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Abstract
Estimating the ideological positions of political actors is an important step toward answering a number of

substantive questions in political science. Survey scales provide useful data for such estimation, but also

present a challenge, as respondents tend to interpret the scales differently. The Aldrich–McKelvey model

addresses this challenge, but the existing implementations of the model still have notable shortcomings.

Focusing on the Bayesian version of themodel (BAM), the analyses in this article demonstrate that themodel

is prone to overfitting and yields poor results for a considerable share of respondents. The article addresses

these shortcomings by developing a hierarchical Bayesian version of the model (HBAM). The new version

treats self-placements as data to be included in the likelihood functionwhile alsomodifying the likelihood to

allow for scale flipping. The resultingmodel outperforms the existing Bayesian version both on real data and

in a Monte Carlo study. An R package implementing the models in Stan is provided to facilitate future use.

Keywords: ideal point estimation, Aldrich–McKelvey scaling, Bayesian estimation, hierarchical modeling

1 Introduction

Information about the ideological positions of different political actors is important for many

subfields of political science. Over the last few decades, several approaches have been developed

to estimate such positions from various types of data (e.g., Clinton, Jackman, and Rivers 2004;

Imai, Lo, andOlmsted2016; Poole andRosenthal 1985, 1991). These approaches canbeparticularly

useful when they provide information on both citizens and other political actors, locating them

on the same scale (e.g., Bafumi and Herron 2010; Barberá 2015). One way to achieve this is to

rely on ideological survey scales that are common in electoral studies (e.g., Aldrich and McKelvey

1977). This is useful because electoral surveys are available for many countries and time points,

enabling researchers to conduct wide-ranging, cross-national analyses (e.g., Bakker et al. 2014;
Lo, Proksch, and Gschwend 2014). Furthermore, electoral studies aim to cover nationally repre-

sentative samples and they contain additional data on the respondents—in contrast to some of

the other potential data sources, like Twitter data (Barberá 2015).

A key challenge with ideological and policy-related survey scales is that respondents tend

to interpret them differently—a problem sometimes referred to as differential item functioning.

Some respondents tend to place actors that are on their own side of the scale closer to the

center whilemoving others away (Hare et al. 2015). Respondents also differ in the degree to which
they use the full scale: Some stretch the space, spreading out their responses over wider range,

whereas others do the opposite. As a consequence, the respondents’ placements are not directly

comparable. Aldrich and McKelvey (1977) developed amethod to correct for such differences and

estimate the positions of both respondents and other political actors on a common scale. Their

method—which will be referred to as the AMmodel—has been developed further by Poole (1998),

and later been given a Bayesian implementation by Hare et al. (2015).
The Bayesian version of the model has proved useful in a number of studies, but it also

has some important shortcomings. One is that the model yields improper marginal posterior

distributions for anotable shareof the latent respondentpositions. Another issue is that themodel

is prone to overfitting because it is an “unpooled” model, where the individual-level parameters

are modeled separately. This is problematic because the model is used in settings with as few as
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four observations per individual, even though it entails at least two individual-level parameters.

Furthermore, these parameters are among the model’s key outputs as they are used to rescale

the respondent’s self-placements: When these parameter estimates are sensitive to noise, the

estimated respondent positions will be as well.

This article addresses these issues by developing a hierarchical version of the Bayesian AM

model. The newmodel treats each set of individual-level parameters as a sample from a common

population distribution, which makes the model less prone to overfitting. In addition, respon-

dents’ self-placements are treated as data containing error, and their true positions are treated

as latent parameters to be estimated. Like the other individual-level parameters, these latent

positions are given hierarchical priors. Furthermore, the model entails a new likelihood function,

which allows for scale flipping in combination with the new priors. Together, these changes

result in a model that yields more accurate estimates and produces proper marginal posterior

distributions for all respondent positions. The newmodel is compared with the existing Bayesian

implementation using both real and simulated data, and the new model outperforms the older

version on all performance measures. To facilitate future use, an R package implementing the

models in Stan is provided along with this article.1

2 The Bayesian AMModel

Aldrich and McKelvey (1977) noted that when survey respondents are asked to place political

actors (or “stimuli”) on an ideological or policy-related scale, they are likely to interpret the

scale in different ways. Respondents may shift the political space by moving all positions in
one or the other direction, and they may stretch (or contract) the space by moving all posi-
tions outward (or inward). Aldrich and McKelvey therefore developed a least squares procedure

yielding point estimates of stimulus positions as well as individual shift and stretch parameters.

