

Indivisibility of Class Numbers and Iwasawa λ -Invariants of Real Quadratic Fields

DONGHO BYEON

School of Mathematics, Korea Institute for Advanced Study, 207-43 Cheongryangri-dong, Dongdaemun-gu, Seoul 130-012, Korea; e-mail: dhbyeon@kias.re.kr

(Received: 27 October 1999; accepted: 12 May 2000)

Abstract. Let D > 0 be the fundamental discriminant of a real quadratic field, and h(D) its class number. In this paper, by refining Ono's idea, we show that for any prime p > 3,

$$\sharp \{0 < D < X \mid h(D) \not\equiv 0 \pmod{p} \} >>_p \frac{\sqrt{X}}{\log X}.$$

Mathematics Subject Classification (2000). 11R29.

Key words. class numbers, Iwasawa λ -invariants.

1. Introduction

Let D > 0 be the fundamental discriminant of the real quadratic field $\mathbb{Q}(\sqrt{D})$, and h(D) its class number. Let p be prime, \mathbb{Z}_p the ring of p-adic integers, and $\lambda_p(\mathbb{Q}(\sqrt{D}))$ the Iwasawa λ -invariant of the cyclotomic \mathbb{Z}_p -extension of $\mathbb{Q}(\sqrt{D})$. Let $R_p(D)$ denote the p-adic regulator of $\mathbb{Q}(\sqrt{D})$, and $|\cdot|_p$ denote the usual multiplicative p-adic valuation normalized so that $|p|_p = 1/p$.

Although the 'Cohen–Lenstra heuristics' [3] predict that for any prime p, there are infinitely many real quadratic fields $\mathbb{Q}(\sqrt{D})$ with $p \not\mid h(D)$, it is proved only for the case p < 5000 ([4, 14]).

On the other hand, Greenberg [6] conjectured that $\lambda_p(\mathbb{Q}(\sqrt{D})) = 0$ for any real quadratic field $\mathbb{Q}(\sqrt{D})$ and any prime number p. However, very little is known (cf. [14]). In particular, Greenberg recently asked the question whether there exist infinitely many real quadratic fields $\mathbb{Q}(\sqrt{D})$ with p splitting and $\lambda_p(\mathbb{Q}(\sqrt{D}))$ vanishing for a given odd prime p (cf. [17]). This problem is solved only for the case p = 3 ([17]).

In this direction, in this paper we shall prove the following theorem:

THEOREM 1.1. Let p > 3 be prime and $\delta = -1$ or 1. If $\delta = -1$, then for any $p \equiv 3 \pmod{4}$, and if $\delta = 1$, then for any p,

$$\sharp \left\{ 0 < D < X \mid h(D) \neq 0 \pmod{p}, \ \left(\frac{D}{p}\right) = \delta, \ and \ |R_p(D)|_p = \frac{1}{p} \right\} >>_p \frac{\sqrt{X}}{\log X}$$

For the case (D/p) = -1, i.e., p remains prime in the real quadratic field $\mathbb{Q}(\sqrt{D})$, and $p \not\mid h(D)$, we have $\lambda_p(\mathbb{Q}(\sqrt{D})) = 0$ by a criterion of Iwasawa [12]. Further for the case (D/p) = 1, i.e., p splits in the real quadratic field $\mathbb{Q}(\sqrt{D})$, $p \not\mid h(D)$, and $|R_p(D)|_p = 1/p$, we also have $\lambda_p(\mathbb{Q}(\sqrt{D})) = 0$ by a criterion of Fukuda and Komatsu [5]. Thus, by Theorem 1.1 we immediately have the following theorem:

THEOREM 1.2. Let p > 3 be prime and $\delta = -1$ or 1. If $\delta = -1$, then for any $p \equiv 3 \pmod{4}$, and if $\delta = 1$, then for any p,

$$\sharp \left\{ 0 < D < X \mid \lambda_p(\mathbb{Q}(\sqrt{D})) = 0, \ \left(\frac{D}{p}\right) = \delta \right\} >>_p \frac{\sqrt{X}}{\log X}$$

To prove Theorem 1.1, first we shall refine Ono's idea [14] and prove the following theorem.

