 , also
𝑥 ∈ C. This, however, contradicts the earlier observation 𝑥 ∈ 𝑋 \C. Hence, we derive

⋃
𝑥∈C 𝐵𝑟 (𝑥) = S𝑑 .
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Let 𝑦 ∈ 𝑋 be arbitrary. By the covering property, 𝑦 ∈ 𝐵𝑟 (𝑥) for some 𝑥 ∈ C, and thus
𝐵𝑟 (𝑦) ∩ 𝐵𝑟 (𝑥) ≠ ∅. Consequently, 𝑦 ∈ C and C = 𝑋 . This means that the graph G𝑟 is connected,
as claimed. �

4.2. Integration along the boundary of spherical caps

Due to (4), the boundary of a spherical cap 𝐵𝑟 (𝑥) is

𝜕𝐵𝑟 (𝑥) = {𝑧 ∈ S𝑑 : dist(𝑥, 𝑧) = 𝑟}
= {𝑧 ∈ S𝑑 : 〈𝑥, 𝑧〉 = cos 𝑟}. (26)

By the Pythagorian Theorem, 𝜕𝐵𝑟 (𝑥) is a 𝑑 − 1-dimensional Euclidean sphere of radius sin 𝑟 centered
at 𝑥 cos 𝑟 in a hyperplane perpendicular to x; that is,

𝜕𝐵𝑟 (𝑥) = {𝑧 ∈ S𝑑 : ‖𝑥 cos 𝑟 − 𝑧‖ = sin 𝑟}. (27)

It is the intersection of the sphere S𝑑 with a suitable hyperplane, and we enforce the normalization∫
𝜕𝐵𝑟 (𝑥)

1 = 1. (28)

Next, we specify distinct functions that we integrate along 𝜕𝐵𝑟 (𝑥). Let H𝑑
𝑘 be the vector space of

spherical harmonics of degree 𝑘 ∈ N (i.e., the eigenspace of the Laplace-Beltrami operator on S𝑑 with
respect to the eigenvalue −𝑘 (𝑘 + 𝑑 − 1), 𝑘 ∈ N; see, for example, [43] for background material). The
dimension of H𝑑

𝑘 is

dim(H𝑑
𝑘 ) =

2𝑘 + 𝑑 − 1
𝑑 − 1

(
𝑘 + 𝑑 − 2

𝑑 − 2

)
, (29)

and the orthogonality relations

H𝑑
𝑘 ⊥ H𝑑

𝑙 , 𝑘, 𝑙 ∈ N, 𝑘 ≠ 𝑙, (30)

hold. The space
⊕

𝑘≤𝑡 H𝑑
𝑘 coincides with the restriction of Π𝑡 to the sphere S𝑑 . When integrating over

S
𝑑 or subsets or along curves in S𝑑 , we may therefore replace Π𝑡 by

⊕
𝑘≤𝑡 H𝑑

𝑘 . The proofs of our main
results in Sections 5 and 6 rely on the following key observation.

Lemma 4.2. There are numbers 𝑐𝑑,𝑘 (𝑟) > 0 such that∫
𝜕𝐵𝑟 (𝑥)

𝑓 = 𝑐𝑑,𝑘 (𝑟) 𝑓 (𝑥), for all 𝑓 ∈ H𝑑
𝑘 and 𝑥 ∈ S𝑑 . (31)

In particular, the normalization (28) leads to 𝑐𝑑,0 (𝑟) = 1. The identity (31) is stated by Samko in
[39, (1.37)] and referred to as a variant of the Cavalieri principle [39, Remark 4]. The analogue for the
complex sphere is mentioned in [34].

Here we provide a new proof of Samko’s formula that is based on an inductive construction of an
orthonormal basis for H𝑑

𝑘 . For these facts, we follow [32].

Proof. For 𝑥 ∈ S𝑑 , we write

𝑥 = 𝑥𝑑+1𝑒𝑑+1 +
√

1 − 𝑥2
𝑑+1𝑥, 𝑥 ∈ S𝑑−1.
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Let {𝑋𝑑−1,𝑚
𝑙 }dim(H𝑑−1

𝑙
)

𝑚=1 be an orthonormal basis for H𝑑−1
𝑙 . We denote the associated Legendre functions

by 𝑃𝑑,𝑙
𝑘 , 𝑙 = 0, . . . , 𝑘 , cf. [32]. Then

𝑌 𝑑,𝑙,𝑚
𝑘 (𝑥) = 𝑃𝑑,𝑙

𝑘 (𝑥𝑑+1)𝑋𝑑−1,𝑚
𝑙 (𝑥), 𝑙 = 0, . . . , 𝑘, 𝑚 = 1, . . . , dim(H𝑑−1

𝑙 ),

form an orthogonal basis 2 for H𝑑
𝑘 and

𝑌 𝑑,𝑙,𝑚
𝑘 (𝑒𝑑+1) = 𝑎𝑑,𝑘𝛿𝑙,0, (32)

with suitable normalization constants 𝑎𝑑,𝑘 , cf. [32, Lemma 15].
We first verify that

∫
𝜕𝐵𝑟 (𝑥)

𝑓 = 𝑐𝑑,𝑘 (𝑟) 𝑓 (𝑥) for 𝑥 = 𝑒𝑑+1. In this case, 𝜕𝐵𝑟 (𝑒𝑑+1) = {(𝑧′ sin 𝑟, cos 𝑟) :
𝑧′ ∈ S𝑑−1}, and the homogeneity of 𝑋𝑑−1,𝑚

𝑙 yields∫
𝜕𝐵𝑟 (𝑒𝑑+1)

𝑌 𝑑,𝑙,𝑚
𝑘 = 𝑃𝑑,𝑙

𝑘 (cos 𝑟)
∫
S𝑑−1

𝑋𝑑−1,𝑚
𝑙 (sin 𝑟 ·)

= 𝑃𝑑,𝑙
𝑘 (cos 𝑟) sin𝑙 𝑟

∫
S𝑑−1

𝑋𝑑−1,𝑚
𝑙

= 𝑃𝑑,0
𝑘 (cos 𝑟) sin𝑙 𝑟 𝛿𝑙,0.

After comparing with (32), we set 𝑐𝑑,𝑘 (𝑟) := 𝑃𝑑,0
𝑘 (cos 𝑟) sin𝑙 𝑟/𝑎𝑑,𝑘 and obtain∫

𝜕𝐵𝑟 (𝑒𝑑+1)
𝑌 𝑑,𝑙,𝑚
𝑘 = 𝑐𝑑,𝑘 (𝑟)𝑌 𝑑,𝑙,𝑚

𝑘 (𝑒𝑑+1).

For 𝑘 = 0, 𝑌 𝑑,0,0
0 is constant, and the normalization

∫
𝜕𝐵𝑟 (𝑒𝑑+1)

1 = 1 implies that 𝑐𝑑,0 (𝑟) = 1 for all r.
Thus we have verified that (31) holds for all 𝑓 ∈ H𝑑

𝑙 and 𝑥 = 𝑒𝑑+1.
We now consider general 𝑥 ∈ S𝑑 . There is a rotation matrix O such that 𝑥 = 𝑂𝑒𝑑+1 and 𝜕𝐵𝑟 (𝑥) =

𝜕𝐵𝑟 (𝑂𝑒𝑑+1) = 𝑂𝜕𝐵𝑟 (𝑒𝑑+1). This leads to∫
𝜕𝐵𝑟 (𝑥)

𝑓 =
∫
𝑂𝜕𝐵𝑟 (𝑒𝑑+1)

𝑓 =
∫
𝜕𝐵𝑟 (𝑒𝑑+1)

𝑓 ◦ 𝑂.