They further used these parameters to transform respondents’ self-reported positions and place

them on the same scale as the stimuli. This approach has been implemented in the R package

basicspace (Poole et al. 2016) and has been used in a number of studies since it was first intro-
duced (e.g., Hollibaugh, Rothenberg, and Rulison 2013; Lo et al. 2014; Palfrey and Poole 1987;
Saiegh 2009).2

Hare et al. (2015) developed a Bayesian version of the AM model, and their version has also

been used in an increasing number of studies (e.g., Alemán et al. 2018; Bakker, Jolly, and Polk
2020; Carroll and Kubo 2018; Clay et al. 2020; Saiegh 2015; Zakharova and Warwick 2014). The
model is intended to capture how respondent i ∈ {1, . . . ,N } reports the position of political actor
j ∈ {1, . . . , J } as a function of this actor’s true latent position, θj . If we denote a reported stimuli
positionYi j and letφ(·|·, ·) be the probability density function of the normal distribution, then the
likelihood function introduced by Hare et al. (2015) can be written as

N∏
i=1

J∏
j=1

φ(Yi j |αi +βi θj ,σ2
i j ), (1)

where αi is a shift parameter, βi is a stretch parameter, and σ
2
i j is a variance term allowing for

heteroskedasticity.3

1 The R package, called hbamr, is available at https://cran.r-project.org/package=hbamr.
2 Poole (1998) developed a generalized version of the AMmodel, which allows for missing values and has been used by, for
example, Bakker et al. (2014).

3 Bølstad (2020) proposed an extended version of this model aiming to capture rationalization. As the model proposed by
Bølstad (2020) retains several key features of the originalmodel, the adjustmentsmade in the present article also improve
the former. For thosewhowould like to capture rationalization, a revised version of themodel in Bølstad (2020) is included
in the R package accompanying this article.
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2.1 The Unpooled Model (BAM)
A key question is how to specify priors for the individual-level parameters. One option is to

let the parameters be estimated separately, as if they were completely unrelated. This is often

referred to as an “unpooled” specification—in contrast to a “pooled” one, which would restrict

the parameters to be equal for all respondents (see, e.g., Gelman et al. 2014). Both Aldrich and
McKelvey (1977) andHareetal. (2015)usedunpooledspecifications, and the latterdid sobyplacing
wide, uniformpriors on the shift and stretchparameters:αi ,βi ∼Unif(−100,100). Suchpriors serve
to emulate a maximum-likelihood-based approach, but they also leave the model sensitive to

noise, and one of the contributions of this article is therefore to improve this part of the model.

Another key question is how to estimate each respondent’s position, χi , on the same scale as

the stimuli, while correcting their self-placement,Vi , for shifting and stretching. For each posterior

draw, Hare et al. (2015) transform the self-placements as follows:

χi =
Vi −αi
βi
. (2)

This transformation is logically consistent with the likelihood function in Equation (1) and similar

to the approachof Aldrich andMcKelvey (1977). However, thedivisionbyβi is problematic because

it may lead to division by values that are arbitrarily close to zero, resulting in draws approaching

positive and negative infinity. To address this issue, the authors use the posterior median rather

than the mean to obtain point estimates of the respondents’ positions. This prevents the most

extreme draws from shifting the point estimates around, but it does not resolve the underlying

problem. A key contribution of this article is therefore to offer a more satisfactory solution.

A final question is how to identify the parameters. Models of these kinds are typically uniden-

tified, as the latent space can be shifted and stretched while yielding the same likelihood values

(see, e.g., Bafumi et al. 2005). To address this issue, Hare et al. (2015) fixed two stimulus positions
on the latent scale while placing standard normal priors on the others: θj ∼ Normal(0,1). For the
sake of comparison, I retain all these specification choices while translating themodel from JAGS

(Plummer 2003) to Stan (Carpenter et al. 2017).4 I refer to the resulting unpooled Bayesian AM
model as the BAMmodel.5

2.2 A Limited Hierarchical Model (HBAM0)
An alternative to the unpooled or completely pooled specifications is a “partially pooled” one,

which typically involves ahierarchicalmodel. Sucha specification followsnaturally ifwevieweach

set of individual-level parameters as a sample from a common population distribution. This leads

to a hierarchical prior structure where the individual-level parameters are given common prior

distributions that themselves have parameters to be estimated. A key point is that a hierarchical

model uses information across individuals rather than treating them as unrelated, which typically

allows the individual-level parameters to be estimated more accurately given the finite data at

hand (see, e.g., Gelman et al. 2014).
In the present case, replacing the uniform priors on αi and βi also offers an alternative way

to identify the model. We can select one out of the many possible transformations of the latent

space by setting specific means or medians for the prior distributions.6 For the α parameters,

4 Stan uses an automatically tuned form of Hamiltonian Monte Carlo, which is more efficient than simpler algorithms when
it comes to sampling from complicated distributions exhibiting posterior correlations (Bølstad 2019; Hoffman and Gelman
2014).

