DUAL INTEGRAL EQUATIONS WITH BESSEL FUNCTION AND TRIGONOMETRICAL KERNELS

by K. N. SRIVASTAVA
(Received 25th March 1963)

1. In a recent note Sneddon (3) has proved that the solution of the dual integral equations

$$
\begin{align*}
& \int_{0}^{\infty} y^{-1} g(y) \cos (x y) d y=f(x), \tag{A}\\
& \int_{0}^{\infty} g(y) \cos (x y) d y=0, \\
& \int_{0}^{\infty} \leqq 1, \\
& x>1,
\end{align*}
$$

where $f(x)$ can be represented in a series of Jacobi polynomials in the form

$$
\begin{equation*}
f(x)=\sum_{n=1}^{\infty} a_{n} \mathscr{F}_{n}\left(0, \frac{1}{2}, x^{2}\right) \tag{1}
\end{equation*}
$$

and satisfies the condition

$$
\begin{equation*}
\int_{0}^{1}\left(1-x^{2}\right)^{-\frac{1}{2}} f(x) d x=0 \tag{2}
\end{equation*}
$$

is

$$
\begin{equation*}
g(x)=2 \sum_{n=1}^{\infty} n a_{n} J_{2 n}(x) . \tag{3}
\end{equation*}
$$

If in (A), $\cos (x y)$ is replaced by $\sin (x y)$ and $f(0)=0$, the solution is analogous to the above. Here

$$
\begin{equation*}
\mathscr{F}_{n}(\alpha, \beta, x)={ }_{2} F_{1}(-n, \alpha+n ; \beta ; x) \tag{4}
\end{equation*}
$$

is Jacobi's polynomial (2).
2. By the analysis used by Sneddon, we can demonstrate that the solution of the dual integral equations

$$
\begin{array}{rr}
\int_{0}^{\infty} y^{2 k-1} g(y) \cos (x y) d y=f(x), & 0 \leqq x<1, \tag{B}\\
\int_{0}^{\infty} g(y) \cos (x y) d y=0, & x>1,
\end{array}
$$

where $f(x)$ can be represented in a series of Jacobi polynomials in the form

$$
\begin{equation*}
f(x)=\sum_{n=1}^{\infty} a_{n} \mathscr{F}_{n}\left(k, \frac{1}{2}, x^{2}\right) \tag{5}
\end{equation*}
$$

and satisfies the condition

$$
\begin{equation*}
\int_{0}^{1}\left(1-x^{2}\right)^{k-\frac{1}{2}} f(x) d x=0 \tag{6}
\end{equation*}
$$

is

$$
\begin{equation*}
g(x)=\sum_{n=1}^{\infty} 2^{1-k} \Gamma(n+1)[\Gamma(n+k)]^{-1} a_{n} x^{-k} J_{2 n+k}(x) \tag{7}
\end{equation*}
$$

provided $-\frac{1}{2}<k<3 / 2$.
The solution of the dual integral equations

$$
\begin{array}{rr}
\int_{0}^{\infty} y^{2 k-1} g(y) \sin (x y) d y=f(x), & 0 \leqq x<1, \tag{C}\\
\int_{0}^{\infty} g(y) \sin (x y) d y=0, & x>1,
\end{array}
$$

where $f(x)$ can be represented in a series of Jacobi polynomials

$$
\begin{equation*}
f(x)=\sum_{n=1}^{\infty} a_{n} x \mathscr{F}_{n}\left(k+1, \frac{3}{2}, x^{2}\right) \tag{8}
\end{equation*}
$$

and satisfies the conditions

$$
\begin{equation*}
\text { (i) } f(0)=0, \quad \text { (ii) } \int_{0}^{1} x\left(1-x^{2}\right)^{k-\frac{1}{2}} f(x) d x=0 \tag{9}
\end{equation*}
$$

is

$$
\begin{equation*}
g(x)=\sum_{n=1}^{\infty} 2^{1-k} \Gamma(n+1)[\Gamma(n+k+1)]^{-1} a_{n} x^{-k} J_{k+2 n+1}(x) \tag{10}
\end{equation*}
$$

provided $-\frac{1}{2}<k<3 / 2$.
For $k=0$, we get the results obtained by Sneddon.
3. Next consider the dual integral equations with Bessel function kernel. Given the dual integral equations

$$
\begin{align*}
& \int_{0}^{\infty} y^{2 k-2} g(y)(x y)^{\frac{1}{2}} J_{v}(x y) d y=f(x), \tag{D}\\
& 0 \leqq x<1 \\
& \int_{0}^{\infty} g(y)(x y)^{\frac{1}{2}} J_{v}(x y) d y=0, x>1
\end{align*}
$$

if $f(x)$ can be represented in a series of Jacobi polynomials in the form

$$
\begin{equation*}
f(x)=\sum_{n=1}^{\infty} a_{n} x^{v+\frac{1}{2} \mathscr{F}_{n}\left(v+k, v+1, x^{2}\right), ~} \tag{11}
\end{equation*}
$$

and satisfies the conditions

$$
\begin{equation*}
\text { (i) } f(0)=0, \quad \text { (ii) } \int_{0}^{1} x^{v+\frac{1}{2}}\left(1-x^{2}\right)^{k-1} f(x) d x=0 \tag{12}
\end{equation*}
$$

then the solution to (D) is

$$
\begin{equation*}
g(x)=\sum_{n=1}^{\infty} a_{n} 2^{1-k} \Gamma(v+1) \Gamma(n+1)[\Gamma(n+k+1)]^{-1} x^{\frac{1}{2}-k} J_{v+2 n+k}(x), \tag{13}
\end{equation*}
$$

provided $0<k<2$ and $v>-\frac{1}{2}$.