Since H𝑑
𝑙 is orthogonally invariant, 𝑓 ◦ 𝑂 ∈ H𝑑

𝑙 and our observations for 𝑒𝑑+1 imply∫
𝜕𝐵𝑟 (𝑥)

𝑓 = 𝑐𝑑,𝑘 (𝑟) ( 𝑓 ◦ 𝑂) (𝑒𝑑+1) = 𝑐𝑑,𝑘 (𝑟) 𝑓 (𝑥). �

On S2 Samko’s formula connects point evaluations to line integrals and thus gives a first hint of how
quadrature formulas might be related to t-design curves.

5. Asymptotically optimal t-design curves in S2

We now state our first main result, which is Theorem 1.2 of the Introduction.
Theorem 5.1. There is a sequence of asymptotically optimal t-design curves in S2; that is, there exists
a sequence of piecewise smooth, closed curves 𝛾𝑡 : [0, 1] → S2, for 𝑡 ∈ N, of length ℓ(𝛾𝑡 ) � 𝑡, such that

1
ℓ(𝛾𝑡 )

∫
𝛾𝑡

𝑓 =
∫
S2

𝑓 for all 𝑓 ∈ Π𝑡 .

The trajectory of every 𝛾𝑡 is a union of Euclidean circles.

2Note that for the next step of the induction, we need to relabel the 𝑌 𝑑,𝑙,𝑚
𝑘

as 𝑋𝑑,𝑚
𝑙

.
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Figure 2. Circles centered at t-design points with radii increasing from left to right. The top row shows
2-design points and the bottom row 5-design points.

Proof. According to (27) with 𝑑 = 2, the boundary of the spherical cap 𝐵𝑟 (𝑥) = {𝑧 ∈ S2 : dist(𝑥, 𝑧) ≤ 𝑟}
is a Euclidean circle of radius sin 𝑟 given by

Γ𝑥,𝑟 = {𝑧 ∈ S2 : ‖𝑥 cos 𝑟 − 𝑧‖ = sin 𝑟} ⊂ S2, (33)

cf. Figure 2. The asymptotically optimal t-design curve will be constructed from a union of circles Γ𝑥,𝑟 ,
where x runs through a set of t-design points and r is essentially their covering radius. For each circle,
we choose an (arbitrary) orientation and obtain a closed curve 𝛾𝑥,𝑟 with trajectory Γ𝑥,𝑟 . The formal sum
𝛾𝑟
𝑡 = �𝑥∈𝑋𝑡 𝛾𝑥,𝑟 is usually called a cycle with trajectory

⋃
𝑥∈𝑋𝑡

Γ𝑥,𝑟 and integral
∫
𝛾𝑟
𝑡

𝑓 =
∑

𝑥∈𝑋𝑡

∫
𝛾𝑥,𝑟

𝑓

[38].
Note that in S2 the submanifold 𝜕𝐵𝑟 (𝑥) and the circle Γ𝑥,𝑟 coincide, so that the normalization (28)

leads to
∫
Γ𝑥,𝑟

𝑓 = 1
ℓ (𝛾𝑥,𝑟 )

∫
𝛾𝑥,𝑟

𝑓 , where 𝛾𝑥,𝑟 is the actual curve that traverses Γ𝑥,𝑟 . In higher dimensions,
this slight inconsistency between Γ𝑥,𝑟 and 𝜕𝐵𝑟 (𝑥) no longer occurs.

(i) According to [3], there is a sequence (𝑋𝑡 )𝑡 ∈N of asymptotically optimal t-design points in S2; that
is, there exist finite sets 𝑋𝑡 ⊂ S2, such that |𝑋𝑡 | � 𝑡2 and

1
|𝑋𝑡 |

∑
𝑥∈𝑋𝑡

𝑓 (𝑥) =
∫
S2

𝑓 , for all 𝑓 ∈
⊕
𝑘≤𝑡

H2
𝑘 . (34)

(ii) Let 𝑟 > 0, Γ𝑟
𝑡 :=

⋃
𝑥∈𝑋𝑡

Γ𝑥,𝑟 , and 𝛾𝑟
𝑡 := �𝑥∈𝑋𝑡 𝛾𝑥,𝑟 be the corresponding cycle. We first show that

this cycle provides exact integration on Π𝑡 .
For the component H2

0 = span{1}, we observe

1
ℓ(𝛾𝑟

𝑡 )

∫
𝛾𝑟
𝑡

1 = 1 =
∫
S𝑑

1.
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We now consider 𝑓 ∈ H2
𝑘 for 1 ≤ 𝑘 ≤ 𝑡. Lemma 4.2 with 𝑐𝑘 (𝑟) := 𝑐2,𝑘 (𝑟) and the definition of t-design

points yields

1
ℓ(𝛾𝑟

𝑡 )

∫
𝛾𝑟
𝑡

𝑓 =
1
|𝑋𝑡 |

∑
𝑥∈𝑋𝑡

1
ℓ(𝛾𝑥,𝑟 )

∫
𝛾𝑥,𝑟

𝑓

=
1
|𝑋𝑡 |

∑
𝑥∈𝑋𝑡

∫
Γ𝑥,𝑟

𝑓

=
𝑐𝑘 (𝑟)
|𝑋𝑡 |

∑
𝑥∈𝑋𝑡

𝑓 (𝑥)

= 𝑐𝑘 (𝑟)
∫
S2

𝑓 .

Since H2
0 ⊥ H2

𝑘 for 𝑘 = 1, 2, . . ., cf. (30), we obtain
∫
S2 𝑓 = 0 for 𝑓 ∈ H2

𝑘 , and the factor 𝑐𝑘 (𝑟) does not
matter. We derive

1
ℓ(𝛾𝑟

𝑡 )

∫
𝛾𝑟
𝑡

𝑓 =
∫
S2

𝑓 for all 𝑓 ∈ H2
𝑘 , (35)

and, by linearity, exact quadrature holds for all 𝑓 ∈
⊕𝑡

𝑘=0 H2
𝑘 .

(iii) Identity (35) holds for every 0 < 𝑟 < 𝜋
2 , and thus every cycle 𝛾𝑟

𝑡 (formal sum of closed
curves) yields exact integration. We now determine radii 𝑟 = 𝑟𝑡 depending on the degree t, so that
Γ𝑡 := Γ𝑟𝑡

𝑡 =
⋃

𝑥∈𝑋𝑡
Γ𝑥,𝑟𝑡 is indeed the trajectory of a single continuous closed curve.

Let 𝜌𝑡 = sup𝑥∈X
(
inf𝑦∈𝑋𝑡 distX(𝑥, 𝑦)

)
be the covering radius of 𝑋𝑡 as in (9). We choose 𝑟𝑡 := 𝜌𝑡 , so

that

S
2 =

⋃
𝑥∈𝑋𝑡

𝐵𝑟𝑡 (𝑥). (36)

The circles Γ𝑥,𝑟𝑡 = 𝜕𝐵𝑟𝑡 (𝑥), for 𝑥 ∈ 𝑋𝑡 , induce a graph G as follows: the vertices of G are the intersection
points of the Γ𝑥,𝑟𝑡 , and its edges are associated to arcs on these circles between the intersection points,
cf. Figures 2 and 3. For each circle Γ𝑥,𝑟𝑡 , we have fixed an orientation. As a result of this construction,
we obtain a directed graph G→ [47].

Lemma 5.2. The graph G is strongly connected (i.e., the directed graph G→ is connected).

Proof. We first verify that the undirected graph G is connected. Pick two arbitrary but distinct vertices
𝑣1, 𝑣2 ∈ G. Then there are points 𝑥1, 𝑥2 ∈ 𝑋𝑡 such that 𝑣𝑖 ∈ 𝜕𝐵𝑟𝑡 (𝑥𝑖) for 𝑖 = 1, 2. If 𝑥1 = 𝑥2, then 𝑣1, 𝑣2
are connected in G since they lie on the same circle.

