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Abstract. LetD > 0 be the fundamental discriminant of a real quadratic ¢eld, and h�D� its class
number. In this paper, by re¢ning Ono's idea, we show that for any prime p > 3,

]f0 < D < X j h�D� 6� 0 (mod p)g >>p

����
X
p

logX
:

Mathematics Subject Classi¢cation (2000). 11R29.

Key words. class numbers, Iwasawa l-invariants.

1. Introduction

Let D > 0 be the fundamental discriminant of the real quadratic ¢eld Q� ����
D
p �, and

h�D� its class number. Let p be prime, Zp the ring of p-adic integers, and
lp�Q�

����
D
p �� the Iwasawa l-invariant of the cyclotomic Zp-extension of Q� ����

D
p �.

Let Rp�D� denote the p-adic regulator of Q� ����
D
p �, and j � jp denote the usual

multiplicative p-adic valuation normalized so that jpjp � 1=p.
Although the `Cohen^Lenstra heuristics' [3] predict that for any prime p, there are

in¢nitely many real quadratic ¢elds Q� ����
D
p � with p 6 j h�D�, it is proved only for the

case p < 5000 ([4, 14]).
On the other hand, Greenberg [6] conjectured that lp�Q�

����
D
p �� � 0 for any real

quadratic ¢eld Q� ����
D
p � and any prime number p. However, very little is known (cf.

[14]). In particular, Greenberg recently asked the question whether there exist
in¢nitely many real quadratic ¢eldsQ� ����

D
p �with p splitting and lp�Q�

����
D
p �� vanishing

for a given odd prime p (cf. [17]). This problem is solved only for the case p � 3 ([17]).
In this direction, in this paper we shall prove the following theorem:

THEOREM 1.1. Let p > 3 be prime and d � ÿ1 or 1. If d � ÿ1, then for any p � 3
(mod 4), and if d � 1, then for any p,

] 0 < D < X j h�D� 6� 0 (mod p�; D
p

� �
� d; and jRp�D�jp �

1
p

� �
>>p

����
X
p

logX
:
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For the case �D=p� � ÿ1, i.e., p remains prime in the real quadratic ¢eld Q� ����
D
p �,

and p 6 j h�D�, we have lp�Q�
����
D
p �� � 0 by a criterion of Iwasawa [12]. Further

for the case �D=p� � 1, i.e., p splits in the real quadratic ¢eld Q� ����
D
p �, p 6 j h�D�,

and jRp�D�jp � 1=p, we also have lp�Q�
����
D
p �� � 0 by a criterion of Fukuda and

Komatsu [5]. Thus, by Theorem 1.1 we immediately have the following theorem:

THEOREM 1.2. Let p > 3 be prime and d � ÿ1 or 1. If d � ÿ1, then for any p � 3
(mod 4), and if d � 1, then for any p,

] 0 < D < X j lp�Q�
����
D
p
�� � 0;

D
p

� �
� d

� �
>>p

����
X
p

logX
:

To prove Theorem 1.1, ¢rst we shall re¢ne Ono's idea [14] and prove the following
theorem.

THEOREM 1.3. Let p > 3 be prime and d � ÿ1 or 1. If there is a fundamental dis-
criminant D0 coprime to p of a real quadratic ¢eld Q� ������

D0
p � such that

(i)
D0

p

� �
� d;

(ii) h�D0� 6� 0 mod p;

(iii) jRp�D0�jp �
1
p
;

then for each d,

] 0 < D < X j h�D� 6� 0 (mod p�; D
p

� �
� d; and jRp�D�jp �

1
p

� �
>>p

����
X
p

logX
:

Finally, we shall show that the condition in Theorem 1.3 holds for any p � 3 (mod
4) if d � ÿ1 and for any p if d � 1.

Remark. Similar works for imaginary quadratic ¢elds can be found in [1, 7^9, 13,
15].

2. Proof of Theorem 1.3

To prove Theorem 1.3, we shall basically follow the proof of Theorem 1 in [14].
Consult [14] for more details.

LetD be the fundamental discriminant of a quadratic number ¢eld, wD:� �D=�� the
usual Kronecker character, and w0 the trivial character. LetMk�G0�N�; w� denote the
space of modular forms of weight k on G0�N� with character w. Let r and N be
nonnegative integers with rX 2. If N 6� 0; 1 (mod 4), then let H�r;N� � 0: If
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N � 0, then let H�r; 0�:� z�1ÿ 2r�. If Dn2 � �ÿ1�rN, then de¢ne H�r;N� by

H�r;N�:� L�1ÿ r; wD�
X
djn

m�d�wD�d�drÿ1s2rÿ1�n=d�;

where sn�n�:�
P

djn d
n. Cohen [2] proved that for every rX 2,

Fr�z�:�
X
NX 0

H�r;N�qN �q:� e2piz� 2Mr�1
2
�G0�4�; w0�:

By the similar arguments as in the proof of Proposition 2 in [14], which use the
construction of the Kubota^Leopoldt p-adic L-function Lp�s; wD�, the Kummer con-
gruences, and the p-adic class number formula (cf. [18]), we have the following
proposition.