5 There is one aspect of themodel I adjust comparedwith the JAGS version, and that is the specificationof the variance term,
σ2
i j
. I use the same specification of σ2

i j
for all models in this article, and this specification is discussed in a later section.

6 Anadvantageof this approach is that it yieldsmeaningful posterior distributions for all stimuli—in contrast to the approach
of keeping two stimulus positions fixed, which yields awkward distributions for the fixed stimuli.
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setting the mean to zero is a natural choice (implying no shifting on average): αi ∼ Normal(0,σ2
α ).

In this specification, the standard deviation, σα , is an aspect of the population distribution to be

estimated jointly with the other parameters. For the β parameters, using a distribution with a

median of one yields a latent scale with units similar to the observed one, and we can achieve

this by using a log-normal distribution: βi ∼ Log-normal(0,σ2
β ).

7

The use of a log-normal distribution also has a second motivation: It keeps the β parameters

away from zero.8 As noted above, Hare et al. (2015) scaled respondents’ self-placements as shown
in Equation (2) for eachposterior draw, and thismay lead todivisionby β values that are arbitrarily

close to zero—which in turn yields extreme and implausible draws for the latent respondent

positions. This problem implies that not all relevant information has been incorporated in the

model, and using a prior that keeps the β parameters away from zero is oneway of includingmore

such information.

Another key point is that the reported self-placements represent additional data that inevitably

containerrors. Insteadof rescaling the self-placementswhile assuming theyaremeasuredwithout

error, we canmodel these data probabilistically,making thempart of the likelihood function. If we

model the self-placements the samewayas thestimuli placements,weget the following likelihood

for these data:

N∏
i=1

φ(Vi |αi +βiχi ,σ2
i ), (3)

whereχi is a parameter representing the latent position of respondent i andσ2
i is a variance term.

9

The complete likelihood for the model is then the product of Equations (1) and (3).

Finally, we do have some information about what values are plausible for the latent positions:

As they come from the same population, there is a limit to how extreme we would expect any

respondent to be, relative to the rest. By treating the latent respondent positions as parameters to

be estimated, we canmodel these hierarchically and let the degree of shrinkage be determined by

the data:χi ∼ Normal(0,σ2
χ ).

10 This results in amore nuanced posterior distributionwhere areas of

theparameter space that yieldextremeand implausible values forχi areweighteddowncompared

to the BAM specification. Together, these adjustments should reduce the model’s sensitivity to

noise and ensure meaningful results for all respondents.

2.3 A Hierarchical Mixture Model (HBAM)
The model outlined above restricts the stretch parameters to be positive, but as Aldrich and

McKelvey (1977) noted, some respondents may flip the scale and thus have negative parameters.

These respondents would see the ideological space as a mirror image, and report conservative

actors as liberal, and vice versa. This possibility is one of the reasons why Aldrich and McKelvey

did not attempt to restrict the stretch parameters to be positive, and later applications of their

method suggest there is a notable minority of such respondents in a typical survey sample (e.g.,

Lo et al. 2014). I therefore expand the HBAM0 model to allow for such behavior.
I consider each respondent’s potential scale flipping as a latent discrete parameter andmodify

the HBAM0 model accordingly. I define the likelihood for each respondent as a mixture of two

7 The hyperparameters are given weakly informative priors, allowing the data to drive the results: σβ ∼ Gamma(3,10), and
σα ∼ Gamma(2,5/B ). The latter implies a mode at B/5, where B denotes the upper bound of a centered, symmetrical
survey scale and serves to adjust the priors to different scales. For a 7-point scale, B is 3; for an 11-point scale, it is 5.

8 It also restricts the parameters to be positive, and the likelihood function is therefore expanded in the next section to allow
for negative β ’s.

9 χi is identified by assuming that each respondent places themselves on the scale with the same accuracy as they place the
stimulus with the smallest errors.