We may thus assume that 𝑥1 ≠ 𝑥2. In this case, we consider the auxiliary graph G𝑟𝑡 treated in
Lemma 4.1. Its vertices are the points of the t-design 𝑋𝑡 . Two points 𝑥, 𝑦 ∈ 𝑋𝑡 are connected by an edge
if and only if 𝐵𝑟𝑡 (𝑥) ∩ 𝐵𝑟𝑡 (𝑦) ≠ ∅. According to Lemma 4.1 and 𝑟𝑡 ≥ 𝜌𝑡 , the graph G𝑟𝑡 is connected.
Thus, there is a path from 𝑥1 to 𝑥2 in G𝑟𝑡 , say 𝑥1 = 𝑥𝑖1 , . . . , 𝑥𝑖𝑚 = 𝑥2, so that 𝐵𝑟𝑡 (𝑥𝑖 𝑗 ) ∩ 𝐵𝑟𝑡 (𝑥𝑖 𝑗+1 ) ≠ ∅.
This also implies 𝜕𝐵𝑟𝑡 (𝑥𝑖 𝑗 ) ∩ 𝜕𝐵𝑟𝑡 (𝑥𝑖 𝑗+1 ) ≠ ∅. Clearly, vertices 𝑣𝑖 𝑗 , 𝑣𝑖 𝑗+1 of G with 𝑣𝑖 𝑗 ∈ 𝜕𝐵𝑟𝑡 (𝑥𝑖 𝑗 ) and
𝑣𝑖 𝑗+1 ∈ 𝜕𝐵𝑟𝑡 (𝑥𝑖 𝑗+1 ) are connected in G. Eventually, there is a path from 𝑣1 to 𝑣2 in G.

We still need to verify that the directed graph G→ is also connected. If two distinct vertices 𝑣𝑖 𝑗 , 𝑣𝑖 𝑗+1

lie on the same circle 𝜕𝐵𝑟𝑡 (𝑥1), then we simply get from 𝑣𝑖 𝑗 to 𝑣𝑖 𝑗+1 by following the chosen orientation
of 𝜕𝐵𝑟𝑡 (𝑥1). No further difficulties arise, and we deduce that G→ is connected. �

By construction, each vertex of G→ has as many incoming as outgoing edges, cf. Figure 3. Euler’s
Theorem about directed, strongly connected graphs implies that there is an Euler cycle [47]. Hence, all
circles in

⋃
𝑥∈𝑋𝑡

𝜕𝐵𝑟𝑡 (𝑥) =
⋃

𝑥∈𝑋𝑡
Γ𝑥,𝑟𝑡 can be traversed by a single, closed, piecewise smooth curve 𝛾𝑡

on S2 with trajectory Γ𝑡 =
⋃

𝑥∈𝑋𝑡
Γ𝑥,𝑟𝑡 .
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Figure 3. A set of connected circles induces a directed graph, whose vertices are the intersection points
and whose edges are the associated arcs of the circles. Each vertex has equal in-degree and out-degree,
namely, the number of circles running through this point.

(iv) To compute the length of 𝛾𝑡 , we relate the covering radius 𝑟𝑡 of 𝑋𝑡 to the degree t. The same proof
as in (13) shows that 𝑟𝑡 � 𝑡−1; see also [4, 6]. Therefore, ℓ(𝛾𝑥,𝑟𝑡 ) = 2𝜋 sin 𝑟𝑡 � 𝑟𝑡 � 𝑡−1. This leads to

ℓ(𝛾𝑡 ) = |𝑋𝑡 |ℓ(𝛾𝑥,𝑟𝑡 ) � 𝑡2 𝑟𝑡 � 𝑡.

In view of the lower bound for the length of t-design curves in Theorem 2.2, our construction yields a
sequence of asymptotically optimal t-design curves. �

6. General existence of spherical t-design curves

We now prove the existence of t-design curves in S𝑑 for all 𝑡 ∈ N in dimension 𝑑 ≥ 2. This is Theorem
1.3 of the Introduction.

Theorem 6.1. Let 𝑑 ≥ 2 be an arbitrary integer. There is a sequence (𝛾𝑡 )𝑡 ∈N of t-design curves in S𝑑
such that

ℓ(𝛾𝑡 ) � 𝑡
𝑑 (𝑑−1)

2 .

Furthermore, the trajectory of every 𝛾𝑡 consists of a union of Euclidean circles.

We will prove this theorem by induction on the dimension d. Similar to the proof of Theorem 5.1,
we first show the existence of a cycle (a formal sum of closed curves) that yields exact integration. Then
we use a combinatorial argument to build a connected trajectory.

6.1. Some geometry on the sphere

Let us first state few simple observations about the action of the orthogonal group on S𝑑 .

Lemma 6.2. Let 𝑑 ≥ 2 and 𝐴, 𝐵 ⊆ R𝑑 be two finite sets. If 0 ∉ 𝐴, then there is a rotation 𝑂 ∈ O(𝑑)
such that 𝑂𝐴 ∩ 𝐵 = ∅.

Proof. For the sake of completeness, we provide the simple arguments.
The claim is verified by induction. For the induction step, we identify O(𝑑) as a subgroup of O(𝑑+1)

via the homomorphism �̄� ∈ O(𝑑) ↦→ 𝑗 (�̄�) ∈ O(𝑑+1), 𝑗 (�̄�) (𝑥) = (�̄�𝑥, 𝑥𝑑+1) for 𝑥 = (𝑥, 𝑥𝑑+1) ∈ R𝑑+1.
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The case 𝑑 = 2 is obvious. Consider now 𝐴, 𝐵 ⊆ R𝑑+1. Let �̄�, �̄� ⊆ R𝑑 be the orthogonal projections
of 𝐴, 𝐵 onto the first d coordinates.

Case 1: 0 ∉ �̄�. By the induction hypothesis, there exists �̄� ∈ O(𝑑) such that �̄� �̄� ∩ �̄� = ∅. Then
𝑂 = 𝑗 (�̄�) ∈ O(𝑑 + 1) satisfies 𝑂𝐴 ∩ 𝐵 = ∅.

Case 2: 0 ∈ �̄�. Since 0 ∉ 𝐴, there is 𝑂1 ∈ O(𝑑 + 1) such that 𝑂1 𝐴 ∩ (R𝑒𝑑+1) = ∅. Let 𝐴1 = 𝑂1 𝐴
and 𝐴1 be the projection onto the first d coordinates. Then 0 ∉ 𝑂1 𝐴, and by the induction hypothesis
there is �̄�2 ∈ O(𝑑) such that �̄�2 𝐴1 ∩ �̄� = ∅. Then 𝑂 = 𝑗 (�̄�2)𝑂1 satisfies 𝑂𝐴 ∩ 𝐵 = ∅. �

Corollary 6.3. Let 𝑑 ≥ 2, 𝑣 ∈ S𝑑 and 𝐴, 𝐵 ⊆ S𝑑 two finite sets. If ±𝑣 ∉ 𝐴, then there is a rotation
𝑂 ∈ O(𝑑 + 1) such that 𝑂𝑣 = 𝑣 and 𝑂𝐴 ∩ 𝐵 = ∅.