PROPOSITION 2.1. Let p be an odd prime number and D�6� 1� be the fundamental
discriminant of a real quadratic ¢eld. Then H�p�pÿ 1�;D� is p-integral and

H�p�pÿ 1�;D� � 2h�D�Rp�D�����
D
p (mod p2�:

Let eD > 1 be the fundamental unit of the real quadratic ¢eld Q� ����
D
p �. Then

Rp�D� � logp�eD�. Let p > 3 be prime and p a prime ideal of Q� ����
D
p � over p. Let

n�p;D� be a non negative integer satisfying that

pn�p;D� j eN�p�ÿ1D ÿ 1 but pn�p;D��1 6 j eN�p�ÿ1D ÿ 1;

where N is the absolute norm of Q� ����
D
p �. Note that n�p;D�X 1. Since jeN�p�ÿ1D ÿ

1jp � jlogp�eN�p�ÿ1D �jp, we have that

jRp�D�jp � pÿn�p;D�; if p is unramified;
pÿn�p;D�=2; if p is ramified:

�
Thus, by Proposition 2.1 we immediately have the following proposition:

PROPOSITION 2.2. Let p > 3 be prime and D�6� 1� be the fundamental discriminant
of the real quadratic ¢eld Q� ����

D
p � in which p is unrami¢ed. Then H�p�pÿ 1�;D�=p is

p-integral and

H�p�pÿ 1�;D�
p

� 2h�D�Rp�D�
p
����
D
p (mod p�:

Let d � ÿ1 or 1. Let p > 3 be prime and de¢ne Gp�z� 2Mp�pÿ1��1
2
�G0�4p2�; w0� by

Gp�z�:� Fp�pÿ1��z� 
 �
p

� �
�
X1
n�0

n
p

� �
H�p�pÿ 1�; n�qn;
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and Ad
p�z� 2Mp�pÿ1��12�G0�4p4�; w0� by

Ad
p�z�:�

Gp�z� 
 ��p� � dGp�z�
2

�
X
�np��d

H�p�pÿ 1�; n�qn:

Similary, for a prime Q 6� p, de¢ne Cd
p�z� 2Mp�pÿ1��1

2
�G0�4p4Q4�; w0� by

Cd
p �z�:�

X
�np��d;�nQ��ÿ1

H�p�pÿ 1�; n�qn:

If l 6� p is prime, then de¢ne �Ul jCd
p��z� and �Vl jCd

p��z� 2Mp�pÿ1��1
2
�G0�4p4Q4l�; �4l� �� by

�Ul jCd
p��z�:�

X1
n�1

udp;l�n�qn �
X

�np��d;�nQ��ÿ1
H�p�pÿ 1�; ln�qn;

�VljCd
p��z�:�

X1
n�1

vdp;l�n�qn �
X

�np��d;�nQ��ÿ1
H�p�pÿ 1�; n�qln:

By the similar arguments as in the proof of Proposition 3 in [14] and Proposition
2.2, we know that there exist a�p� 2 Z coprime to p such that �a�p��=p�Ul jCd

p��z�
and �a�p��=p�VljCd

p��z� have integer Fourier coef¢cients.
Now we assume that there is a fundamental discriminant of real quadratic ¢eld of

Q� ������
D0
p � for which

D0

p

� �
� d and

H�p�pÿ 1�;D0�
p

6� 0 (mod p�:

Let Dn be the fundamental discriminant of the real quadratic ¢eld Q� ���
n
p � and Sp

denote the set of those Dn with

nW k�p�:� �2p�pÿ 1� � 1�p3Q3�p� 1��Q� 1�=4

for which

n
Q

� �
� ÿ1 and

n
p

� �
� d:

Let l be a suf¢ciently large prime satisfying wD0
�l� � 1 and

(1) wDn
�l� � 1 for every Dn 2 Sp;

(2)
l
Q

� �
� 1 and

l
p

� �
� 1;

(3) l 6� 1 (mod p�:
Then by the properties of l and the similar arguments in the proof of Theorem 2 in

[14], which use a theorem of Sturm [16] on the congruence of modular forms, we have
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that there must be an integer 1W nW k�p�l coprime to l for which

a�p�
p

udp;l�n� �
a�p�
p

H�p�pÿ 1�; nl� 6� 0 (mod p�:

Thus, by Proposition 2.2, we have the following proposition:

PROPOSITION 2.3. Let p > 3 be prime and d � ÿ1 or 1. Assume that there is a
fundamental discriminant D0 coprime to p of a real quadratic ¢eld Q� ������

D0
p � such that

(i)
D0

p

� �
� d;

(ii) h�D0� 6� 0 mod p;

(iii) jRp�D0�jp �
1
p
;

If l is a suf¢ciently large prime satisfying wD0
�l� � 1 and (1), (2), (3), then for each d,

there is a positive fundamental discriminant Dl :� dll with dl W k�p�l such that

h�Dl� 6� 0 (mod p�; Dl

p

� �
� d; and jRp�Dl�jp �

1
p
:

Proof of Theorem 1.3. Let rp (mod tp) be an arithmetic progression with �rp; tp� � 1
and pjtp such that for every prime l � rp (mod tp), l satis¢es wD0

�l� � 1 and (1), (2), (3).
Then, by the similar arguments as in the proof of Theorem 1 in [14], which use
Dirichlet's theorem on primes in arithmetic progression, Theorem 1.3 easily follows
from Proposition 2.3. &

3. Proof of Theorem 1.1

Theorem 1.1 follows immediately from Theorem 1.3 and the following proposition.

PROPOSITION 3.1. Let p > 3 be prime and d � ÿ1 or 1. If d � ÿ1, then for any
p � 3 (mod 4), let D be the fundamental discriminant of the real quadratic ¢eld
Q�

�������������
p2 ÿ 1

p
� and if d � 1, then for any p, let D be the fundamental discriminant of

the real quadratic ¢eld Q�
�������������
p2 � 4

p
�. Then for each d, D satis¢es the condition in

Theorem 1.3, i.e.,

(i)
D0

p

� �
� d;

(ii) h�D0� 6� 0 mod p;

(iii) jRp�D0�jp �
1
p
;

To prove Proposition 3.1, we need the following lemmas:
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LEMMA 3.2 (L. K. Hua [10]). Let D be the fundamental discriminant of the real
quadratic ¢eld Q� ����

D
p � and L�s; wD� be the Dirichlet L-function with character wD.

Then

L�1; wD� <
logD
2
� 1:

LEMMA 3.3 ([11]).Let p be an odd prime and p a prime ideal of the real quadratic ¢eld
Q� ����

D
p � over p. If a is an element ofQ� ����

D
p � such that an � 1 mod p but an 6� 1 mod p2

for some integer n, then we have aN�p�ÿ1 6� 1 mod p2.

Proof of Proposition 3.1. (i). If d � 1, then since

Df 2

p

� �
� p2 � 4

p

� �
� 4

p

� �
� 1 � f 2 Z�;

we have �D=p� � 1 for any p. If d � ÿ1, then since

Df 2

p

� �
� p2 ÿ 1

p

� �
� ÿ1

p

� �
� f 2 Z�;

we have �D=p� � ÿ1 for any p � 3 (mod 4).
(ii) Dirichlet's class number formula says that

h�D� �
����
D
p

L�1; wD�
2 log eD

:

By Lemma 3.2, we have that

h�D� <
����
D
p
� �2� log

����
D
p �

4 log eD
<

����
D
p
� �2� log

����
D
p �

2 log�D=4� ;

because eD >
����
D
p

=2.
Let D be the fundamental discriminant of Q�

�������������
p2 ÿ 1

p
� or Q�

�������������
p2 � 4

p
�. Then by

easy computation, we have h�D� < p if pX 11: Since we can also easily check that
h�D� < p; if p < 11, we prove that p 6 j h�D� for any p.

(iii) Let d � 1 and D be the fundamental discriminant of the real quadratic ¢eld
Q�

�������������
p2 � 4

p
�. Let eD > 1 be the fundamental unit of Q�

�������������
p2 � 4

p
� and a:�

�p�
�������������
p2 � 4

p
�=2. SinceNQ� ���Dp �=Q�a� � ÿ1 and a > 1, a � ejD for some odd j > 0. Since

p�
�������������
p2 � 4

p
2

 !pÿ1
ÿ1 � p

pÿ 1
2

� �
p�

�������������
p2 � 4

p
2

 !pÿ2
�p���

0@ 1A;
we have that

apÿ1 � ej�pÿ1�D � 1 mod p, but apÿ1 � ej�pÿ1�D 6� 1 mod p2:
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Thus, by Lemma 3.3 and the discussion above in Proposition 2.2, we have that
jRp�D�jp � 1.

Now, we consider the case d � ÿ1 and D is the fundamental discriminant of
Q�

�������������
p2 ÿ 1

p
�. In this case, if we let a:� p�

�������������
p2 ÿ 1

p
, then by the same method,

we can also prove that jRp�D�jp � 1. &
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