10 The standard deviation,σχ , is given a hyperprior of Gamma(5,8/B ), which has amode at halfBwhile allowing all plausible
values.
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distributions, representing the flipped and non-flipped states. I further marginalize out the latent

discrete flipping parameter, obtaining the following likelihood forYi j , where I estimate the flipping

parameter’s expectation, λi :

N∏
i=1

J∏
j=1

[λiφ(Yi j |α∗
1i +β

∗
1i θj ,σ

2
i j )

+ (1−λi )φ(Yi j |α∗
2i +β

∗
2i θj ,σ

2
i j )] . (4)

In this specification, each respondent is given separate α and β parameters for each state,

denoted α∗ and β ∗. The first set of these β ∗ parameters, β ∗1i , takes positive values, whereas the
second set, β ∗2i , takes negative values. The α

∗ and β ∗ parameters are given the same priors and
hyperpriors as the α and β parameters in the HBAM0 model, with the exception that the prior on

β ∗2i has a negative sign. The mixing proportion, λi , is given a beta prior, specified in terms of its
expectation,ψ, and concentration, δ :λi ∼ Beta(ψδ, (1−ψ)δ).11 The expectationparameter is given
the followingprior:ψ ∼ Beta(8.5,1.5), which implies a 15%prior probability that a respondent flips
the scale.12 This prior permits all plausible values for ψ while emphasizing those that are more

probable in light of existing studies.13

Still treating the self-placements as data to be modeled probabilistically and the respondent

positions as latent parameters, I also expand the likelihood for Vi in Equation (3) to allow for

flipping:

N∏
i=1

[λiφ(Vi |α∗
1i +β

∗
1i χ

∗
1i ,σ

2
i )

+ (1−λi )φ(Vi |α∗
2i +β

∗
2i χ

∗
2i ,σ

2
i )] . (5)

The latent positions are still modeled as coming from the same population distribution: χ∗
1i ,χ

∗
2i ∼

Normal(0,σ2
χ∗ ), and the prior for σ

2
χ∗ is the same as for σ

2
χ .

To generate posterior draws for the latent discrete flipping parameters, κi , I use their respective

expectations,λi : κi ∼ Bernoulli(λi ). I then use these draws to combineχ∗
1i andχ

∗
2i andobtain draws

for each respondent’s position, χi :

χi = κiχ
∗
1i + (1− κi )χ∗

2i . (6)

Draws for the α and β parameters are obtained the same way:

αi = κi α
∗
1i + (1− κi )α∗

2i , (7)

βi = κi β
∗
1i + (1− κi )β ∗2i . (8)

To see the implications of the HBAM model and some of its key priors, it is helpful to simulate

draws from the prior for βi , integrating over the relevant hyperpriors. Figure 1 summarizes the

draws from such a simulation. The prior distribution for βi is a bimodalmixture, reflecting the two

possibilities that respondents either do or do not flip the scale. The medians of the two mixture

11 The concentration parameter is given a prior with a lower limit at 2: δ ∼ Gamma(2, .1)+ 2. This limit prevents the beta
distribution from turning bimodal, which would cause trouble for the sampling algorithm.

12 ψ is also given a lower limit of .5 to ensure that the model is identified. The prior probability of scale flipping is still 15%
after applying this limit.

13 As the prior will be dominated by the data, the exact specification will not make a notable difference, but the curvature at
the upper limit may be beneficial for the sampling algorithm.
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�

Figure 1. Prior simulation for βi in the HBAMmodel, integrating over all relevant hyperpriors.

components are set to 1 and −1 to identify the latent space, whereas the concentration of each
component will be determined by the data, due to the hierarchical prior structure. The positive

part of the distribution contains more probability mass than the negative part, which reflects the

expectation that scale flipping is less likely than non-flipping. Again, the relative weights of the

negative and positive components of the mixture will predominantly be determined by the data,

given the hierarchical setup. A more comprehensive discussion of the priors is provided in the

Supplementary Material (including prior simulations for all parameters).

2.4 Specification of Errors
Implementing the models in Stan makes it natural to model the standard deviation of the errors,

σi j , more directly than one would in JAGS—where the use of non-conjugate priors leads to

inefficient Metropolis sampling. Specifically, σi j is constructed as a function of two parameters:

σi j = ρj
√
ηi , where ηi captures the average variance of respondent i (implicitly increased by

a factor of J 2 for more efficient sampling), whereas ρ is a unit J-simplex vector, splitting the
variance by stimuli. The simplex vector is given a weakly informative, symmetric Dirichlet prior:

ρ ∼ Dirichlet(5), whereas ηi is given a scaled inverse chi-squared prior, ηi ∼ Scale-inv-χ2(ν, J 2τ2).14

To ensure that the models are comparable and sampling efficiently, this specification is used for

all models—including the BAMmodel.15

3 Empirical Application

To compare and evaluate the models introduced above, I start with an empirical application,

before conducting a Monte Carlo study.16 The empirical application provides a test on real data,

showing whether the results from the models differ, whether the posterior distributions for the

respondent positions are meaningful, and whether the models differ in their out-out-sample

predictive accuracy. The empirical test will also provide input for the simulation study,making the

simulated data as realistic as possible. The simulation study will shed light on the models’ ability

to recover true latent positions and will also provide information on how the models perform in

terms of other assessment criteria.