Proof. Without loss of generality, we may assume that 𝑣 = 𝑒𝑑+1 ∈ S𝑑 . Let �̄�, �̄� ⊆ R𝑑 be the orthogonal
projections of 𝐴, 𝐵 onto the first d coordinates. Since ±𝑒𝑑+1 ∉ 𝐴, we deduce 0 ∉ �̄�. According to
Lemma 6.2, there is �̄� ∈ O(𝑑) such that �̄� �̄� ∩ �̄� = ∅. The 𝑂 = 𝑗 (�̄�) ∈ O(𝑑 + 1) does the job. �

As in Section 4, we now consider spherical caps and their boundary

𝐵𝑟 (𝑥) = {𝑦 ∈ S𝑑 : distS𝑑 (𝑥, 𝑦) ≤ 𝑟},
𝜕𝐵𝑟 (𝑥) = {𝑧 ∈ S𝑑 : ‖𝑥 cos 𝜌𝑡 − 𝑧‖ = sin 𝑟};

see (33) for 𝑑 = 2. Clearly, 𝜕𝐵𝑟 (𝑥) is homeomorphic (diffeomorphic) to the 𝑑 − 1-dimensional sphere
S
𝑑−1. For our analysis, we will use the following homeomorphism.

Let 𝑥 ∈ S𝑑 , 0 < 𝑟 < 𝜋
2 and 𝑂 = 𝑂𝑥 ∈ O(𝑑 + 1) a matrix in the orthogonal group acting on R𝑑+1

such that 𝑥 = 𝑂𝑒𝑑+1, where 𝑒𝑑+1 = (0, . . . , 0, 1)� ∈ R𝑑+1. Now set

𝜙𝑥,𝑟 (𝑧) = 𝑂

(
sin 𝑟𝑧
cos 𝑟

)
, 𝑧 ∈ S𝑑−1, (37)

and recall that 𝑒𝑑 ∈ R𝑑 is the north pole in S𝑑−1.

Lemma 6.4. The map 𝜙𝑥,𝑟 : S𝑑−1 → S𝑑 has the following properties.
(i) 𝜙𝑥,𝑟 is a diffeomorphism between S𝑑−1 and 𝜕𝐵𝑟 (𝑥).
(ii) Let 𝑥, 𝑦 ∈ S𝑑−1 with distS𝑑 (𝑥, 𝑦) < 𝑟 ≤ 𝜋

2 . Then there is a unique radius 𝜎 ∈ [𝜋/3, 𝜋/2], such that

𝜙𝑥,𝑟
(
𝜕𝐵𝜎 (𝑒𝑑)

)
= 𝜕𝐵𝑟 (𝑥) ∩ 𝜕𝐵𝑟 (𝑦) .

In particular, the intersection 𝜕𝐵𝑟 (𝑥) ∩ 𝜕𝐵𝑟 (𝑦) is diffeomorphic to S𝑑−2.

Proof of Lemma 6.4. (i) If ‖𝑧‖ = 1, then ‖𝜙𝑥,𝑟 (𝑧)‖2 = ‖𝑧‖2 sin2 𝑟 + cos2 𝑟 = 1, and

dist(𝑥, 𝜙𝑥,𝑟 (𝑧)) = dist(𝑂𝑒𝑑+1, 𝑂 (𝑧 sin 𝑟, cos 𝑟)
= arccos〈𝑒𝑑+1, (𝑧 sin 𝑟, cos 𝑟)〉 = 𝑟 .

Clearly, 𝜙𝑥,𝑟 is a bijection between S𝑑−1 and 𝜕𝐵𝑟 (𝑥).
(ii) For 𝑧 ∈ R𝑑+1, we write 𝑧 = (𝑧′, 𝑧𝑑+1) = (𝑧′′, 𝑧𝑑 , 𝑧𝑑+1) with 𝑧′ ∈ R𝑑 and 𝑧′′ ∈ R𝑑−1. By applying

a suitable rotation, we may assume without loss of generality that 𝑥 = 𝑒𝑑+1 and 𝑦 =
√

1 − 𝑦2
𝑑+1 𝑒𝑑 +

𝑦𝑑+1𝑒𝑑+1 = (0,
√

1 − 𝑦2
𝑑+1, 𝑦𝑑+1). Then the assumption dist(𝑥, 𝑦) = arccos〈𝑥, 𝑦〉 < 𝑟 yields 〈𝑥, 𝑦〉 =

𝑦𝑑+1 > cos 𝑟 .
Now take 𝑧 ∈ 𝜕𝐵𝑟 (𝑒𝑑+1) ∩ 𝜕𝐵𝑟 (𝑦). By Step (i),

𝜕𝐵𝑟 (𝑒𝑑+1) = 𝜙𝑒𝑑+1 ,𝑟 (S𝑑−1) = {(𝑧′ sin 𝑟, cos 𝑟 : 𝑧′ ∈ S𝑑−1},
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so 𝑧𝑑+1 = cos 𝑟 . Since dist(𝑧, 𝑦) = arccos〈𝑧, 𝑦〉 = 𝑟 as well, we obtain

〈𝑧, 𝑦〉 = 𝑧𝑑

√
1 − 𝑦2

𝑑+1 + 𝑧𝑑+1𝑦𝑑+1 = 𝑧𝑑

√
1 − 𝑦2

𝑑+1 + cos 𝑟 𝑦𝑑+1 = cos 𝑟 .

Solving for 𝑧𝑑 , this implies that

𝑧𝑑 = cos 𝑟
1 − 𝑦𝑑+1√
1 − 𝑦2

𝑑+1

. (38)

Let us abbreviate the occurring fraction by 𝜏 = 1−𝑦𝑑+1√
1−𝑦2

𝑑+1

. Then

‖𝑧′′‖2 = 1 − 𝑧2
𝑑+1 − 𝑧2

𝑑

= 1 − cos2 𝑟 − 𝜏2 cos2 𝑟

= sin2 𝑟 − 𝜏2 cos2 𝑟 =: 𝑠2 .

(39)

We may switch from 𝑧′′ to 𝑠𝑧′′ with 𝑧′′ ∈ S𝑑−2, so that every point in 𝑧 ∈ 𝜕𝐵𝑟 (𝑥) ∩ 𝜕𝐵𝑟 (𝑦) has
coordinates

𝑧 =
	
�

𝑠𝑧′′

𝜏 cos 𝑟
cos 𝑟

�� , 𝑧′′ ∈ S𝑑−2 . (40)

By comparison, a point 𝑧′ ∈ 𝜕𝐵𝜎 (𝑒𝑑) ⊆ S𝑑−1 is of the form (𝑧′′ sin 𝜎, cos 𝜎) for 𝑧′′ ∈ S𝑑−2.
Consequently,

𝜙𝑒𝑑+1 ,𝑟 (𝑧′) =
	
�
𝑧′′ sin 𝜎 sin 𝑟
cos 𝜎 sin 𝑟

cos 𝑟

�� . (41)

We have to show that every point in 𝜕𝐵𝑟 (𝑥) ∩ 𝜕𝐵𝑟 (𝑦) can be represented in this way. For (40) and
(41) to represent the same set, we need to verify that the following identities

𝑠 = sin 𝜎 sin 𝑟 and cos 𝑟 𝜏 = cos 𝜎 sin 𝑟 (42)

can be satisfied with a suitable choice of 𝜎. Clearly, 𝜎 is determined by

sin 𝜎 =
𝑠

sin 𝑟
. (43)

Then using (39),

cos2 𝜎 sin2 𝑟 = (1 − sin2 𝜎) sin2 𝑟 = sin2 𝑟 − 𝑠2 = 𝜏2 cos2 𝑟 ,

and the second identity in (42) is also satisfied.
Finally, since 𝑦𝑑+1 = cos 𝑟 and 𝜏2 = 1−𝑦𝑑+1

1+𝑦𝑑+1
, we estimate the size of 𝜎 as

sin2 𝜎 =
𝑠2

sin2 𝑟
= 1 − cos2 𝑟

sin2 𝑟

1 − 𝑦𝑑+1
1 + 𝑦𝑑+1

≥ 1 − cos2 𝑟

sin2 𝑟

1 − cos 𝑟

1 + cos 𝑟
.
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For 𝑢 = cos 𝑟 ≥ 0, we observe

1 − cos2 𝑟

sin2 𝑟

1 − cos 𝑟

1 + cos 𝑟
= 1 − 𝑢2

1 − 𝑢2
1 − 𝑢

1 + 𝑢
= 1 − 𝑢2

(1 + 𝑢)2 ≥ 3
4

,

so that we obtain sin2 𝜎 ≥ 3
4 . Consequently, 𝜋/3 ≤ 𝜎 ≤ 𝜋/2, which means that 𝐵𝜎 (𝑒𝑑) covers a fixed

portion of S𝑑−1. �

Next, we check how curves in S𝑑−1 – in particular, t-design curves – are mapped by 𝜙𝑥,𝑟 .