THEOREM 1.3. Let p > 3 be prime and $\delta = -1$ or 1. If there is a fundamental discriminant D_0 coprime to p of a real quadratic field $\mathbb{Q}(\sqrt{D_0})$ such that

- (i) $\left(\frac{D_0}{p}\right) = \delta$,
- (ii) $h(D_0) \not\equiv 0 \mod p$,
- (iii) $|R_p(D_0)|_p = \frac{1}{p}$,

then for each δ ,

$$\sharp \left\{ 0 < D < X \mid h(D) \neq 0 \pmod{p}, \ \left(\frac{D}{p}\right) = \delta, \ and \ |R_p(D)|_p = \frac{1}{p} \right\} >>_p \frac{\sqrt{X}}{\log X}$$

Finally, we shall show that the condition in Theorem 1.3 holds for any $p \equiv 3 \pmod{4}$ if $\delta = -1$ and for any p if $\delta = 1$.

Remark. Similar works for imaginary quadratic fields can be found in [1, 7–9, 13, 15].

2. Proof of Theorem 1.3

To prove Theorem 1.3, we shall basically follow the proof of Theorem 1 in [14]. Consult [14] for more details.

Let *D* be the fundamental discriminant of a quadratic number field, $\chi_D := (D/\cdot)$ the usual Kronecker character, and χ_0 the trivial character. Let $M_k(\Gamma_0(N), \chi)$ denote the space of modular forms of weight *k* on $\Gamma_0(N)$ with character χ . Let *r* and *N* be nonnegative integers with $r \ge 2$. If $N \not\equiv 0$, 1 (mod 4), then let H(r, N) = 0. If

N = 0, then let $H(r, 0) := \zeta(1 - 2r)$. If $Dn^2 = (-1)^r N$, then define H(r, N) by

$$H(r, N) := L(1 - r, \chi_D) \sum_{d|n} \mu(d) \chi_D(d) d^{r-1} \sigma_{2r-1}(n/d),$$

where $\sigma_{v}(n) := \sum_{d|n} d^{v}$. Cohen [2] proved that for every $r \ge 2$,

$$F_r(z) := \sum_{N \ge 0} H(r, N) q^N \ (q := e^{2\pi i z}) \in M_{r+\frac{1}{2}}(\Gamma_0(4), \chi_0).$$

By the similar arguments as in the proof of Proposition 2 in [14], which use the construction of the Kubota–Leopoldt *p*-adic *L*-function $L_p(s, \chi_D)$, the Kummer congruences, and the *p*-adic class number formula (cf. [18]), we have the following proposition.

PROPOSITION 2.1. Let p be an odd prime number and $D(\neq 1)$ be the fundamental discriminant of a real quadratic field. Then H(p(p-1), D) is p-integral and

$$H(p(p-1), D) \equiv \frac{2h(D)R_p(D)}{\sqrt{D}} \pmod{p^2}.$$

Let $\varepsilon_D > 1$ be the fundamental unit of the real quadratic field $\mathbb{Q}(\sqrt{D})$. Then $R_p(D) = \log_p(\varepsilon_D)$. Let p > 3 be prime and **p** a prime ideal of $\mathbb{Q}(\sqrt{D})$ over p. Let n(p, D) be a non negative integer satisfying that

$$\mathbf{p}^{n(p,D)} \mid \varepsilon_D^{N(\mathbf{p})-1} - 1 \quad \text{but} \quad \mathbf{p}^{n(p,D)+1} \not \mid \varepsilon_D^{N(\mathbf{p})-1} - 1,$$

where N is the absolute norm of $\mathbb{Q}(\sqrt{D})$. Note that $n(p, D) \ge 1$. Since $|\varepsilon_D^{N(\mathbf{p})-1} - 1|_p = |\log_p(\varepsilon_D^{N(\mathbf{p})-1})|_p$, we have that

$$|R_p(D)|_p = \begin{cases} p^{-n(p,D)}, & \text{if } p \text{ is unramified,} \\ p^{-n(p,D)/2}, & \text{if } p \text{ is ramified.} \end{cases}$$

Thus, by Proposition 2.1 we immediately have the following proposition:

PROPOSITION 2.2. Let p > 3 be prime and $D(\neq 1)$ be the fundamental discriminant of the real quadratic field $\mathbb{Q}(\sqrt{D})$ in which p is unramified. Then H(p(p-1), D)/p is p-integral and

$$\frac{H(p(p-1), D)}{p} \equiv \frac{2h(D)R_p(D)}{p\sqrt{D}} \pmod{p}.$$

Let $\delta = -1$ or 1. Let p > 3 be prime and define $G_p(z) \in M_{p(p-1)+\frac{1}{2}}(\Gamma_0(4p^2), \chi_0)$ by

$$G_p(z) := F_{p(p-1)}(z) \otimes \left(\frac{\cdot}{p}\right) = \sum_{n=0}^{\infty} \left(\frac{n}{p}\right) H(p(p-1), n)q^n,$$

and $A_p^{\delta}(z) \in M_{p(p-1)+12}(\Gamma_0(4p^4), \chi_0)$ by

$$A_p^{\delta}(z) := \frac{G_p(z) \otimes (\frac{1}{p}) + \delta G_p(z)}{2} = \sum_{\frac{a}{p} = \delta} H(p(p-1), n)q^n.$$

Similary, for a prime $Q \neq p$, define $C_p^{\delta}(z) \in M_{p(p-1)+\frac{1}{2}}(\Gamma_0(4p^4Q^4), \chi_0)$ by

$$C_p^{\delta}(z) := \sum_{(\frac{n}{p})=\delta, (\frac{n}{Q})=-1} H(p(p-1), n)q^n.$$

If $l \neq p$ is prime, then define $(U_l | C_p^{\delta})(z)$ and $(V_l | C_p^{\delta})(z) \in M_{p(p-1)+\frac{1}{2}}(\Gamma_0(4p^4Q^4l), (\frac{4l}{2}))$ by

$$(U_l|C_p^{\delta})(z) := \sum_{n=1}^{\infty} u_{p,l}^{\delta}(n)q^n = \sum_{\frac{n}{p} = \delta, \frac{n}{2} = -1} H(p(p-1), ln)q^n,$$

$$(V_l|C_p^{\delta})(z) := \sum_{n=1}^{\infty} v_{p,l}^{\delta}(n)q^n = \sum_{(\frac{n}{p})=\delta, (\frac{n}{Q})=-1} H(p(p-1), n)q^{ln}.$$

By the similar arguments as in the proof of Proposition 3 in [14] and Proposition 2.2, we know that there exist $\alpha(p) \in \mathbb{Z}$ coprime to p such that $(\alpha(p))/p(U_l|C_p^{\delta})(z)$ and $(\alpha(p))/p(V_l|C_p^{\delta})(z)$ have integer Fourier coefficients.

Now we assume that there is a fundamental discriminant of real quadratic field of $\mathbb{Q}(\sqrt{D_0})$ for which

$$\left(\frac{D_0}{p}\right) = \delta$$
 and $\frac{H(p(p-1), D_0)}{p} \not\equiv 0 \pmod{p}.$

Let D_n be the fundamental discriminant of the real quadratic field $\mathbb{Q}(\sqrt{n})$ and S_p denote the set of those D_n with

$$n \leq \kappa(p) := (2p(p-1)+1)p^3Q^3(p+1)(Q+1)/4$$

for which

$$\left(\frac{n}{Q}\right) = -1$$
 and $\left(\frac{n}{p}\right) = \delta$.

Let *l* be a sufficiently large prime satisfying $\chi_{D_0}(l) = 1$ and

- (1) $\chi_{D_n}(l) = 1$ for every $D_n \in S_p$,
- (2) $\left(\frac{l}{Q}\right) = 1$ and $\left(\frac{l}{p}\right) = 1$,
- (3) $l \not\equiv 1 \pmod{p}$.

Then by the properties of l and the similar arguments in the proof of Theorem 2 in [14], which use a theorem of Sturm [16] on the congruence of modular forms, we have

that there must be an integer $1 \le n \le \kappa(p)l$ coprime to l for which

$$\frac{\alpha(p)}{p}u_{p,l}^{\delta}(n) = \frac{\alpha(p)}{p}H(p(p-1), nl) \neq 0 \pmod{p}.$$

Thus, by Proposition 2.2, we have the following proposition:

PROPOSITION 2.3. Let p > 3 be prime and $\delta = -1$ or 1. Assume that there is a fundamental discriminant D_0 coprime to p of a real quadratic field $\mathbb{Q}(\sqrt{D_0})$ such that

- (i) $\left(\frac{D_0}{p}\right) = \delta$,
- (ii) $h(D_0) \not\equiv 0 \mod p$,