In the case when $v=-\frac{1}{2}$, the condition $f(0)=0$ is dropped. The above result is true even in the case $-1<\nu<-\frac{1}{2}$, provided in the first equation of (D) the condition $0 \leqq x<1$ is replaced by $0<x<1$.

It is interesting to note that the results obtained by Sneddon and those given in the Section 2 are particular cases of the results given above. The results in Section 2 are obtained by replacing k by $k+\frac{1}{2}$ and v by $\pm \frac{1}{2}$.
4. A formal verification of the solution given in Section 3 is given below. Taking $v>-1, n$ a positive integer and k real and positive, the integral

$$
\int_{0}^{\infty} y^{1-k} J_{v+2 n+k}(y) J_{v}(x y) d y
$$

converges and its value is given by Watson (4(a)). For $x>1$ the integral vanishes and the value of $g(x)$ as given in (13) automatically satisfies the second equation of (D). Again from Watson (4(a)), we have

$$
\int_{0}^{\infty} y^{k-1} J_{v+2 n+k}(y) J_{v}(x y) d y=\frac{2^{k-1} \Gamma(v+n+k)}{\Gamma(v+1) \Gamma(n+1)} x^{v} \mathscr{F}_{n}\left(v+k, v+1, x^{2}\right)
$$

for $0<k<2, v>-1$ and $0<x<1$. Since

$$
f(x)=\sum_{n=1}^{\infty} a_{n} x^{v+\frac{1}{2}} \mathscr{F}_{n}\left(v+k, v+1, x^{2}\right)
$$

the first equation of (D) is also satisfied. The cases when $v \geqq-\frac{1}{2}, 0<k<2$ and $x=0$ or 1 , can be varied by using the tables of integral transforms ($1,6.8$ (1), 6.8 (11), (33)). Multiplying the first equation of (a) by $x^{\nu+\frac{1}{2}}\left(1-x^{2}\right)^{k-1}$, integrating between the limits $(0,1)$ and interchanging the order of integration, we get

$$
\begin{aligned}
\int_{0}^{1} & x^{v+\frac{1}{2}}\left(1-x^{2}\right)^{k-1} f(x) d x \\
& =\int_{0}^{\infty} y^{2 k-\frac{3}{2}} g(y) d y \int_{0}^{\pi / 2} J_{v}(y \sin \theta)(\sin \theta)^{v+1}(\cos \theta)^{2 k-1} d \theta \\
& =2^{k-1} \Gamma(k) \int_{0}^{\infty} y^{k-\frac{3}{2}} g(y) J_{v+k}(y) d y \\
& =\sum_{n=1}^{\infty} \Gamma(k) \Gamma(v+1) \Gamma(n+1)[\Gamma(v+k+n)]^{-1} a_{n} \int_{0}^{\infty} y^{-1} J_{v+2 n+k}(y) J_{v+k}(y) d y \\
& =0
\end{aligned}
$$

Here use has been made of the following results given in Watson (4(b), 4(c)):

$$
\begin{aligned}
\int_{0}^{\infty} y^{-1} J_{v+2 n+k}(y) J_{v+2 m+k}(y) d y & =0, \quad m \neq n, \\
\int_{0}^{\pi / 2} J_{v}(y \sin \theta)(\sin \theta)^{v+1}(\cos \theta)^{2 k-1} d \theta & =\frac{2^{k-1} \Gamma(k) J_{v+k}(y)}{y^{k}} .
\end{aligned}
$$

With the value of $g(y)$ given in (13) all the conditions are satisfied. The results given in Section 2 can be verified in the same way.

The results of Section 2 are true even in the case when the condition $0 \leqq x<1$ in the first equations of (B) and (C) is replaced by $0 \leqq x \leqq 1$, provided that $-\frac{1}{2}<k<\frac{1}{2}$. Similarly the result of Section 3 is true when the condition $0 \leqq x<1$ in the first equation of (D) is replaced by $0 \leqq x \leqq 1$, provided $0<k<1$.

REFERENCES

(1) A. Erdelyi, Tables of integral transforms, vol. 1 (McGraw-Hill, 1954).
(2) W. Magnus and F. Oberhettinger, Special functions of mathematical physics (New York, 1949), p. 8.
(3) I. N. Sneddon, Proc. Glasgow Math. Assoc., 5 (1962), 147-152.
(4) G. N. Watson, The theory of Bessel functions (Cambridge, 1944), (a) p. 401, (b) p. 404, (c) p. 373.

M.A. College of Technology
Bhopal (M.P.), India