Lemma 6.5. Suppose that 𝛾 is a t-design curve in S𝑑−1. Let 𝑥 ∈ S𝑑 and 0 < 𝑟 < 𝜋
2 .

(i) Then 𝛾𝑥,𝑟 = 𝜙𝑥,𝑟 ◦ 𝛾 is a curve in 𝜕𝐵𝑟 (𝑥) ⊆ S𝑑 with length ℓ(𝛾𝑥,𝑟 ) = ℓ(𝛾) sin 𝑟 , such that

1
ℓ(𝛾𝑥,𝑟 )

∫
𝛾𝑥,𝑟

𝑓 =
∫
𝜕𝐵𝑟 (𝑥)

𝑓 , for all 𝑓 ∈ Π𝑡 .

(ii) For a given point 𝑤 ∈ 𝜕𝐵𝑟 (𝑥), there is a t-design curve 𝛾′ in S𝑑−1, such that w lies on 𝜙𝑥,𝑟 ◦ 𝛾′.
(iii) If 𝛾 consists a union of circles, then so does 𝛾𝑥,𝑟 and 𝛾′ can also be chosen to do so.
(iv) Assume that 𝛾 and Ψ ⊆ S𝑑 both consist of a finite union of circles and 𝑤 ∈ Ψ. Then there exists a

t-design curve 𝛾′′ in S𝑑−1 consisting of a union of circles, such that w is contained in the trajectory
Γ′′
𝑥,𝑟 of the curve 𝜙𝑥,𝑟 ◦ 𝛾′′ and the intersection Γ′′

𝑥,𝑟 ∩ Ψ is finite.

In the following, we refer to 𝛾𝑥,𝑟 as a t-design curve for 𝜕𝐵𝑟 (𝑥).

Proof. (i) First we consider the north pole 𝑥 = 𝑒𝑑+1. The curve 𝛾𝑒𝑑+1 ,𝑟 = 𝜙𝑒𝑑+1 ,𝑟 ◦ 𝛾 = (𝛾 sin 𝑟, cos 𝑟)�
has arc length ℓ(𝛾𝑒𝑑+1 ,𝑟 ) = sin 𝑟 ℓ(𝛾), and we derive

1
ℓ(𝛾𝑒𝑑+1 ,𝑟 )

∫
𝛾𝑒𝑑+1 ,𝑟

𝑓 =
1

sin 𝑟 ℓ(𝛾)

∫ 1

0
𝑓 (𝛾(𝑠) sin 𝑟, cos 𝑟)‖ sin 𝑟 𝛾(𝑠)‖d𝑠

=
1

ℓ(𝛾)

∫
𝛾

𝑓 ( · sin 𝑟, cos 𝑟).

The last integral
∫
𝛾

is the line integral of the function 𝑦 ∈ S𝑑−1 ↦→ 𝑓 ◦ 𝜙𝑒𝑑+1 ,𝑟 (𝑦) = 𝑓 (𝑦 sin 𝑟, cos 𝑟)
along 𝛾 in S𝑑−1. For 𝑓 ∈ Π𝑡 and 𝑦 ∈ S𝑑−1, the function 𝑓 (𝑦 sin 𝑟, cos 𝑟) is a polynomial of degree t
restricted to S𝑑−1. The t-design property leads to

1
ℓ(𝛾𝑒𝑑+1 ,𝑟 )

∫
𝛾𝑒𝑑+1 ,𝑟

𝑓 =
∫
S𝑑−1

𝑓 (sin 𝑟 · , cos 𝑟)

=
∫
𝜕𝐵𝑟 (𝑒𝑑+1)

𝑓 ,

where the latter equality is due to the normalization
∫
S𝑑−1 1 = 1 =

∫
𝜕𝐵𝑟 (𝑒𝑑+1)

1, cf. (28).
For general 𝑥 ∈ S𝑑 , there is a rotation matrix O such that 𝑥 = 𝑂𝑒𝑑+1 and rotational invariance

of the distance function on S𝑑 yields 𝐵𝑟 (𝑥) = 𝑂𝐵𝑟 (𝑒𝑑+1) and 𝜕𝐵𝑟 (𝑥) = 𝑂𝜕𝐵𝑟 (𝑒𝑑+1). The curve
𝛾𝑥,𝑟 = 𝑂𝛾𝑒𝑑+1 ,𝑟 = 𝜙𝑥,𝑟 ◦𝛾 satisfies ‖ 𝛾𝑥,𝑟 ‖ = ‖ 𝛾𝑒𝑑+1 ,𝑟 ‖. For 𝑓 ∈ Π𝑡 , we also have 𝑓 ◦𝑂 ∈ Π𝑡 and deduce∫

𝜕𝐵𝑟 (𝑥)
𝑓 =

∫
𝑂𝜕𝐵𝑟 (𝑒𝑑+1)

𝑓 =
∫
𝜕𝐵𝑟 (𝑒𝑑+1)

𝑓 ◦ 𝑂

=
1

ℓ(𝛾𝑒𝑑+1 ,𝑟 )

∫
𝛾𝑒𝑑+1 ,𝑟

𝑓 ◦ 𝑂 =
1

ℓ(𝛾𝑥,𝑟 )

∫
𝛾𝑥,𝑟

𝑓 .
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(ii) If 𝛾 is a t-design curve in S𝑑−1, then for every orthogonal matrix 𝑈 ∈ O(𝑑) the rotated curve
𝛾′ = 𝑈𝛾 is also a t-design curve in S𝑑−1. By suitably choosing U, we can always achieve that a given
point 𝑣 ∈ S𝑑−1 lies on the trajectory of 𝑈𝛾. Now let 𝑤 ∈ 𝜕𝐵𝑟 (𝑥) ⊆ S𝑑 and 𝑣 ∈ S𝑑−1 its pre-image under
𝜙𝑥,𝑟 . Consequently, 𝑤 = 𝜙𝑥,𝑟 (𝑣) lies on the curve 𝛾′

𝑥,𝑟 = 𝜙𝑥,𝑟 ◦ (𝑈𝛾).
(iii) Clearly, if 𝛾 is a union of (Euclidean) circles in S𝑑−1, then 𝛾𝑥,𝑟 = 𝑂 (sin 𝑟 𝛾, cos 𝑟)� is a union

of Euclidean circles in S𝑑 . The same holds for 𝛾′ = 𝑈𝛾.
(iv) Let 𝑣 = 𝜙−1

𝑥,𝑟 (𝑤) and let Ψ0 = 𝜙−1
𝑥,𝑟 ◦ (Ψ ∩ 𝜕𝐵𝑟 (𝑥)). Then Ψ0 is again a finite union of circles or

arcs of circles. Two circles are either disjoint, or they intersect in one or two points, or they coincide.
This can happen only when the two circles have the same center. Let 𝐶𝛾 ⊆ S𝑑−1 be the set of centers of
the circles of the given curve 𝛾 and 𝐶Ψ0 be the centers of Ψ0 (including centers of parts of circles).