(iii)
$$|R_p(D_0)|_p = \frac{1}{p}$$
,

If *l* is a sufficiently large prime satisfying $\chi_{D_0}(l) = 1$ and (1), (2), (3), then for each δ , there is a positive fundamental discriminant $D_l := d_l l$ with $d_l \leq \kappa(p) l$ such that

$$h(D_l) \neq 0 \pmod{p}, \quad \left(\frac{D_l}{p}\right) = \delta, \quad \text{and} \quad |R_p(D_l)|_p = \frac{1}{p}.$$

Proof of Theorem 1.3. Let $r_p \pmod{t_p}$ be an arithmetic progression with $(r_p, t_p) = 1$ and $p|t_p$ such that for every prime $l \equiv r_p \pmod{t_p}$, l satisfies $\chi_{D_0}(l) = 1$ and (1), (2), (3). Then, by the similar arguments as in the proof of Theorem 1 in [14], which use Dirichlet's theorem on primes in arithmetic progression, Theorem 1.3 easily follows from Proposition 2.3.

3. Proof of Theorem 1.1

Theorem 1.1 follows immediately from Theorem 1.3 and the following proposition.

PROPOSITION 3.1. Let p > 3 be prime and $\delta = -1$ or 1. If $\delta = -1$, then for any $p \equiv 3 \pmod{4}$, let D be the fundamental discriminant of the real quadratic field $\mathbb{Q}(\sqrt{p^2 - 1})$ and if $\delta = 1$, then for any p, let D be the fundamental discriminant of the real quadratic field $\mathbb{Q}(\sqrt{p^2 + 4})$. Then for each δ , D satisfies the condition in Theorem 1.3, i.e.,

- (i) $\left(\frac{D_0}{p}\right) = \delta$,
- (ii) $h(D_0) \not\equiv 0 \mod p$,
- (iii) $|R_p(D_0)|_p = \frac{1}{p}$,

To prove Proposition 3.1, we need the following lemmas:

LEMMA 3.2 (L. K. Hua [10]). Let D be the fundamental discriminant of the real quadratic field $\mathbb{Q}(\sqrt{D})$ and $L(s, \chi_D)$ be the Dirichlet L-function with character χ_D . Then

$$L(1,\chi_D) < \frac{\log D}{2} + 1.$$

LEMMA 3.3 ([11]). Let p be an odd prime and **p** a prime ideal of the real quadratic field $\mathbb{Q}(\sqrt{D})$ over p. If α is an element of $\mathbb{Q}(\sqrt{D})$ such that $\alpha^n \equiv 1 \mod \mathbf{p}$ but $\alpha^n \not\equiv 1 \mod \mathbf{p}^2$ for some integer n, then we have $\alpha^{N(\mathbf{p})-1} \not\equiv 1 \mod \mathbf{p}^2$.

Proof of Proposition 3.1. (i). If $\delta = 1$, then since

$$\left(\frac{Df^2}{p}\right) = \left(\frac{p^2 + 4}{p}\right) = \left(\frac{4}{p}\right) = 1 \quad (f \in \mathbb{Z}),$$

we have (D/p) = 1 for any p. If $\delta = -1$, then since

$$\left(\frac{Df^2}{p}\right) = \left(\frac{p^2 - 1}{p}\right) = \left(\frac{-1}{p}\right) \quad (f \in \mathbb{Z}),$$

we have (D/p) = -1 for any $p \equiv 3 \pmod{4}$.

(ii) Dirichlet's class number formula says that

$$h(D) = \frac{\sqrt{D}L(1,\chi_D)}{2\log\varepsilon_D}.$$

By Lemma 3.2, we have that

$$h(D) < \sqrt{D} \cdot \frac{(2 + \log \sqrt{D})}{4 \log \varepsilon_D} < \sqrt{D} \cdot \frac{(2 + \log \sqrt{D})}{2 \log(D/4)},$$

because $\varepsilon_D > \sqrt{D}/2$.

Let *D* be the fundamental discriminant of $\mathbb{Q}(\sqrt{p^2 - 1})$ or $\mathbb{Q}(\sqrt{p^2 + 4})$. Then by easy computation, we have h(D) < p if $p \ge 11$. Since we can also easily check that h(D) < p, if p < 11, we prove that $p \not\mid h(D)$ for any *p*.