14 The hyperparameter ν, which represents the degree of similarity in error scales across respondents, is given amoderately
informative prior to make the models robust to difficult empirical scenarios: ν ∼ Gamma(25,2.5). The hyperparame-
ter τ , which represents the general scale of the errors across respondents, is given a weakly informative prior: τ ∼
Gamma(2,5/B ), which implies a mode at B/5while allowing all plausible values.

15 The hbamr package also provides a few simpler homoskedastic HBAM variants that are not discussed in this article.
16 Complete replication materials for all analyses in this article are available at Harvard Dataverse (Bølstad 2023).
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Table 1. Estimated ELPDs based on a 10-fold cross-validation. ELPD is the theoretical expected log pointwise
predictive density for a new dataset, whereas SE�ELPD is the standard error of the ELPD estimate.

BAM HBAM0 HBAM

�ELPD –28,049.2 –30,350.9 –27,405.3

SE�ELPD 146.5 120.7 107.6

For the empirical application, I use a dataset that was analyzed by Hare et al. (2015) when
they introduced the BAM model. The data come from the 2012 American National Election Study

(ANES) and consist of 7-point Liberal-Conservative scales.17 The respondents were asked to place

themselves, as well as the following four stimuli: the Democratic Party, Democratic presidential

candidate Barack Obama, the Republican Party, and Republican candidate Mitt Romney.18

3.1 K-fold Cross-Validation
I start by estimating the pointwise out-of-sample prediction accuracy of the models, which will

help assess model fit and overfitting. Unpooled models are prone to overfitting, and we would

expect the HBAM model to outperform the BAM model. A comparison between the HBAM0 and

HBAMmodels will also provide information onwhether allowing for scale flipping is worthwhile—

or an unnecessary complication.

To compare themodels, I performa 10-fold cross-validation on the reported stimuli positions.19

In other words, I randomly partition the data into 10 equally sized subsets (using stratified sam-

pling so that each respondent at most provides one observation to each subset). I then fit the

models 10 times, each time holding out one of the subsets, while evaluating the pointwise log

likelihood of the held-out data given the estimated parameter values. For each model, I then

estimate the expected log pointwise predictive density (ELPD) and its standard error.

The results of the cross-validation are shown in Table 1. We see that the estimated ELPD is

significantly lower for the HBAM0 model than for the BAM model, while the HBAM model has a

significantly higher estimate than either of the other models. In short, the results suggest that the

HBAM model performs better than the other models in terms of predicting new data. The lower

performance of the unpooled model is expected and implies that this model is overfitting the

data. The difference between HBAM0 and the other models implies that the HBAM0 model is too

restrictive and underfits the data: Allowing for scale flipping yields a considerable improvement in

predictive accuracy.

3.2 Estimated Shifting
Oneof the key findings ofHare et al. (2015)was that respondents tend to shift the ideological space
in a way thatmay lead us to underestimate polarization: Theymove the stimuli that they disagree

with too farawayon theother sideof the scalewhileunderstating their own ideological extremism.

This pattern is reproduced in Figure 2,which showshow the estimatedα parameters from theBAM

and HBAM models are distributed over respondents’ self-placements. Those on the left tend to

17 Hare et al. (2015) also analyzed ANES data from 2004 and 2008, as well as the 2010 Cooperative Congressional Election
Study. I am not analyzing these additional datasets in this article. However, the vignette for the hbamr package includes
analyses of the ANES 1980data that serve to illustrate the original AMmodel in the Rpackagebasicspace (Poole et al. 2016).
The Supplementary Material for this article also includes several analyses of this dataset.

18 Because the data contain only four stimuli andwewant to perform cross-validation, I include only those respondents who
have complete data. I further require that respondents have used at least two unique positions to place the stimuli. This
leaves 4,949 respondents.

19 In other settings, approximate leave-one-out cross-validation using Pareto smoothed importance sampling could be an
efficient alternative (Vehtari, Gelman, and Gabry 2017). However, a large share of high Pareto k-values for the BAMmodel
rules out this option.

Jørgen Bølstad � Political Analysis 56

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/p

an
.2

02
3.

18
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/pan.2023.18


�

Figure 2. Estimated shifting over self-placements. The plots summarize posterior median αi estimates.