We may assume that ±𝑣 ∉ 𝐶𝛾 (otherwise apply a rotation to 𝛾).
Since 𝐶𝛾 and 𝐶Ψ0 are both finite and ±𝑣 ∉ 𝐶𝛾 , Corollary 6.3 yields an orthogonal matrix 𝑈 ∈ O(𝑑)

such that 𝑈𝑣 = 𝑣 and

𝑈𝐶𝛾 ∩ 𝐶Ψ0 = ∅ .

The curve 𝛾′′ = 𝑈𝛾 consists of circles whose centers are disjoint from those of Ψ0; consequently,
𝛾′′ and Ψ0 have only finitely many points in common. After mapping via 𝜙𝑥,𝑟 , we obtain a trajectory
Γ′′
𝑥,𝑟 = 𝜙𝑥,𝑟 ◦ 𝛾′′ in S𝑑 consisting of circles, such that 𝑤 ∈ Γ′′

𝑥,𝑟 and Γ′′
𝑥,𝑟 ∩ Ψ is finite. �

Lemma 6.6. Let 𝛾 be a closed curve in S𝑑 with trajectory Γ, so that its covering radius satisfies 𝑟 < 𝜋/4.
Then Γ intersects the boundary 𝜕𝐵𝜎 (𝑥) for all 𝑥 ∈ S𝑑−1 and 𝜎 ∈ (𝜋/4, 𝜋/2):

Γ ∩ 𝜕𝐵𝜎 (𝑥) ≠ ∅ .

Proof. Since the covering radius of Γ is 𝑟 < 𝜋/4, there exists a point 𝑧 ∈ Γ, such that dist(𝑧, 𝑥) ≤ 𝑟 ,
and thus, 𝑧 ∈ 𝐵𝑟 (𝑥) ⊆ 𝐵𝜎 (𝑥). Similarly, there exists a point 𝑧 ∈ Γ, such that dist(𝑧,−𝑥) ≤ 𝑟 , and thus,
𝑧 ∈ 𝐵𝑟 (−𝑥) ⊆ 𝐵𝜎 (−𝑥). Since

𝜋 = dist(𝑥,−𝑥) ≤ dist(𝑥, 𝑧) + dist(𝑧,−𝑥) ,

we see that dist(𝑧, 𝑥) ≥ 𝜋 − 𝑟 ≥ 𝜎 and 𝑧 ∉ 𝐵𝜎 (𝑥). Consequently, the continuous function
𝜓(𝑠) = dist(𝛾(𝑠), 𝑥) takes values < 𝜎 and > 𝜎. As a consequence, there exists 𝑠0, such that
𝜓(𝑠0) = dist(𝛾(𝑠0), 𝑥) = 𝜎. In other words, the point 𝛾(𝑠0) is in 𝜕𝐵𝜎 (𝑥) or Γ ∩ 𝜕𝐵𝜎 (𝑥) ≠ ∅. �

By combining Lemma 6.5 with Lemma 4.2, we obtain that

1
ℓ(𝛾𝑥,𝑟 )

∫
𝛾𝑥,𝑟

𝑓 =
∫
𝜕𝐵𝑟 (𝑥)

𝑓 = 𝑐𝑑,𝑘 (𝑟) 𝑓 (𝑥) for all 𝑓 ∈ H𝑑
𝑘 . (44)

As in Section 5, this formula paves the way to make a transition from t-design points to t-design curves.

6.2. Part I of the proof of Theorem 6.1

Proof. We first prove the existence of a cycle (a formal sum of closed, piecewise smooth curves) in
S
𝑑 that yields exact integration for Π𝑡 . We prove this claim by induction on the dimension d. The case

𝑑 = 2 corresponds to Theorem 5.1 and shows that the optimal design curve can be realized as a union
of circles. We now assume that the claim holds for 𝑑 − 1 with unions of circles.

For 0 < 𝑟 < 𝜋
2 and 𝑥 ∈ S𝑑 , the induction hypothesis combined with Lemma 6.5(i) shows that there

is a sequence of t-design curves
(
𝛾𝑥,𝑟 ,𝑡

)
𝑡 ∈N for 𝜕𝐵𝑟 (𝑥) of length

ℓ(𝛾𝑥,𝑟 ,𝑡 ) � sin 𝑟 𝑡
(𝑑−1) (𝑑−2)

2 , (45)

whose trajectories Γ𝑥,𝑟 ,𝑡 = 𝛾𝑥,𝑟 ,𝑡 ([0, 1]) consist of unions of circles.
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As in the proof of Theorem 5.1, we use a sequence (𝑋𝑡 )𝑡 ∈N of asymptotically optimal t-design points
in S𝑑 and verify that the cycle 𝛾𝑟

𝑡 = �𝑥∈𝑋𝑡 𝛾𝑥,𝑟 ,𝑡 associated to the trajectory Γ𝑟
𝑡 :=

⋃
𝑥∈𝑋𝑡

Γ𝑥,𝑟 ,𝑡 provides
an exact quadrature on Π𝑡 . A careful choice of the radius r will then yield a single closed curve instead
of a cycle.

For the component H2
0 = span{1}, we observe

1
ℓ(𝛾𝑟

𝑡 )

∫
𝛾𝑟
𝑡

1 = 1 =
∫
S𝑑

1.

Next, we consider 𝑓 ∈ H𝑑
𝑘 for 1 ≤ 𝑘 ≤ 𝑡. On the one hand, since ℓ(𝛾𝑡

𝑟 ) = |𝑋𝑡 |ℓ(𝛾𝑥,𝑟 ,𝑡 ), Lemma 6.5(i)
yields

1
ℓ(𝛾𝑟

𝑡 )

∫
𝛾𝑟
𝑡

𝑓 =
1
|𝑋𝑡 |

∑
𝑥∈𝑋𝑡

1
ℓ(𝛾𝑥,𝑟 ,𝑡 )

∫
𝛾𝑥,𝑟,𝑡

𝑓

=
1
|𝑋𝑡 |

∑
𝑥∈𝑋𝑡

∫
𝜕𝐵𝑟 (𝑥)

𝑓 .

On the other hand, by Lemma 4.2 for 𝑓 ∈ H𝑑
𝑘 , we have

1
|𝑋𝑡 |

∑
𝑥∈𝑋𝑡

∫
𝜕𝐵𝑟 (𝑥)

𝑓 = 𝑐𝑑,𝑘 (𝑟)
1
|𝑋𝑡 |

∑
𝑥∈𝑋𝑡

𝑓 (𝑥) = 𝑐𝑑,𝑘 (𝑟)
∫
S𝑑

𝑓 = 0 =
∫
S𝑑

𝑓 .

In combination, we obtain

1
ℓ(𝛾𝑟

𝑡 )

∫
𝛾𝑟
𝑡

𝑓 =
∫
S𝑑

𝑓

for all 𝑓 ∈
⊕𝑡

𝑘=0 H𝑑
𝑘 . This concludes the first part of the proof. �

6.3. Part II of the proof of Theorem 6.1: Existence of a single closed curve

If r is too small, then the trajectory Γ𝑟
𝑡 is not connected. If r is too big, then we may not match the

desired asymptotics ℓ(Γ𝑟
𝑡 ) � 𝑡

𝑑 (𝑑−1)
2 . Since |𝑋𝑡 | � 𝑡𝑑 and the induction hypothesis yields ℓ(𝛾𝑥,𝑟 ,𝑡 ) �

𝑡
(𝑑−1) (𝑑−2)

2 sin 𝑟 , the total length of 𝛾𝑟
𝑡 is

ℓ(𝛾𝑟
𝑡 ) = ℓ(𝛾𝑥,𝑟 ,𝑡 ) |𝑋𝑡 | � sin 𝑟 𝑡

(𝑑−1) (𝑑−2)
2 𝑡𝑑 � 𝑡

𝑑 (𝑑−1)
2 +1 sin 𝑟 . (46)

This estimate suggests that we choose 𝑟 = 𝑟𝑡 as 𝑟𝑡 � 𝑡−1. Precisely, let 𝜌𝑡 be the covering radius of 𝑋𝑡 ;
then we set

𝑟𝑡 := 2𝜌𝑡 .

