CONVOLUTION OF L^p FUNCTIONS ON NON-UNIMODULAR GROUPS

BY PAUL MILNES

In this note we prove the following

THEOREM. If G is a nonunimodular locally compact group and 1 , then $there is an open set, U, in G and there are functions, f simultaneously in every <math>L^r(G)$, $p \le r \le \infty$, and g simultaneously in every $L^q(G)$, $1 \le q \le \infty$, such that the convolution, f * g(y), is not defined for any y in U.

REMARK 1. Rickert proved a theorem similar to this in [1]. He proved that, if $1 , <math>1 < q < \infty$, 1/p + 1/q < 1 and G is an arbitrary noncompact locally compact group, then there is an open set, U, in G and there are functions, $f \in L^p$ and $g \in L^q$, such that f * g(y) is not defined for any $y \in U$.

REMARK 2. This theorem provides another proof that $L^{p}(G)$ is not an algebra under convolution for any p > 1, if G is not unimodular [2, Lemma 1].

Proof of Theorem. Let V be a symmetric neighbourhood of the identity, e, of G such that $\frac{3}{4} \le \Delta(x) \le \frac{4}{3} \quad \forall x \in V$ and $0 < \mu(V) < \infty$, where Δ is the modular function and μ is left Haar measure on G. \exists an open set, $U \subseteq V$, such that $\mu(yV \cap V) > 0$, $\forall y \in U$.

Choose $t \in G$ such that $\Delta(t) = a \ge 4$; then $Vt^n \cap V^2 t^m = \emptyset$ if $m \ne n$. For $1 \le n < \infty$, let $f_n(g_n)$ be the characteristic function of $Vt^n(t^{-n}V)$. Note that $g_n(x) = f_n(x^{-1})$ $\forall x \in G$ and $\forall n, f_n(x) f_m(y^{-1}x) = 0 \ \forall x \in G$ if $y \in U$ and $m \ne n$, and

$$\int f_n(x)f_n(y^{-1}x)\,d\mu(x)=\mu((yV\cap V)t^n)=a^n\mu(yV\cap V).$$

Put $f = \sum f_n/(a^{n/p}n^2)$, $g = \sum g_m/m^2$. (All sums are taken from 1 to ∞ .) $f \in L^r$, $p \le r \le \infty$, and $g \in L^q$, $1 \le q \le \infty$, as required. If $y \in U$,

$$f * g(y) = \sum_{m,n} 1/(a^{n/p}n^2m^2) \int f_n(x)g_m(x^{-1}y) d\mu(x)$$
$$= \sum_n 1/(a^{n/p}n^4) \int f_n(x)f_n(y^{-1}x) d\mu(x)$$
$$= \mu(yV \cap V) \sum_n 1/n^4 a^{n(1-1/p)},$$

which does not converge.

One might think that, in this setting, the map, $(f, g) \rightarrow f * \check{g}$, where $\check{g}(x) = g(x^{-1})$, would take $L^p \times L^q$ into L^s for some choices of p, q and s. Using the same technique

PAUL MILNES

as in the theorem, but different g, it is easy to show that this is the case only if 1/p+1/q=1, and then $s=\infty$.

References

1. N. W. Rickert, Convolution of L^p functions, Proc. Amer. Math. Soc. 18 (1967), 762-763.

2. W. Zelazko, A note on L^p-algebras, Colloq. Math. 10 (1963), 53-56.

University of Toronto, Toronto, Ontario

266