�

Figure 3. Estimated stretching over self-placements. The plots summarize medians of absolute values of
posterior draws for βi .

shift their placements to the right, whereas those on the right tend to shift their placements to the

left. The two models produce a similar picture, but the estimates from the BAM model are larger

and contain more outliers.20

3.3 Estimated Stretching
The fundamental logic behind these models implies that we would expect to find a particular

pattern in the estimated β parameters: A key assumption is that some respondents stretch

the space more than others, and thus place both the stimuli and themselves at more extreme

positions. In short, we would expect to find that those who place themselves at more extreme

positions tend to stretch the space to a greater extent. This is why the models use the stimuli

placements to estimate the degree of stretching and rescale the respondents’ self-placements

accordingly. If thementioned assumption does not hold, a key part of thesemodels is invalidated.

As the β parameters can take on both positive and negative values in both the BAM and HBAM

models, the most straightforward way to gauge the overall degree of stretching regardless of

flipping is touse themedianof theabsolute valuesof theposterior draws for each respondent. The

boxplots in Figure 3 show thesemedian absolute β estimates from eachmodel over respondents’

20 To avoid shrinking these estimates toward a commonmean—like the HBAM version presented here does—one could give
different priors to αi for each self-placement, and give these priors their ownmean hyperparameter to be estimated (while
fixing the mean for the center category to zero to identify the latent space). The hbamr package provides such a model
(referred to as HBAM2).
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Figure 4. Posterior distribution for the position of a specific respondent compared to the population. The
gray areas summarize the draws for one of the respondents forwhich theBAMmodel produces a problematic
distribution. The black lines show the density of the draws for all respondents. The horizontal axes have been
capped at ±10, although the draws produced by the unpooled model range from below −10,000 to above
10,000.

self-placements. Interestingly, the β parameter estimates produced by the BAM model follow a

virtually flat line across all but the center category. In contrast, the estimates fromtheHBAMmodel

follow a V-shape, where the β estimates aremore extreme for respondents who place themselves

at the extremes of the scale. This is important because it is exactly the kind of pattern we would

expect to find if the assumption behind these models is correct. It also illustrates that the models

can yield substantively different conclusions, even at an aggregate level.

3.4 Estimated Respondent Positions
A key problem with the current implementation of the BAM model is that it does not yield

meaningful marginal posterior distributions for all respondent positions. To rescale a respondent

position, theBAMmodel subtracts thedraws forαi anddividesby thedraws forβi ,whichcan result

in extreme values if the draws for βi get close to zero. This problem is illustrated in Figure 4, which

focuses on one of the respondents for which the BAMmodel produces a problematic distribution.

Along with the draws for the respondent’s position, the plot shows the estimated population

distribution (as the density of the draws for all respondents).

From a Bayesian perspective, the population distribution contains relevant information about

the positions of individual respondents: If we had no other information, the population distribu-

tion would define a broad range within which we would expect a randomly chosen respondent to

be located. In Figure4,mostof theBAMmodel’s draws for the selected respondent are inareas that

are highly implausible according to the population distribution. At the most extreme, the draws

go beyond ±10,000. In contrast, the HBAM0 and HBAMmodels avoid this problem by treating the

latent respondent positions as parameters and incorporating information about the population

distribution in their priors.

To assess the extent of this issue, I compare all individual respondents’ marginal posterior

distributions to the estimatedpopulationdistribution. For eachmodel, I calculate the rangewithin

which 95% of the draws for all respondent positions lie. This is an approximation of where we

would expect most respondents to be located, and if individual respondents have 95% credible

intervals (CIs) notably wider than this range, it suggests that their posterior distributions are too

wide. I therefore calculate the 95% CI for each respondent’s position and compare these to the

population distribution. For the BAM model, the share of CIs that are more than 50% wider than

the population 95% range is 8%. For the HBAM0 and HBAM models, the number of such cases is

zero.

Jørgen Bølstad � Political Analysis 58

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/p

an
.2

02
3.

18
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/pan.2023.18


�

Figure 5. Respondent position estimates over self-placements. The estimates are posterior medians.

�

�

Figure 6. Respondent position estimates from the HBAM model over estimates from the BAM model. The
estimates are posterior medians.

In addition to the problem shown in Figure 4, wewould expect the overfitting demonstrated by

the cross-validation to reduce the accuracy of the BAMmodel’s point estimates of the respondent

positions. Figure 5 shows the estimatedposteriormedian respondent positions over respondents’

self-placements. The most notable about the results from the BAM model is the amount of

extreme respondent position estimates (compared, e.g., to the interquartile range represented

by the boxes). Even respondentswho place themselves at zero are occasionallymoved to extreme

positions. In contrast, the HBAM results show a pattern where respondents are rarely moved to

muchmore extreme positions than they place themselves at, although theymay be flipped to the

other side.