Therefore, sin 𝑟 � 𝜌𝑡 � 𝑡−1, so that (46) leads to the expected total length

ℓ(𝛾2𝜌𝑡
𝑡 ) � 𝑡−1𝑡

𝑑 (𝑑−1)
2 +1 � 𝑡

𝑑 (𝑑−1)
2 .

To ensure that Γ2𝜌𝑡
𝑡 is connected, we will construct 𝛾𝑥,2𝜌𝑡 ,𝑡 , for 𝑥 ∈ 𝑋𝑡 , in a sequential fashion.

Proof of Theorem 6.1 (Part II). As in Section 5, we consider the graph G𝜌𝑡 with vertices 𝑋𝑡 and edges
between distinct 𝑥, 𝑦 ∈ 𝑋𝑡 if and only if 𝐵𝜌𝑡 (𝑥) ∩ 𝐵𝜌𝑡 (𝑦) ≠ ∅. According to Lemma 4.1, the graph G𝜌𝑡 is
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connected. Therefore, it possesses a spanning tree T𝜌𝑡 [12]; this is a subgraph that contains all vertices
of G𝜌𝑡 such that every vertex y can be reached by a unique path from a root 𝑥0.

We start at the root 𝑥0 of T𝜌𝑡 and take a t-design curve 𝛾𝑥0 ,2𝜌𝑡 ,𝑡 for 𝜕𝐵2𝜌 (𝑥0). Recall from Lemma 6.5
that 𝛾𝑥0 ,2𝜌𝑡 ,𝑡 is obtained as the image of a t-design curve 𝛾 in S𝑑−1 via the diffeomorphism 𝜙𝑥0 ,2𝜌𝑡 as
𝛾𝑥0 ,2𝜌𝑡 ,𝑡 = 𝜙𝑥0 ,2𝜌𝑡 (𝛾) and we suppose that the trajectory of 𝛾 is a union of circles.

Now consider the first descendant 𝑥1 of 𝑥0 in the tree T𝜌𝑡 . Since dist(𝑥0, 𝑥1) ≤ 2𝜌𝑡 , Lemma 6.4(ii)
(with 𝑟 = 2𝜌𝑡 ) implies that

𝜕𝐵2𝜌𝑡 (𝑥0) ∩ 𝜕𝐵2𝜌𝑡 (𝑥1) = 𝜙𝑥0 ,2𝜌𝑡
(
𝜕𝐵𝜎 (𝑒𝑑)

)
for some 𝜎 > 𝜋/4. Since 𝛾 is a t-design curve in S𝑑−1, the covering radius of its trajectory is of the
order 𝑡−1 and is thus smaller than 𝜎 for t large enough. Lemma 6.6 implies that Γ ∩ 𝜕𝐵𝜎 (𝑒𝑑) ≠ ∅, and
after applying 𝜙𝑥0 ,2𝜌𝑡 we obtain that

Γ𝑥0 ,2𝜌𝑡 ,𝑡 ∩ 𝜕𝐵2𝜌𝑡 (𝑥0) ∩ 𝜕𝐵2𝜌𝑡 (𝑥1) ≠ ∅ .

Let 𝑤1 ∈ S𝑑 be a point in this intersection. By Lemma 6.5(iv) applied to Ψ = Γ𝑥0 ,2𝜌𝑡 ,𝑡 and 𝑤1, there
exists a t-design curve �̃� in S𝑑−1, whose image 𝜙𝑥1 ,2𝜌𝑡 (�̃�) = 𝛾𝑥1 ,2𝜌𝑡 ,𝑡 is a t-design for 𝜕𝐵2𝜌 (𝑥1) such
that 𝑤1 ∈ Γ𝑥1 ,2𝜌𝑡 ,𝑡 and the intersection Γ𝑥0 ,2𝜌𝑡 ,𝑡 ∩ Γ𝑥1 ,2𝜌𝑡 ,𝑡 contains only finitely many points.

The next descendant 𝑥2 leads to

𝜕𝐵2𝜌𝑡 (𝑥1) ∩ 𝜕𝐵2𝜌𝑡 (𝑥2) = 𝜙𝑥1 ,2𝜌𝑡
(
𝜕𝐵𝜎 (𝑒𝑑)

)
for some 𝜎 > 𝜋/4. The same arguments as above yield the existence of

𝑤2 ∈ Γ𝑥1 ,2𝜌𝑡 ,𝑡 ∩ 𝜕𝐵2𝜌𝑡 (𝑥1) ∩ 𝜕𝐵2𝜌𝑡 (𝑥2) .

We now apply Lemma 6.5(iv) with 𝑤2 and Ψ = Γ𝑥0 ,2𝜌𝑡 ,𝑡 ∪ Γ𝑥1 ,2𝜌𝑡 ,𝑡 and obtain a t-design curve Γ𝑥2 ,2𝜌𝑡 ,𝑡
in 𝜕𝐵𝜌𝑡 (𝑥2), such that 𝑤2 ∈ Γ𝑥2 ,2𝜌𝑡 ,𝑡 and Γ𝑥2 ,2𝜌𝑡 ,𝑡 ∩

(
Γ𝑥0 ,2𝜌𝑡 ,𝑡 ∪ Γ𝑥1 ,2𝜌𝑡 ,𝑡

)
is finite.

This process is repeated until we reach a leaf of the spanning tree T𝜌𝑡 . Then we return to the last
branch-off in T𝜌𝑡 and proceed with the next branch of the tree.

Finally, this construction leads to a connected set of circles in S𝑑 , and the resulting trajectory
Γ𝑡 :=

⋃
𝑥∈𝑋𝑡

Γ𝑥,2𝜌𝑡 ,𝑡 of all curves is a connected set with finitely many intersection points.
By construction, Γ𝑡 is a connected set of finitely many circles. Although Lemma 5.2 is formulated

for a graph G constructed from finitely many circles in S2, its proof only uses combinatorial arguments
and hence also holds for circles in S𝑑 . Since Γ𝑡 is connected, so is G. The second part of the proof of
Lemma 5.2 shows that we may fix an arbitrary orientation, and then the corresponding directed graph
G→ is also connected. Thus, Γ𝑡 can be traversed by a single continuous curve. See again Figure 3 for a
pictorial argument. �

7. Some applications

We now discuss a few direct applications of t-design curves to mobile sampling on the sphere and exact
integration of polynomials with respect to the measure e−‖𝑥 ‖d𝑥 on R𝑑 .

7.1. Mobile sampling on the sphere

Here we prove Corollary 1.4 of the Introduction and show that a polynomial f of degree t can be
reconstructed from its restriction to a 2𝑡-design curve.

For its formulation, we recall that Π𝑡 restricted to S𝑑 is a reproducing kernel Hilbert space with
respect to the inner product from 𝐿2 (S𝑑). This means that for every 𝑥 ∈ S𝑑 , there is a polynomial
𝑘𝑥 ∈ Π𝑡 , such that
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𝑓 (𝑥) = 〈 𝑓 , 𝑘𝑥〉 =
∫
S𝑑

𝑓 𝑘𝑥 .