(iii) Let $\delta = 1$ and *D* be the fundamental discriminant of the real quadratic field $\mathbb{Q}(\sqrt{p^2 + 4})$. Let $\varepsilon_D > 1$ be the fundamental unit of $\mathbb{Q}(\sqrt{p^2 + 4})$ and $\alpha := (p + \sqrt{p^2 + 4})/2$. Since $N_{\mathbb{Q}(\sqrt{D})/\mathbb{Q}}(\alpha) = -1$ and $\alpha > 1$, $\alpha = \varepsilon_D^j$ for some odd j > 0. Since

$$\left(\frac{p+\sqrt{p^2+4}}{2}\right)^{p-1} - 1 = p\left(\left(\frac{p-1}{2}\right)\left(\frac{p+\sqrt{p^2+4}}{2}\right)^{p-2} + p(*)\right),$$

we have that

$$\alpha^{p-1} = \varepsilon_D^{j(p-1)} \equiv 1 \mod \mathbf{p}, \quad \text{but} \quad \alpha^{p-1} = \varepsilon_D^{j(p-1)} \not\equiv 1 \mod \mathbf{p}^2.$$

Thus, by Lemma 3.3 and the discussion above in Proposition 2.2, we have that $|R_p(D)|_p = 1$.

Now, we consider the case $\delta = -1$ and *D* is the fundamental discriminant of $\mathbb{Q}(\sqrt{p^2 - 1})$. In this case, if we let $\alpha := p + \sqrt{p^2 - 1}$, then by the same method, we can also prove that $|R_p(D)|_p = 1$.

Acknowledgements

The author would like to thank K. Ono for kindly answering his questions and J. H. Oh for helpful discussion.

References

- 1. Byeon, D.: A note on the basic Iwasawa λ -invariants of imaginary quadratic fields and congruence of modular forms, *Acta Arith.* **89** (1999), 295–299.
- Cohen, H.: Sums involving the values at negative integers of L-functions of quadratic characters, *Math. Ann.* 217 (1975), 271–285.
- Cohen, H. and Lenstra, H. W.: Heuristics on class groups of number fields, In: Number Theory (Noordwijkerhout 1983), Lecture Notes in Math. 1068, Springer, New York, 1984, pp. 33–62
- 4. Davenport, H. and Heilbronn, H.: On the density of discriminants of cubic fields II, *Proc. Roy. Soc. London Ser. A* **322** (1971), 405–420.
- 5. Fukuda, T. and Komatsu, K.: On the λ -invariants of \mathbb{Z}_p -extensions of real quadratic fields, *J. Number Theory* **23** (1986), 238–242.
- Greenberg, R.: On the Iwasawa invariants of totally real number fields, *Amer. J. Math.* 98 (1976), 263–284.
- 7. Hartung, P.: Proof of the existence of infinitely many imaginary quadratic fields whose class number is not divisible by 3, *J. Number Theory* **6** (1974), 276–278.
- Horie, K.: A note on basic Iwasawa λ-invariants of imaginary quadratic fields, *Invent.* Math. 88 (1987), 31–38.
- Horie, K. and Onishi, Y.: The existence of certain infinite families of imaginary quadratic fields, J. Reine Angew. Math. 390 (1988), 97–113.
- 10. Hua, L.-K.: On the least solution of Pell's equation, *Bull. Amer. Math. Soc.* 48 (1942), 731–735.
- Ichimura, H.: A note on Greenberg's conjecture and the abc conjecture, *Proc. Amer. Math. Soc.* 126 (1998), 1315–1320.
- Iwasawa, H.: A note on class numbers of algebraic number fields, *Abh. Math. Sem. Univ. Hamburg* 20 (1956), 257–258.
- Kohnen, W. and Ono, K.: Indivisibility of class numbers of imaginary quadratic fields and orders of Tate-Shafarevich groups of elliptic curves with complex multiplication, *Invent. Math.* 135 (1999), 387–398.
- Ono, K.: Indivisibility of class numbers of real quadratic fields, *Compositio Math.* 119 (1999), 1–11.
- Ono, K. and Skinner, C.: Fourier coefficients of half-integral weight modular forms modulo *l*, Ann. Math. 147 (1998), 453–470.
- Sturm, J.: On the congruence of modular forms, In: *Lecture Notes in Math.* 1240, Springer, New York, 1984, pp. 275–280.

- 17. Taya, H.: Iwasawa invariants and class numbers of quadratic fields for the prime 3, *Proc. Amer. Math. Soc.* **128** (2000), 1285–1292.
- 18. Washington, L.: Introduction to Cyclotomic Fields, Grad. Texts in Math. 83, Springer, Berlin, 1982.