Figure 6 shows the posteriormedian respondent position estimates from theHBAMmodel over

theestimates fromtheBAMmodel. Again,we see that theBAMmodel produces somevery extreme

estimates, even for respondents that are considered centrist by the HBAMmodel. The correlation

between the two sets of estimates is .6, which implies a substantive difference in the results from

the two models. To see whether this also reflects a difference in the models’ abilities to uncover

the true latent parameters, I conduct a Monte Carlo study in the next section.

3.5 Estimated Hyperparameters
Table 2 summarizes the marginal posterior distributions of the hyperparameters in HBAMmodel.

Notably,ψ is estimated to be between .88 and .90 with 95% probability. This implies a 10%–12%

probability that an individual respondent flips the scale, which is plausible in light of previous

studies (e.g., Lo et al. 2014). The other estimates are less substantively interesting, but relevant for
the Monte Carlo study below.
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Table 2. Summary of marginal posterior distributions for the hyperparameters in the HBAMmodel.

2.5% 50% 97.5% Neff Rhat

ψ 0.88 0.89 0.89 752 1.00

δ 2.00 2.01 2.02 3,836 1.00

σα 0.55 0.56 0.58 1,281 1.00

σβ 0.26 0.27 0.28 1,317 1.00

σχ 1.51 1.55 1.59 1,657 1.00

τ 0.55 0.57 0.58 319 1.01

ν 7.15 8.40 10.04 297 1.01

4 Monte Carlo Study

While theempirical application shows that themodels yieldnotablydifferent resultswhenapplied

to a real dataset, we alsowant to knowhowwell themodels performmore generally. In particular,

wewould like to knowwhether they succeed in recovering true latent positions. To test themodels

in a controlled setting, I conduct a Monte Carlo study covering typical parameter values.

4.1 Setup
Because we would expect model performance to depend on the amount of data available at the

individual level, I run simulations for different numbers of stimuli. In Lo et al.’s (2014) study of
22 countries, the number of stimuli ranged from 5 to 11, with a mode of 8, and I run simulations

for J ∈ {4,8,12}. Lo et al. also found nontrivial shares of negative stretch parameters—typically
around 5%–10%. To see how the models perform with and without a moderate degree of scale

flipping, I run simulations for ψ ∈ {.85,1}. Finally, to see how robust the models are to random

noise, I incrementally increase the scaleof theerrors,τ , across awide range coveringall commonly

observed values.21

Tomake the simulateddata as realistic as possible, the remainingparameter values for thedata

generatingprocess are taken from the empirical application reported above (see Table 2). For each

combination of J andψ values, I simulate 1,000 datasets with N = 500. I then fit the three models

to each set and calculate relevant performance criteria.22 Because the models yield differently

scaled results,measures like the root-mean-square error are not directly applicable without some

normalization, and I focus instead on the correlation (Pearson’s r) between the sets of estimated
and true respondent positions.

4.2 Results
Figure 7 reports results for the posterior median respondent positions. The figure shows loess

smoothed curves, summarizing the correlations over the different error scales for each combina-

tion of J andψ values. The unpooledBAMmodel proves sensitive to noise, particularlywhen there
are fewobservations at the individual level (J = 4).When there is no flipping, theHBAM0 andHBAM

models perform very well, and nearly identically. However, in scenarios where flipping is present

(ψ = .85), the HBAM0 model performs notably worse. Overall, the HBAM model outperforms (or

performs as well as) the other models in every scenario.

21 Specifically, I increaseτ from .5 to 1.4 for a survey scale ranging from−3 to+3. (In the analysis reported above, theposterior
median for τ is .57, whereas the equivalent estimate from an analysis of ANES 1980 is .74.) When the ratio of τ to the length
of the scale is held constant, the results for other scale lengths are essentially identical to those reported here.

22 The number of respondents is not crucial here, as this article mainly aims to improve the individual-level parameter
estimates, which are largely unaffected by the number of respondents. An N of 500 is within the range of sample sizes
commonly seen in this literature. In Lo et al.’s (2014)’s study, N ranged from 284 to 875.
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Figure 7. Results for posterior median respondent positions in the Monte Carlo study. The lines show loess
smoothed curves, summarizing the correlations between estimates and true respondent positions in 1,000
trials per panel. The dots represent a random sample of 250 results per model (dark gray for the BAMmodel
and light gray for the HBAM model). J is the number of stimuli,ψ is the probability that respondents do not
flip the scale, and the relative error scale is τ divided by the scale length.
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Figure 8. Shares of respondents with extremely wide credible intervals. The lines show loess smoothed
curves based on 1,000 trials per panel. The dots represent a randomsample of 250 results for the BAMmodel.
J is the number of stimuli, ψ is the probability that respondents do not flip the scale, and the relative error
scale is τ divided by the scale length.