This kernel possesses an explicit description by means of zonal spherical harmonics and Gegenbauer (or
ultraspherical) polynomials [43]. Let 𝑃𝜆

𝑘 , 𝑘 ∈ N, be the sequence of Gegenbauer polynomials associated
with 𝜆 > 0. They are defined by their generating function

(1 − 2𝑟𝑥 + 𝑟2)−𝜆 =
∞∑
𝑘=0

𝑃𝜆
𝑘 (𝑥)𝑟

𝑘 .

Using [43, Thm. 2.14], there are real constants 𝑏𝑘,𝑑 , such that

𝑘𝑥 (𝑦) =
𝑡∑

𝑘=0
𝑏𝑘,𝑑𝑃

𝑑−1
2

𝑘 (𝑥 · 𝑦) 𝑥, 𝑦 ∈ S𝑑 . (47)

We can now extend the formulation of Corollary 1.4 of the Introduction as follows.
Proposition 7.1. Let 𝛾 be a 2𝑡-design curve on S𝑑 and f a restriction of a polynomial of degree t onto
S
𝑑 . Then

1
ℓ(𝛾)

∫
𝛾
| 𝑓 |2 =

∫
S𝑑

| 𝑓 |2, (48)

and f is reconstructed from its values along 𝛾 by

𝑓 (𝑥) = 1
ℓ(𝛾)

∫
𝛾

𝑓 𝑘𝑥 , for all 𝑥 ∈ S𝑑 . (49)

Proof. We only need to prove the reconstruction formula (49). Since 𝑓 𝑘𝑥 ∈ Π2𝑡 and 𝑘𝑥 is real-valued,
the reproducing property yields

𝑓 (𝑥) =
∫
S𝑑

𝑓 𝑘𝑥 =
1

ℓ(𝛾)

∫
𝛾

𝑓 𝑘𝑥 . �

7.2. Integration of polynomials on R𝑑 with respect to e−‖𝑥 ‖d𝑥

Next we consider the integration problem ∫
R𝑑

𝑓 (𝑥)e−‖𝑥 ‖d𝑥.

Recall that the family of generalized Laguerre polynomials (𝐿 (𝑑−1)
𝑛 )𝑛∈N are orthogonal with respect to

the measure 𝑟𝑑−1e−𝑟d𝑟 on [0,∞). Using the zeros of 𝐿 (𝑑−1)
𝑛 , we obtain the following quadrature rule,

where Π𝑡 now stands for polynomials of degree at most t in d variables.
Corollary 7.2. Let 𝛾 be a spherical t-design curve in S𝑑−1. For every integer 𝑛 ≥ 𝑡+1

2 , let {𝑟 𝑗 }𝑛𝑗=1 ⊂
(0,∞) be the set of zeros of 𝐿 (𝑑−1)

𝑛 with the associated weights {𝑤 𝑗 }𝑛𝑗=1 ⊂ (0,∞) for Gaussian
quadrature. Then we have∫

R𝑑
𝑓 (𝑥)e−‖𝑥 ‖d𝑥 =

vol(S𝑑−1)
ℓ(𝛾)

𝑛∑
𝑗=1

𝑤 𝑗

𝑟 𝑗

∫
𝑟 𝑗𝛾

𝑓 , for all 𝑓 ∈ Π𝑡 .

Thus, the scaled curves {𝑟 𝑗𝛾}𝑛𝑗=1 with weights { 𝑤𝑗 vol(S𝑑−1)
𝑟 𝑗ℓ (𝛾) }𝑛𝑗=1 form an exact quadrature rule for Π𝑡

with respect to the measure e−‖𝑥 ‖d𝑥.
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Figure 4. Trajectories provide exact integration of all polynomials in three variables of degree at most
3 with respect to the measure e−‖𝑥 ‖d𝑥. The unit sphere in the center is shown as a reference.

Proof. Gaussian quadrature based on the zeros of 𝐿 (𝑑−1)
𝑛 is exact for all univariate polynomials g of

degree at most 𝑡 ≤ 2𝑛 − 1; that is,∫ ∞

0
𝑔(𝑟)𝑟𝑑−1e−𝑟d𝑟 =

𝑛∑
𝑗=1

𝑤 𝑗𝑔(𝑟 𝑗 ).

Let 𝑓 ∈ Π𝑡 . For fixed 𝑧 ∈ S𝑑−1, the function 𝑟 ↦→ 𝑓 (𝑟𝑧) is a univariate polynomial of degree at most t,
and therefore, ∫

R𝑑
𝑓 (𝑥)e−‖𝑥 ‖d𝑥 =

∫
S𝑑−1

∫ ∞

0
𝑓 (𝑟𝑧)𝑟𝑑−1e−𝑟d𝑟d𝑧

=
∫
S𝑑−1

( 𝑛∑
𝑗=1

𝑤 𝑗 𝑓 (𝑟 𝑗 𝑧)
)
d𝑧.

Since 𝛾 is a t-design curve on S𝑑−1 and 𝑧 ↦→ 𝑓 (𝑟 𝑗 𝑧) is a polynomial in Π𝑡 , we derive∫
R𝑑

𝑓 (𝑥)e−‖𝑥 ‖d𝑥 =
vol(S𝑑−1)

ℓ(𝛾)

∫
𝛾

𝑛∑
𝑗=1

𝑤 𝑗 𝑓 (𝑟 𝑗 ·)

=
vol(S𝑑−1)

ℓ(𝛾)

𝑛∑
𝑗=1

𝑤 𝑗

∫ 1

0
𝑓 (𝑟 𝑗𝛾(𝑠))‖ 𝛾(𝑠)‖d𝑠

=
vol(S𝑑−1)

ℓ(𝛾)

𝑛∑
𝑗=1

𝑤 𝑗

𝑟 𝑗

∫ 1

0
𝑓 (𝑟 𝑗𝛾(𝑠))‖𝑟 𝑗 𝛾(𝑠)‖d𝑠

=
vol(S𝑑−1)

ℓ(𝛾)

𝑛∑
𝑗=1

𝑤 𝑗

𝑟 𝑗

∫
𝑟 𝑗𝛾

𝑓 . �
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Example 7.3. Let 𝛾 (3,𝑎3) be the spherical 3-design curve of Proposition 3.1. The zeros of 𝐿 (2)
2 (𝑟) =

1
2𝑟2 − 4𝑟 + 6 are 𝑟1 = 2 and 𝑟2 = 6. The associated Gaussian weights are 𝑤1 = 3

2 and 𝑤2 = 1
2 . Therefore,

we obtain ∫
R3

𝑓 (𝑥)e−‖𝑥 ‖d𝑥 =
3𝜋

ℓ(𝛾 (3,𝑎3) )

∫
2𝛾 (3,𝑎3 )

𝑓 + 𝜋

3ℓ(𝛾 (3,𝑎3) )

∫
6𝛾 (3,𝑎3 )

𝑓 , (50)

for 𝑓 ∈ Π3; see (a) in Figure 4.

Example 7.4. Consider t-design points 𝑋𝑡 ⊂ S2 and take curves 𝛾𝑥,𝑟 whose trajectory are Euclidean
circles Γ𝑥,𝑟 of radius sin 𝑟 centered at 𝑥 ∈ 𝑋𝑡 as in the proof of Theorem 5.1. Analogous to Corollary 7.2,
we may scale via the zeros of 𝐿 (𝑑−1)

𝑛 and use the associated Gaussian quadrature weights to obtain∫
R3

𝑓 (𝑥)e−‖𝑥 ‖d𝑥 =
2

sin 𝑟 |𝑋𝑡 |

𝑛∑
𝑗=1

∑
𝑥∈𝑋𝑡

𝑤 𝑗

𝑟 𝑗

∫
𝑟 𝑗𝛾𝑥,𝑟

𝑓 , 𝑓 ∈ Π𝑡 ;

see (b) in Figure 4 for 𝑡 = 3.
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