Figure 8 shows the share of the respondents who receive extremely wide credible intervals.

To count as extremely wide, the 95% intervals must be more than 50% wider than the interval

containing 95% of the draws for all respondents. For the BAM model, the share of respon-

dents who fall into this category is up to 25% in the worst cases and close to 0% in the best
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cases—suggesting the result from the empirical application is fairly typical. Notably, there is no

scenario inwhich theBAMmodel is guaranteednot toproduceproblematic posterior distributions

for the respondent positions.

Results for the stimulus positions are reported in the SupplementaryMaterial. The correlations

between estimated and true stimulus positions are very strong for all models across all scenarios.

However, the BAM model still performs marginally worse than the two other models, especially

as the scale of the errors increases. The HBAM0 model performs marginally better than the HBAM

model when the error scale gets extreme, but both models perform well—and equally well for all

realistic scenarios.

5 Conclusion

As our tools for statistical computing becomemore powerful and accessible, applied researchers

will increasingly face difficult choices in specifying models and drawing inferences. In situations

where the data are clustered, a key question is how to model parameters that vary by cluster.

Researchers who have substantive interest in such parameters are often tempted to fit unpooled

models: In a standard regression context, theymay fit a separatemodel for each cluster, while in a

Bayesian setting, they may fit a joint model where the cluster-level parameters are given uniform

priors. However, these approaches are rarely optimal, as they tend to overfit the data.

The new version of the Bayesian Aldrich–McKelvey model developed in this article illustrates

the advantages of Bayesian hierarchical modeling. The AM model makes an ideal case for hierar-

chical modeling because the individual-level parameters are among its most important outputs,

and a typical dataset entails very few observations per individual. However, the new model also

entails other improvements over previous versions: It treats respondents’ self-placements as

data to be modeled probabilistically and included in the likelihood, and their latent positions as

parameters to be estimated. In addition, the model expands the likelihood function to allow for

scale flipping while using hierarchical priors.

The new model (HBAM) outperforms the unpooled model (BAM) on all assessment criteria

considered: (1) It has higher out-of-sample prediction accuracy on real data, (2) it is better at

recovering the true positions of both respondents and stimuli using simulated data, and (3) it

yields proper marginal posterior distributions for all respondent positions. This article has also

reported results for a simpler version of the newmodel (HBAM0), which could be sufficient in some

rare scenarios where scale flipping is non-existent. However, the HBAM model performs as well

as the simpler model even in these scenarios, and HBAM is therefore the default model in the R

package accompanying this article.

Existing studies using the BAMmodel have often ignored the estimated respondent positions,

which may partly be due to the issues highlighted in this article. By providing more accurate

estimates of the respondent positions and their associated uncertainties, the new model invites

greater use of these estimates in future research. The other individual-level estimates from the

new model are also less noisy, and a recurring feature of the plots in this article is that the new

model makes aggregate patterns clearer. In some instances, like Figure 3, the HBAMmodel brings

out a theoretically expected pattern that cannot be seen in the results from the BAM model.

This illustrates that these models can yield entirely different conclusions even at the aggregate

level.

The hbamr package, which accompanies this article, can be used to address a wide range of
questions. The package permits missing values in the data and therefore allows users to scale

actors from different geographical districts onto the same political space—provided at least a

few bridging stimuli are available. In this context, bridging stimuli are ones that respondents in

multiple districts are exposed to, whichmakes them valuable as common anchor points. The BAM
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model has been used for cross-district scaling in the past,23 and themodels in the hbamr package
can be used the same way.24

A key finding of Hare et al. (2015) was that respondents tend to shift actors on their own side of
the scale toward the center while shifting those on the other side further away. This is important

because it will lead us to underestimate the degree of polarization if we rely on the raw data.

Hare et al.’s finding was based on the ANES 2012, and their finding is substantively replicated in

this article (see Figure 2). However, the Supplementary Material includes analyses of the ANES

1980, and neither model finds a clear pattern of the same kind in this older dataset. A plausible

hypothesis is that this type of shifting has increased along with the degree of polarization in the

electorate, and this is one of the many questions one could investigate using the hbamr package.
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